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Abstract: Liquid crystals are able to transform a local molecular interaction into a macroscopic
change of state, making them a valuable “smart” material. Here, we investigate a novel polymeric
amphiphile as a candidate for molecular triggering of liquid crystal droplets in aqueous background.
Using microscopy equipped with crossed polarizers and optical tweezers, we find that the monomeric
amphiphile is able to trigger both a fast phase change and then a subsequent transition from nematic
to isotropic. We next include sodium dodecyl sulfate (SDS), a standard surfactant, with the novel
amphiphilic molecules to test phase transitioning when both were present. As seen previously, we
find that the activity of SDS at the surface can result in configuration changes with hysteresis. We find
that the presence of the polymeric amphiphile reverses the hysteresis previously observed during
such transitions. This work demonstrates a variety of phase and configuration changes of liquid
crystals that can be controlled by multiple exogenous chemical triggers.

Keywords: liquid crystals; emulsions; rod-shaped molecules

1. Introduction

Liquid crystals (LCs) are a material system that is responsive to stimuli such as
electric and magnetic fields [1,2], changes in pH [3,4], protein binding [5,6], light [7–9], and
temperature [10,11]. Furthermore, their optical properties are incredibly useful for displays
and other read-outs of their state. Recently, liquid crystals have been used as a model
system that is responsive to the molecular nature of the environment [12–16]. The self-
organization and long-range elasticity enable liquid crystal systems to sense environmental
fluctuations and react accordingly—all without a brain or a central communication network.
Such responsive materials are inherently more secure than those that connect to a network,
since their sensing and responding occur locally. Thus, autonomous materials of this sort
that need not interact with a computer or talk to the cloud to perform a task are promising
materials of the future.

The properties of liquid crystals make them outstanding material systems capable
of mimicking activities performed by living organisms; exhibiting signal amplification,
self-organization, and healing. Indeed, the physics of liquid crystals have also been used in
models of essential biological processes such as cell division [17,18]. Inspired by biology,
liquid crystals have been shown to be excellent at sensing and responding to environmental
changes, making them great candidates for responsive or autonomous materials [2,19].

In order to use liquid crystals as autonomously responsive materials, we must inves-
tigate novel molecular triggers that can alter the state of the liquid crystal. Recent work
has shown that surfactants can interact at air/aqueous–LC interfaces to cause transitions at
the boundary, which propagate through the liquid crystal [12,14,20,21]. In this way, a local
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interaction results in a large-scale or macroscopic change in the state of the liquid crystal.
Given the optical properties of the liquid crystal, these molecular-scale orientation changes
are easily amplified and detected optically.

We have recently created designer oligomeric amphiphilic molecules that can interact
with liquid crystals and alter the phase of the material [12,14]. Prior work was performed
in a two-dimensional configuration, but here we examine the effects of the oligomeric
amphiphiles in a three-dimensional system in the form of liquid crystal droplets made
from 4-cyano-4′-pentylbiphenyl (5CB) [12,14]. We use a novel optical trapping method
we previously developed to interrogate the effects of sodium dodecyl sulfate (SDS) on
dynamical phase changes of the same droplet as the background solution is changed [21].
This method revealed a hysteresis in the configuration change for the same droplet when
changing from bipolar to radial and back again.

Here, we characterize the activity of a new PEG-C10 surfactant, which is chemically
composed of a hydrophobic decyl side chain (shown in red, Figure 1) and a hydrophilic
pentaethylene glycol (PEG, shown in blue, Figure 1) side chain linked via an aromatic core.
The aromatic core has a methylated amine group attached. We will refer to the oligomeric
amphiphile that we examine as PEG-C10 [12,14]. We find that the PEG-C10 molecule can
trigger a first nematic configuration change and then cause a melting of the liquid crystal to
an isotropic phase. When we combine the PEG-C10 with sodium dodecyl sulfate (SDS), a
surfactant extensively characterized for triggering liquid crystals [12,14,20,22], we alter the
dynamics of the SDS activity. This work suggests that tuning the concentrations of multiple
triggers can alter the driving of configuration changes in a highly controlled manner.

Figure 1. Molecular structures used in this study. (A) The oligomeric amphiphilic molecule, called O1
or PEG-C10. The novel functional group (shown in red), a polyethylene glycol C-10 group, is attached
to the benzene ring. (B) Sodium dodecyl sulfate (SDS). (C) Liquid crystal molecule used 4-cyano-
4′-pentylbiphenyl (5CB). For all images, the hydrophobic groups are shown in red and hydrophilic
groups are shown in blue. The small cartoon on the right is the version used in illustrations.

2. Materials and Methods

All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) unless
otherwise stated.

2.1. Synthesis of Novel Surfactant

The PEG-C10 was synthesized as described in previous work [14], where it is referred
to as O1 (Oligomer 1).
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2.2. Static Experiments

The liquid crystal droplet samples are prepared by creating a polydisperse emulsion of
5CB and surfactant in buffer. Surfactants are diluted into phosphate buffered saline (100 mM
PBS, pH 7.6: 1.97 mM monobasic KH2PO4, 15.30 mM dibasic Na2HPO4, 148.86 mM
NaCl). To create the emulsion, 1 µL of 5CB liquid crystal is added to the 199 µL of
surfactant solution using a 10 µL Hamilton syringe (washed with chloroform and dried
using compressed air). Droplets in the presence of PEG-C10 alone were observed at the
following PEG-C10 concentrations: 37.5, 75, 200, 375, and 600 µM. Droplets in presence of a
combination of PEG-C10 and SDS were observed with a constant PEG-C10 concentration
(50 µM) and the following SDS concentrations: 100, 300, 600, 1000, 2000 µM. For all
concentration of surfactants, we use standard pipettors and pipette tips that have an
uncertainty of up to 20% of the lowest volume. The amounts being pipetted caused us
to use pipettors with ranges from 0.2 to 2 µL all the way to 20 to 200 µL. The maximum
uncertainty of our pipetting volume was 0.4 µL. Propagating that volume uncertainty to the
uncertainty of the concentrations of the surfactants leads to uncertainty of our concentration
from 0.04% to 2%, depending on the preparation. We do not illustrate this uncertainty on
our data plots.

The LC–surfactant mixture is mechanically agitated so that the liquid crystal forms
individual droplets stabilized by the surfactant. Low concentrations of surfactant serve to
stabilize liquid crystal droplets and prevent coalescence, while higher surfactant concen-
trations are used for triggering the liquid crystal configuration change. The emulsion is
pipetted into a flow chamber made from a 1 cm cloning cylinder (Fisher, Hampton, NH,
USA) attached to a clean cover slip with fast-drying epoxy. The cover glass was washed
with ethanol, ddH2O, and then ethanol to clean prior to assembly.

Samples are directly imaged using transmitted light microscopy with crossed polariz-
ers to reveal the configuration of the nematic phase inside the droplets. Specifically, we use
an inverted Nikon Ti-U microscope with a polarizer in the condenser and an analyzer in a
filter cube below the objective to examine the droplets. We use a 60x 1.2 NA water immer-
sion objective and an Andor Zyla sCMOS camera, with a pixel size of 110 nm/pixel. Nikon
Elements software is used to collect data in the .nd2 file format along with its corresponding
metadata. Given that we are using white light, the average diffraction limited uncertainty
to measurements from the imaging is ∼250 nm. The stage is moved in the XY plane to
capture droplets all around the chamber and moved in the Z direction to vary the focal
plane. Movies of liquid crystal droplets in the flow chamber are recorded at 5–10 frames
per second for static experiments with both surfactants (SDS and PEG-C10), and at 4 frames
per minute for static experiments with just PEG-C10.

Spherical droplets were characterized based on configuration into one of the following
groups: radial, bipolar, monopolar (includes destroying boojum, sunset, pre-radial, escaped
radial), isotropic, or other/unknown. Additionally, the diameter of each droplet was
measured and recorded.

2.3. Dynamic Experiments

In order to monitor the configuration of individual droplets as the environment
is changed dynamically, an optical trap is used to hold droplets while the background
solution is changed. A home-built optical tweezer was constructed using a fiber laser
with a wavelength of 1064 nm and a maximum power of 1 W. The beam was expanded to
overfill the back aperture of the objective. A three-dimensional potential well is created
when the objective focuses the laser, and this holds an object of high refractive index in
place at the focal plane [23,24]. We can estimate the beam waist w0 for the laser. Using
w0 = λ/(π ∗ NA) where λ is the wavelength of light (1064 nm) and NA is the numerical
aperture of the objective (1.2), we estimate the beam waist minimum to be ∼280 nm.

The sample is prepared using the same procedure as the static experiments. The
sample at the desired starting concentration is pipetted into a flow chamber made from
1–2 stacked cloning cylinders and attached to cover glass using fast-drying epoxy. The
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cloning cylinders have an inner diameter of 8 mm and can hold up to 500 µL of solution.
Tubing (Cole-Parmer) with an internal volume of 24.1 µL and length of 330 mm is used to
flow solution into the chamber using a syringe pump (World Precision Instruments, Vernon
Hills, IL, USA). Solution was flowed in at a rate of 3 µL/min. Since adding solution into
the chamber caused unwanted flow, droplets trapped using optical tweezers were held
opposite to the inlet tubing to reduce local flow. The concentration of surfactant (Figure A1)
in the chamber can be approximated using the following equation:

C(t) =
CiVi + C f (rt− 24.1)

Vi + (rt− 24.1)
(1)

where 24.1 represents the dead volume inside the inlet tubing (in µL), Ci is the initial
surfactant concentration, Vi is the initial volume of solution, C f is the concentration of
surfactant flowed in, and r is the flow rate (3 µL/min).

The laser power of the optical tweezer is kept in the range of 40–60%. This laser power
is strong enough to hold the droplet during flow, but low enough to not trap additional
droplets that flow past.

3. Results
3.1. PEG-C10 Phase Diagram

Our initial experiments seek to determine the phase of liquid crystal droplets in the
presence of a novel oligomeric amphiphile, PEG-C10, using the following static concen-
trations: 37.5, 75, 200, 375, and 600 µM. Using crossed polarizers, we image the droplets
and classify each as being in the bipolar configuration (Figure 2A(i)), radial configuration
(Figure 2A(ii)), monopolar configuration (Figure 2A(iii)), or isotropic phase (Figure 2A(iv)).
The droplets are incubated for two hours and only droplets larger than 5 µm in diameter
are included in analysis.

From the phase diagram, it is clear that the isotropic phase is the favored phase for
all the concentrations of PEG-C10 tested (Figure 2A,B, Appendix B.1: Table A1). Of the
fraction of droplets that display the nematic phase, the configuration of the liquid crystal
in the droplets follows the same pattern we have observed previously for SDS surfactant.
Specifically, for nematic droplets, the initial configuration is mostly bipolar and changes
to monopolar and radial. This is the expected transition for surfactants that stay at the
boundary and affect the liquid crystal orientation inside the droplets [21].

The fraction of droplets that are in the isotropic phase is notably high for all PEG-C10
concentrations examined (Figure 2A,B). At the three highest concentrations, almost 100%
of the droplets are in the isotropic phase, independent of the size of the droplet (Figure 2A).
For the lower PEG-C10 concentrations, the smaller droplets are more likely to be isotropic
than larger droplets (Figure 2A). We created normalized histograms of the diameters of
isotropic droplets (Figure 2C(i)). All histograms appear to decay exponentially, likely due
to the agitation method we use to the create droplets. We fit the data to an exponential
decay function of the form: y(x) = Ae(−x/x0) to determine the characteristic diameter size,
x0 of the isotropic droplets (Figure 2C(i), fit data given in Appendix B.1: Table A2).

Using the characteristic size of the isotropic droplet, x0, at each concentration, we can
see that it increases monotonically with PEG-C10 concentration and appears to saturate
(Figure 2C(ii)). We fit this data to a hyperbolic function of the form:

y(x) = ymax
x

k + x
(2)

where ymax is the asymptote of the function at large x, and k denotes the concentration
when y is half of ymax (best fit information given in Appendix B.1: Table A3). Here, the
maximum value denotes the characteristic diameter of the droplets due to the method
of creating the droplets using agitation, since 100% of the droplets are isotropic at the
highest concentrations.
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Figure 2. PEG-C10 controls the configuration and phase of liquid crystal droplets. (A) Phase diagrams
of the liquid crystal configuration and diameter of 5CB droplets in presence of PEG-C10 surfactant at
37.5 µM (N = 85), 75 µM (N = 229), 200 µM (N = 355), 375 µM (N = 230) and 600 µM (N = 88). (i) Bipolar
configuration (red circles), (ii) radial configuration (green squares), (iii) monopolar configuration
(blue diamonds), and (iv) isotropic phase (purple open circles). Each point has uncertainty in the
measurement of the width of ∼250 nm due to the diffraction limit of light, which is too small to
display. (B) Quantification of the percentage of droplets in each configuration for each concentration
of PEG-C10 for bipolar (red), radial (green), monopolar (blue), and isotropic (purple). The uncertainty
of each bar is given in Appendix B.1: Table A1. (C) For the isotropic phase, the droplet size that
is isotropic appears to increase with increasing PEG-C10 concentration. (i) Diameter data for each
concentration (37.5 µM (red circles), 75 µM (orange squares), 200 µM (green diamonds), 375 µM (blue
triangles pointing up) and 600 µM (purple triangles pointing down)). Data were binned, normalized,
plotted, and fit with an exponential decay function (Appendix B.1: Table A2). Error bars represent
the standard error of proportion. (ii) The characteristic decay time of the fit is plotted as a function
of the PEG-C10 concentration and fit to a hyperbolic function (Appendix B.1: Table A3). Error bars
represent the uncertainty in the fit parameters.

The second fit parameter, k, denotes the concentration of PEG-C10 where the diameter
of isotropic droplets is half the maximum. This concentration is likely also the concentration
when half the droplets would change to isotropic, assuming that they are in equilibrium.
All of the data shown here were taken at the same 2 h time point, but we cannot say for
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sure that we are in the equilibrium configuration. In order to examine the rate of change
from nematic to isotropic, we need to quantify the configuration of the droplets over time.

3.2. Dynamics of LC Phase in the Presence of PEG-C10

The above data are taken after two hours incubation with a fixed concentration of PEG-
C10. We seek to understand if the final state is steady state and how quickly the steady-state
configurations are established. In order to do this, we monitor the configuration state,
focusing on the isotropic configuration, of a set of droplets over time for up to two hours
(Figure 3). We test PEG-C10 concentrations of 37.5, 75, 200, 375, and 600 µM. Any droplets
that did not maintain a spherical shape were discarded from the measurement. The
information about the number of measurements for each time point and concentration is
given in Appendix B.2: Table A4.

Figure 3. Dynamic phases over time. (A) The percent of droplets that are isotropic is measured
over time for two hours for fixed PEG-C10 concentrations of 37.5 µM (red circles), 75 µM (orange
circles), 375 µM (green circles), 600 µM (blue circles), and 750 µM (purple circles). The error bars are
from the standard error of proportion using the number of droplets measured at each time point
and concentration given in Appendix B.2: Table A4. Data are fit with Equation (3) represented as a
solid line matching the color of the data being fit. Best fits can be found in Appendix B.2: Table A5.
(B) The rate of change in the percentage of droplets that are isotropic is deduced from the fits in
part (A) and plotted as a function of the PEG-C10 concentration. (C) The maximum percentage of
droplets that are isotropic is deduced from the fits in part (A) and plotted as a function of the PEG-C10
concentration. Both (B,C) are fit to hyperbolic function, Equation (4). The best fit parameters are
given in Appendix B.2: Table A6.
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The percentage of isotropic droplets increased for each sample over time reaching a
saturation level that was lower for the smaller PEG-C10 concentrations (37.5 and 75 µM) and
plateaued at almost 100% for the higher concentrations (200, 375, and 600 µM) (Figure 3A).
Each of the plots was fit to a rising exponential decay with this form:

I(t) = A(1− exp(−tR)), (3)

where I(t) is the percent of droplets that were isotropic over time, t; A is the asymptotic
level of the equilibrium amount of isotropic droplets; R is the rate of change to isotropic. The
parameters for the best fit of each fixed concentration are given in Appendix B.2: Table A5.
Comparing these asymptotic maximum values from the dynamic data (Figure 3A) to the
percentage of droplets that were isotropic in the equilibrium data (Figure 2B), we see the
same trend, although the exact quantitative values are slightly different. That could be due
to differences in preparations or times of analysis.

Using the fit to Equation (3), we can see that both the rate of change from nematic to
isotropic, R, and the expected equilibrium value for the percentage of droplets that are
isotropic, A, depend on the concentration of PEG-C10 (Figure 3B,C). Examining the rate of
change, R, we note that it increases linearly for low surfactant concentrations and plateaus
at higher surfactant concentrations (Figure 3B). If we fit a line to the linear portion with
form: R([C]) = konC, where C is the amphiphile concentration, and kon is the one-rate,
we find the on-rate is best given by 0.00133 ± 0.00005 (M-min)−1 = 2.2× 10−5 (Ms)−1

(Figure 3B). Comparing this rate to the expected rate for aqueous diffusion-limited on-rates,
we find it is about an order of magnitude slower than expected [25]. Most likely, this rate
represents the rate of penetration of the amphiphile into the droplet interior, which results
is melting the nematic to the isotropic phase.

At the two highest concentrations of PEG-C10 molecules, the transition rate, R,
plateaus at a maximum of 0.35 min−1 (Figure 3B, horizontal line). This implies that at these
highest concentrations, the PEG-C10 is no longer limiting the reaction; these concentrations
can be considered saturating. Further, we can be confident that, at these concentrations, the
data are at equilibrium, and the on and off rates (both measured in Hz) are equal to 21 Hz.
This rate is also surprisingly slow, implying affinity between the PEG-C10 molecules and
the 5CB.

Examining the asymptotic amplitudes for the fraction of droplets that are isotropic
over time, A, we observe a monotonic increase with concentration (Figure 3C). Thus, the
more oligomeric amphiphile present, the more droplets are isotropic at equilibrium. This
corresponds to the data from the phase diagram (Figure 2B,C). These data also suggest that
the two-hour time point used for steady-state measurements was acceptable as a final time
point for equilibrium. The maximum A appears to plateau at 200 µM PEG-C10 (Figure 3C),
where almost 100% of the droplets are in the isotropic phase at equilibrium. Aqueous
reactions depend on the concentration of the reactants hyperbolically with the form:

A(C) = Amax
C

K1/2 + C
, (4)

where A(C) is the maximum fraction of droplets that are isotropic as a function of PEG-
C10, C, at long times (the asymptote of the data in (Figure 2A)), Amax is the maximum
amplitude plateau, which is constrained to be 100% by the experiment, but is a free-floating
parameter of the fit, and K1/2 which is the concentration where 50% of the droplets are
isotropic. When the Imax is able to be a fit parameter, the best-fit value was 119% ± 9%.
In this case, the best-fit value of K1/2 is 80 ± 20 µM. If we fixed the Imax to 100%, the K1/2
value becomes 50 ± 10 µM, which is a more reasonable value, given the data. Comparing
these two different fits, the χ2 value is lower when the Imax is higher (see fit parameters
in Appendix B.2: Table A6). The characteristic concentration for the transformation from
nematic to isotropic, K1/2 ∼ 50–80 µM PEG-C10, should be the most sensitive for controlling
the transition.
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3.3. Dynamic PEG-C10 Effects on Individual Liquid Crystal Droplets

The data show that the fraction of droplets that are isotropic increases with concentra-
tion, that the smallest droplets are more likely to be isotropic (Figure 2), and the the fraction
of droplets that are isotropic increases with time (Figure 3), all suggest that the PEG-C10
amphiphile is causing the transition from nematic to isotropic by entering the droplet from
the aqueous phase into the liquid crystal. In order to directly observe the transition for a
single droplet, we use an optical trap to hold a liquid crystal droplet while the background
fluid is changed. This allows us to directly observe any configurational or phase changes
that might occur due to the addition of the PEG-C10. The concentration of the PEG-C10
was changed from 75 to 750 µM and only larger droplets were used (>20 µm in diameter).

Each droplet begins in the bipolar configuration with two poles on opposite sides
(i.e., Figure 4, 2527 s, 416.3 µM, white arrows). This is the configuration expected with
little surfactant on the surface—just enough to keep the droplets from coalescing. As the
concentration increases, one of the two bipolar defects becomes a traveling ring defect
(Figure 4, 2575 s, 420.2 µM, yellow arrows). In our prior work, a traveling ring defect was
predicted from simulations of liquid crystals in droplets. We used this optical trapping
technique to directly observe the traveling ring defect when droplets transitioned from
bipolar to radial configurations and compared this to theoretically predicted intermediate
configurations [21].

Figure 4. Example time series of images of an optically trapped liquid crystal droplet in the presence
of changing PEG-C10 concentrations (bottom yellow numbers) over time (white top numbers).
Initially, the droplet is in a bipolar configuration (t = 2527–2543). White arrows denote the location of
the two poles. The droplet changed configuration and begins to merge its poles through the formation
of a ring defect, denoted with yellow arrows at time 2575 s. The ring defect is visible for several
frames, but does not transition to a radial droplet. Instead, the edge of the droplet begins to transition,
making the nematic phase smaller and smaller inside the droplet. At time 3058 s, the edge of the
nematic phase is seen moving inwards as it is overpowered (pink arrowheads). The nematic phase
shrinks and the droplet is free to rotate in the optical trap, rotating the nematic region. At time 3687 s,
the droplet has completely transformed into a isotropic phase. Scale bar is 10 µm for all frames.
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Unlike our prior results with SDS where a radial configuration followed the ring defect
motion [21], here, in the presence of PEG-C10, the nematic phase stays in an intermediate
state. Interestingly, radial droplets are observed in the steady-state configuration diagram
(Figure 2A,B) at both 37.5 and 75 µM PEG-C10 and mostly observed in droplets with diam-
eters between 5 and 20 µm. We do not see the radial configuration at higher concentrations.
Since we use larger droplets for optical trapping experiments, we start the concentration of
PEG-C10 at 75 µM, and we require the droplet to be in the bipolar configuration to start, it
is not surprising that we do not see the radial configuration. Indeed, these dynamics data
imply that the liquid crystal might need to be a smaller volume for the 75 µM PEG-C10 to
enable the radial configuration.

Instead of becoming radial, the droplet stays in an intermediate configuration until the
nematic phase begins to melt, becoming an isotropic phase (Figure 4, 3058 s, 455.0 µM, pink
arrows). We directly observe the front of the phase transition from nematic liquid crystals
to isotropic—this is the boundary between the ordered and melted states. The front moves
from the edges of the droplet to the center until the droplet is completely melted. Because
droplets are free to rotate even when held by optical tweezers, the spherical nematic region
appears to change position throughout time series (i.e., Figure 4, 3144–3587 s frames). We
cannot control the rotation of the droplet using the optical trap system here, but if the
polarization of the incident beam were modified, the location, rotation, and speed of the
rotation could be modified in future studies. In the current study, the location of the nematic
region within the droplet is purely incidental, although we notice that the nematic phase
often stays to one side so that it is in contact with the aqueous phase of the emulsion. This
may suggest that the nematic phase has a higher surface affinity for the aqueous interface
over the isotropic portion of the droplet.

Using the images of the droplets in the optical trap, we measure the projected size
of the nematic region over time. Specifically, we measure the diameter and calculate a
projected nematic area (µm2). We normalize the nematic area measurement by dividing by
the total projected area of the droplet. Since we know the relationship between the time in
the movie and the concentration of PEG-C10 added (Equation (1)), we can plot the fraction
of droplet that is in the nematic phase as a function of the PEG-C10 concentration (Figure 5).
For two larger droplets (∼32 µm diameter), the initial PEG-C10 of transformation and
the rate of transformation are similar, and the rate of melting transition appears fairly
constant. It appears that the smaller droplet transitions before the larger ones with a
less consistent rate of melting. As the radius of the droplet decreases, the surface area to
volume ratio increases, so it is expected that the smaller droplet should transform before
larger droplets. The same trend was observed in the phase diagrams that showed that
smaller droplets at low PEG-C10 concentrations were more likely to be isotropic than larger
droplets (Figure 2C).

The concentrations of the transition we measure for the trapped droplets are far higher
than the K1/2 concentrations needed to cause the transition in half the droplets. We would
expect such large droplets to take longer to change, but even a lower concentration of
PEG-C10, such as 200 µM should be able to cause the change (Figures 2 and 3). Indeed, that
is the concentration that triggers the smaller droplet to change (Figure 5, red). For the larger
droplets, by the time the melting is visible, the concentration is already saturating, as seen
from the dynamic experiments (Figure 3). Thus, the transition appears to occur fast, but in
reality it was already delayed compared to expectations from equilibrium measurements.
That delay could be due to the time to shift the concentration in the experiment or a lag
in the transition due to the droplets being so large and amount of PEG-C10 needed to
penetrate the droplet to cause the change.
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Figure 5. Projected area that was isotropic as a function of background concentration of monomer
during dynamic PEG-C10 exchange in optically trapped droplets. Three droplets shown are 23.6 µm in
diameter (red circles), 31.9 µm in diameter (blue squares), and 32.2 µm in diameter (green diamonds).
When the droplets are in the bipolar state or traveling ring state, they are 100% nematic. When the
droplets are completely isotropic, they are 0% nematic. Error bars represent cumulative uncertainty
from measuring distances from diffraction-limited images.

3.4. Configuration of Droplets in the Presence of SDS and PEG-C10

Our results above show that the addition of our oligomeric amphiphile PEG-C10
molecules results in two distinct transitions of the liquid crystal configuration. First, there
is a rapid surface-induced transition. That resulted in the bipolar configuration changing
to the monopolar configuration. After that, the surfactant acts to disrupt ordering in the
droplet by penetrating the droplet in a diffusion-limited manner. In our dynamic studies
using the optical trap, we were not able to reverse the state from isotropic back to nematic
through dilution. Instead, we propose that a second surfactant could be applied to alter
the state of the droplets. We have previously successfully worked with SDS as a surfactant
to trigger droplet configuration changes [21]. Here, we mix SDS with the PEG-C10 to
determine if the SDS can reverse or overpower the phase change induced by the PEG-C10.

We first characterize the steady-state morphology of droplets at fixed SDS and PEG-
C10 concentrations, 50 µM, near measured K1/2. We alter the SDS concentrations in solution:
100 µM, 300 µM, 600 µM, 1 mM, and 2 mM. These concentrations are chosen to be well
below the critical aggregate concentration (CAC) of SDS, 10 mM (Figure 6). At the lowest
SDS concentration, 100 µM, the majority of droplets are isotropic (36± 7%) or bipolar
(30± 6%), implying that this low concentration of SDS could not fully inhibit the effects of
the PEG-C10 (Figure 6). Increasing the SDS concentration to 300 µM decreases the incidence
of isotropic droplets to only 2± 2%. The majority of droplets at 300 µM are in the radial
configuration (63± 8). At 600 and 1000 µM SDS, nearly all droplets are radial (92± 4% and
100% respectively) and no isotropic droplets were found at 1 and 2 mM SDS.

3.5. SDS-Driven Dynamic Transitions in the Presence of PEG-C10

As above, we use an optical trap to hold a single droplet in place and change the
background surfactant concentration to directly observe the configuration. We previously
performed these experiments in the presence of SDS [21], and found consistent concen-
trations for transition from bipolar to radial and radial to bipolar, which we repeat here
(Figure 7A). As previously shown, the concentration for the configuration change is not the
same, and there is a hysteresis where the SDS is able to trigger a change to bipolar at lower
concentrations when being added compared to the concentration when it is being removed.
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When we repeat the same experiment in the presence of 50 µM PEG-C10, we see a very
different response. Both the transition concentrations are increased compared to SDS alone,
occurring at 1000 ± 70 µM for the transition from bipolar to radial and 900 ± 100 µM for
the transition from radial to bipolar (Figure 7B). The other noticeable difference is that the
transition concentrations are reversed compared to the SDS only case. Specifically, more
SDS must be added to become radial and more must be removed to revert back to bipolar.
Thus, there is still hysteresis in the configuration change, but the difference is smaller and
the opposite sign compared to SDS alone. We conjecture that this difference may be due
to the PEG-C10 entering the droplet and making the transition harder for the surface SDS
to trigger. Future modeling work may reveal that the existence of the PEG-C10 in the
interior of the droplet, which presumably prefers the isotropic phase, is fighting the SDS
for orientation of the liquid crystal. Increasing the PEG-C10 would likely overwhelm the
SDS and cause the droplet to become isotropic.

Figure 6. SDS and PEG-C10 control the configuration of liquid crystal droplets. (A) Phase diagrams
of the liquid crystal configuration and diameter of 5CB droplets in presence of 50 µM PEG-C10
and SDS at the following concentrations: 100 µM (N = 45), 300 µM (N = 43), 600 µM (N = 61),
1 mM (N = 40), and 2 mM (N = 25). Configurations identified include (i) Bipolar (red filled circles),
(ii) Radial (green filled squares), (iii) Monopolar (blue, filled diamonds), and (iv) isotropic (open
purple circles). (B) Quantifying the percentage of droplets at each concentration of SDS that display
the bipolar (red), radial (green), monopolar (blue), or isotropic (purple) configurations.
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Figure 7. Imaging of optically trapped 5CB droplets during dynamically changing the SDS con-
centration. (A) Mean transition concentrations for bipolar to radial (blue, N = 7) when the SDS
concentration is increased and radial to bipolar (purple, N = 8) when the SDS concentration is de-
creased. As previously reported, there is a hysteresis in the transition depending on the direction [21].
Shaded regions represent the standard error of the mean for the transition concentrations. (B) Mean
transition concentrations in the presence of 50 µM PEG-C10 for bipolar to radial (red, N = 11) when
the SDS concentration is increased and radial to bipolar (orange, N = 8) when the SDS concentration is
decreased. Shaded regions represent the standard error of the mean for the transition concentrations.

4. Discussion

Using molecules to drive the configurational change of liquid crystals is a model
system for molecular-to-macroscopic triggering which is useful in automatic materials
systems. Here, we use a novel oligomeric amphiphile in a microscale three-dimensional
geometry of 5CB liquid droplets.

It appears that the PEG-C10 designer amphiphile is able to cause two transformations
of the liquid crystals in droplets. The first is a transition in configuration of the nematic
from bipolar to monopolar or radial. In the static experiments, we observed radial and
monopolar droplets, but in the optical trap experiments, we only saw monopolar droplets
with the ring defect. After that first transition, the amphiphile is able to invade the interior
to cause the nematic phase to transition to an isotropic one. This transition comes from the
penetration of the amphiphile molecules into the interior of the droplet from the surface. If
there is enough surfactant and enough time, the entire droplet will become isotropic.

A similar result was observed in a two-dimensional geometry with similar designer
molecules [14]. In those prior works, 5CB molecules were coated onto electron microscopy
grids and submerged in aqueous solution. The nematic phase shifted anchoring to change
the configuration of the liquid crystal at short times in the presence of oligomeric surfactants.
Over a long time, all nematic ordering was destroyed. In that system, the transitions took
over 30 h. One benefit of the liquid crystal droplets is the fast dynamics for these transitions.

For larger droplets in which we could directly observe the phase transition, we saw
the configuration change from bipolar to monopolar after the ring transition. The nematic
ordering then began to be annihilated as the amphiphile traversed the boundary into the
droplet’s interior (Figure 8). Using the dynamics data, we found that the rate of change
from nematic to isotropic was not a snap-transition, like the configuration changes. Rather,
it was slower and diffusion limited. In our system, the droplets are smaller and have a
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larger surface area to volume ratio compared to prior two-dimensional configurations [14].
Thus, the transition from ordered to isotropic was completed much faster; in several hours
rather than a day or more.

Figure 8. Cartoon depicting the configurations and states of 5CB (blue ovals) droplets. In a low
concentration of surfactant, the droplets are stabilized to be separate and are bipolar. The addition
of SDS causes a configurational change from bipolar to to radial because the SDS molecules bind at
the interface. This change is reversible when the SDS concentration is lowered. In the presence of
the PEG-C10, the nematic phase is disrupted and becomes isotropic because the amphiphile enters
the droplet.

One exciting effect of purposefully destroying the nematic state in liquid crystal
droplets could be to expose or release cargo molecules housed in the liquid crystal. In this
possible scheme, a cargo molecule could be trapped by the nematic phase of the liquid
crystal. When the amphiphile causes a nematic to isotropic phase transition, these carrier
molecules could be released (Figure 9).

Figure 9. In this cartoon, cargo (green stars) are contained and trapped within the liquid crystal
droplet due to the induced bipolar configuration. Upon increasing the concentration of monomer
amphiphile, liquid crystal organization is destroyed, allowing for the release of cargo. This system
could be fine tuned to allow for timed cargo release. Cartoon not to scale.

Although the amphiphile molecule was able to produce a transition from nematic
ordering to isotropic, the isotropic state in liquid crystals is difficult to read optically
or electronically. Thus, we tested if a previously used surfactant, SDS, was capable of
overcoming the disorder caused by the amphiphile. Indeed, we found that the SDS, at high
enough concentration, is able to maintain the nematic state and alter that state, even in
the presence of the novel amphiphile. Multiple triggers of various molecules could cause
driving into different configurations and phases as needed (Figure 8).
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Interestingly, the hydrophobic regions of the designer amphiphile molecule are not
very different from that of SDS, but the hydrophilic regions are very different. Specifically,
the polymeric nature of the novel amphiphile may be what allows it to enter into the
droplet and disrupt the nematic phase. If the hydrophilic part is able to self-associate in
some way, such as fold into itself like an amino acid would, this could not only reduce the
energy barrier to entering, but also could be bulky enough to disrupt the droplet’s nematic
ordering (Figure 8).

Next steps for this study could include fluorescently labeling the PEG-C10 and SDS
surfactants and observing the samples under the conditions presented in this work to see if
the difference in behavior is indeed due to the PEG-C10 crossing the aqueous–LC interface
or whether this disruption occurs by some other mechanism. Further, molecular dynamics
models of the designer amphiphiles could determine if the molecules are able to fold to
enable entering the liquid crystal phase and disrupt the order.

5. Conclusions

Liquid crystals are important chemicals for industrial and medical applications. Their
ability to respond and report out on the environment has made them useful in myriads of
applications already and an obvious target of study for responsive materials systems of the
future. Here, this study examines the effect of a novel amphiphilic molecule on the phase
of liquid crystal within a micron-scale droplet in a 3D configuration. Emulsions of liquid
crystal droplets are novel composite materials with phase separated aqueous and organic
phases that allow separation of materials and multi-responsive functionality. We show that
the novel amphiphile is able to cause configuration changes and disrupt nematic ordering
in 5CB liquid crystal droplets depending on concentration of surfactant and duration of
time. Further, we demonstrate that the addition of a well-characterized surfactant, SDS,
is able to overcome the isotropic transition at lower amphiphile concentration, thereby
restoring nematic ordering. We performed these experiments using an optical tweezer to
trap and characterize individual droplets given more information than ever before on the
mechanisms of the transformations in state and phased. Future studies using the optical
trap could work to not only characterize, but also manipulate individual droplets by tuning
the laser power and polarization while holding the droplets.
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Appendix A. Concentration of Surfactant vs. Time for Dynamics Experiments

Figure A1. Estimated amphiphilic molecule concentration during dynamic experiments. Experiments
changing from low to high SDS concentration will cause a change from bipolar to radial (red),
changing from high to low SDS concentration will cause radial to bipolar transition (yellow), and
changing low to high PEG-C10 concentration is the experiment being explored here (blue). These
plots are found from Equation (1).

Appendix B. Appendix Tables

Appendix B.1

Table A1. Data and uncertainty for percentage data given in Figure 2B. Uncertainty calculated as the
standard error of proportion.

Concentration µM % Bipolar % Radial % Monopolar % Isotropic N

37.5 22 ± 5 4 ± 2 9 ± 3 65 ± 5 85
75 7 ± 1 9 ± 2 20 ± 3 63 ± 3 229
200 0 ± 0 0.6 ± 0.3 3 ± 1 96 ± 1 355
375 0 ± 0 0 ± 0 1.3 ± 0.7 99 ± 1 230
600 0 ± 0 0 ± 0 0 ± 0 100 ± 0 88

Table A2. Exponential fits to the normalized histograms of the droplet diameters for each concentra-
tion shown in Figure 2C(i). The fit equation used is: y(x) = A exp−x/x0.

Concentration (µM) Amplitude, A Characteristic Diameter, x0 χ2

37.5 0.84 ± 0.01 5.9 ± 0.2 0.0000922
75 0.74 ± 0.02 8.2 ± 0.6 0.00438
200 0.54 ± 0.02 13 ± 1 0.00613
375 0.50 ± 0.01 13.8 ± 0.8 0.00204
600 0.50 ± 0.01 13.8 ± 0.7 0.00179

Table A3. Hyperbolic function fits to the characteristic droplet diameters for each concentration
shown in Figure 2C(ii). Fit equation is (2).

Amplitude, Ymax Half-Maximum Concentration, k χ2

15.9 ± 0.6 63 ± 9 0.981
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Appendix B.2

Table A4. N-values for each time and concentration point used in Figure 3A.

Time (min) 37.5 µM 75 µM 200 µM 375 µM 600 µM

5 113 119 102 77 78
35 210 141 115 117 122
65 133 212 145 71 101
95 176 223 120 130 135
125 105 267 151 108 122

Table A5. Best fits for data in Figure 3A.

PEG-C10 Concentration (µM) A r (s−1) χ2

37.5 32 ± 4 0.03 ± 0.01 50.0
75 55 ± 4 0.10 ± 0.05 270
200 97 ± 1 0.27 ± 0.02 23.6
375 98 ± 1 0.36 ± 0.03 24.7
600 94 ± 1 0.34 ± 0.03 18.2

For Equation (4), there are two options. We can allow Imax to be a fit parameter
(unconstrained), or we can fix it at 100% (constrained). The fit parameters are given here,
with the χ2 value for each for comparison.

Table A6. Comparison of fits for data in Figure 3C.

Fit Type Imax K1/2 χ2

Unconstrained 119 ± 9% 80 ± 20 217
Constrained 100% 50 ± 10 562

Appendix B.3

Table A7. Data and uncertainty for percentage data given in Figure 6B. Uncertainty calculated as
standard error of proportion.

Concentration µM % Bipolar % Radial % Monopolar % Isotropic N

100 30 ± 6 13 ± 5 21 ± 6 36 ± 7 53
300 17 ± 6 63 ± 8 17 ± 6 2 ± 2 41
600 2 ± 2 92 ± 4 3 ± 2 3 ± 2 59
1000 0 ± 0 100 ± 0 0 ± 0 0 ± 0 40
2000 0 ± 0 96 ± 4 4 ± 4 0 ± 0 25
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