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Abstract: The possibility of mitigating climate change by switching to materials with low global warm-
ing potentials motivates a study of the spectroscopic and kinetic properties of a fluorinated olefin. The
relative rate method was used to determine the rate constant for the reaction of heptafluorobut-1-ene
(CF2=CFCF2CF2H) with chlorine atoms in air. A mercury UV lamp was used to generate atomic
chlorine, which initiated chemistry monitored by FTIR spectroscopy. Ethane was used as the reference
compound for kinetic studies. Oxidation of heptafluorobut-1-ene initiated by a chlorine atom creates
carbonyl difluoride (CF2=O) and 2,2,3,3 tetrafluoropropanoyl fluoride (O=CFCF2CF2H) as the major
products. Anharmonic frequency calculations allowing for several low-energy conformations of
1,1,2,3,3,4,4 heptafluorobut-1-ene and 2,2,3,3 tetrafluoropropanoyl fluoride, based on density func-
tional theory, are in good accord with measurements. The global warming potentials of these two
molecules were calculated from the measured IR spectra and estimated atmospheric lifetimes and
found to be small, less than 1.

Keywords: hydrofluorocarbon; GWP; infrared spectroscopy; kinetics; atmospheric chemistry

1. Introduction

Saturated hydrofluorocarbons (HFCs) are non-ozone depleting substitutes for chlo-
rofluorocarbons deprecated under the 1987 Montreal Protocol on Substances that Deplete
the Ozone Layer, but they exhibit high global warming potentials (GWPs) and the Ki-
gali Amendment adopted in 2016 outlines their phase down. Unsaturated HFCs offer
more reactive alternatives, whose likely short atmospheric lifetimes would imply small
GWPs. Because their GWPs are smaller than those for saturated HFCs by several orders
of magnitude, and especially for fully fluorinated examples, several halogenated olefins
are under consideration for practical applications [1]. This has motivated recent studies
by several groups [2,3]. Here, we focus on an example of a fluorinated olefin, 1,1,2,3,3,4,4-
heptafluorobut-1-ene (denoted as HFB) whose terminal pi bond offers a reactive site for
radical attack. New data for its infrared (IR) spectrum, its likely atmospheric degradation
products and its GWP are presented. We show how computed vibrational spectra can assist
IR identification of novel species. We also measure the rate constant k1 for the reaction

HFB + Cl→products (1)

relative to k2 for
C2H6 + Cl→HCl + C2H5 (2)

and use this information to help assess the atmospheric lifetime of HFB.
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2. Results

C2H6 was monitored by a band at 2868.0–2897.0 cm−1, and HFB by a band at
1767.0–1808.8 cm−1. Initial experiments with various concentrations prepared manometri-
cally verified that the Beer–Lambert law was obeyed. We also verified that in the absence
of UV light, no reaction occurred.

The IR spectrum of HFB has not been reported before, and it is shown in Figure 1.
Detailed cross sections are listed in Table S1 of the Supplementary Material. Figure 1
also shows the computed IR spectrum, which is in good accord. The simulated spectrum
reflects the influence of 9 conformers, which are summarized in Table 1. There is 1 unique
conformation and 4 degenerate pairs. Two of the degenerate pairs dominate at room
temperature, conformers A and C. The corresponding dihedral angles refer to Figure 2 and
describe torsions around the two C-C bonds.
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Table 1. Properties of rotational conformers in heptafluorobut-1-ene.

Conformer ∆G298
a/kJ mol−1 Degeneracy D1345 b D2134 b Weight

A 0 2 ±97.3 ±178.5 0.58
B 6.58 1 0 180.0 0.02
C 1.26 2 ±124.9 ±61.6 0.35
D 9.18 2 ±14.0 ∓62.2 0.01
E 6.70 2 ±98.9 ∓66.3 0.04

a Computed Gibbs energy relative to the lowest conformer. b Dihedral angle in degrees (see Figure 2).

Four kinetic runs were performed to measure k1. Different initial concentrations
were employed, with equal pressures of HFB and ethane and an excess of chlorine. The
conditions are summarized in Table 2. The temperature was 296 ± 2 K and the total
pressure was 1 bar, made up with Ar. Successive spectra were captured approximately 40 s
apart, each one with 25 co-added scans.
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Figure 2. Bond lengths (10−10 m) in the most stable conformation of heptafluorobut-1-ene computed
with B2PLYP/N07D theory.

Table 2. Condition for relative rate measurements of Cl atoms with heptafluorobut-1-ene (k1) vs.
C2H6 (k2).

p Cl2/mbar p HFB/mbar p C2H6/mbar k1/k2

0.81 0.27 0.27 0.44 ± 0.01
2.14 0.47 0.47 0.44 ± 0.01
1.80 0.54 0.54 0.44 ± 0.01
1.80 0.49 0.49 0.46 ± 0.01

Spectral subtraction from the initial conditions yields the ratios [HFB]0/[HFB] and
[C2H6]0/[C2H6], and an example plot is shown in Figure 3. The slope of Figure 3 cor-
responds to the ratio k1/k2 (see Section 4.2). The intercepts of unconstrained linear fits
were not significantly different from zero, so the intercepts were fixed at zero. We report
2σ statistical uncertainties in the slopes in Table 2. With k2 = (5.7 ± 0.6) × 10−11 cm3

molecule−1 s−1 [2], we estimate k1 = 2.5 × 10−11 cm3 molecule−1 s−1. We further allow for
up to 3% systematic error in the pressure measurements, and with the 7% uncertainty in k2
propose a 95% confidence interval of ±0.2 × 10−11 cm3 molecule−1 s−1 for k1.
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There are no prior determinations for comparison, but we note this value is similar to
that for Cl + perfluorobut-1-ene. The latter compound, in which the terminal H atom of
HFB is replaced by F, has a rate constant of (1.8 ± 0.4) × 10−11 cm3 molecule−1 s−1 [4]. If,
instead, the C-H bond is retained and the C=C pi bond is replaced by a sigma bond, as in
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CF3CF2CF2CF2H (HFC-329p), then reactivity toward atomic Cl is 9 × 104 times smaller
than we find for HFB [5]. These comparisons suggest that the Cl chemistry of HFB starts at
the pi bond.

Study of the products was carried out with two runs, where 10 back-to-back spectra
with 185 co-added scans were obtained at intervals of 5 min. The initial reactant partial
pressures are given in Table 3. The total pressure was made up to 1 bar with Ar.

Table 3. Initial conditions for product studies in the Cl/heptafluorobut-1-ene/O2 system.

p Cl2/mbar p HFB/mbar p O2/mbar

0.13 0.22 25
0.21 0.32 32

Figure 4 shows how during UV irradiation of these mixtures, new peaks appear.
Some can be assigned to COF2, but there is a residual after accounting for COF2 and
unreacted HFB.
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Figure 4. (A) Heptafluorobut-1-ene/Cl2/O2/Ar mixture before irradiation and (B) after irradiation,
(C) a reference spectrum of COF2, and (D) the residual after subtracting unreacted HFB and COF2,
assigned to tetrafluoropropanoyl fluoride (see text).

Focusing first on COF2, an example plot of its yield compared to consumption of HFB,
Figure 5, has a slope of 0.95 ± 0.01. The second determination reproduced the same value.
With allowance for uncertainties in our reference spectrum for COF2, we report 0.95 ± 0.07
for the yield of COF2.



Molecules 2022, 27, 647 5 of 11

Molecules 2022, 27, x FOR PEER REVIEW 5 of 12 
 

 

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

1000 2000 3000

0.0

0.1

0.2

0.3

 

 

A : Before irradiation

 

B : After irradiation 

 

Ab
so

rb
an

ce C : Reference COF2

 

Wavenumber / cm–1

D : Residual (HCF2CF2COF)

 
Figure 4. (A) Heptafluorobut-1-ene/Cl2/O2/Ar mixture before irradiation and (B) after irradiation, 
(C) a reference spectrum of COF2, and (D) the residual after subtracting unreacted HFB and COF2, 
assigned to tetrafluoropropanoyl fluoride (see text). 

Focusing first on COF2, an example plot of its yield compared to consumption of 
HFB, Figure 5, has a slope of 0.95 ± 0.01. The second determination reproduced the same 
value. With allowance for uncertainties in our reference spectrum for COF2, we report 
0.95 ± 0.07 for the yield of COF2.  

0 1 2 3 4 5
0

1

2

3

4

5

[C
O

F 2
 fo

rm
ed

] t 
/1

015
 m

ol
ec

ul
e 

cm
–3

[HFB consumed]t /1015 molecule cm–3 
 

Figure 5. Comparison of COF2 formation to heptafluorobut-1-ene loss by reaction with atomic Cl in 
the presence of oxygen. 
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the presence of oxygen.

This is consistent with the following mechanisms in Figures 6 and 7, which both imply
a 1:1 COF2:HFB ratio. They follow a standard form, where oxygen adds to the initial radical
created by Cl addition to make a peroxy species. In the atmosphere, peroxy radicals are
typically converted to alkoxy radicals via O-atom abstraction by NO. In our laboratory
experiments, there is no NO, but Cl atoms might play a similar role. The main route to
alkoxy is probably through the self-reaction of pairs of peroxy molecules, which is feasible
because their concentration is much higher than in the atmosphere. In these alkoxy radicals,
a C-O pi bond can be made, accompanied by breaking the weakest sigma bond to the carbon
atom. If a C-Cl bond is present, the Cl atom will be eliminated; otherwise, a C-C bond will
break, i.e., there is elimination of a carbonyl compound (in these schemes, the acid fluorides
COF2 or CF2HCF2COF). In both schemes, the same product 2,2,3,3-tetrafluoropropanoyl
fluoride (or TPF) is predicted, so the question is: can the residual spectrum be rationalized
as coming from TPF?

To characterize the residual spectrum, we used the same procedure as described in
Section 4.2, where data for various concentrations (based on an assumed unit yield) were
combined at each frequency via the Beer–Lambert law to obtain the cross section. This
spectrum is plotted in Figure 8, and σ values are provided in Table S2. An authentic
spectrum of TPF is not available for comparison, so we apply our computational approach.
Table 4 list the conformers we found and their relative Gibbs energies. As seen in Figure 8,
agreement for the IR spectrum is good and consistent with TPF as the major co-product.
Because typically the products of the Cl-initiated chemistry of organic compounds are
similar to the products of OH-initiated processes, this product analysis gives insight into
likely atmospheric degradation by OH, the dominant oxidizing agent.
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is in arbitrary units.

Table 4. Computed properties of rotational conformers in tetrafluoropropanoyl fluoride.

Conformer ∆G298
a/kJ mol−1 Degeneracy D1345 b D2134 b Weight

A 0 2 ±108.7 ∓172.9 0.46
B 3.32 1 0 180.0 0.06
C 1.66 2 ±127.3 ±67.3 0.24
D 1.65 2 ±24.0 ∓57.3 0.24

a Computed Gibbs energy relative to the lowest conformer. b Dihedral angle in degrees (see Figure 9).

We note that a third reaction scheme is, in principle, possible, illustrated in Figure 10.
This pathway leads to the net formation of two molecules of COF2 per molecule of HFB,
plus chlorodifluoroacetyl fluoride. No C-Cl stretches were observed, and the yield of
COF2~1, so Scheme C plays a minor role at best. In the alkoxy radical that appears in
Schemes A and C, CF2HCF2CFO·CF2Cl, either C-C bond next to the oxygen atom can
break. Density functional theory indicates that dissociation to make CF2Cl (Scheme A)
is ca. 6 kJ mol−1 more favorable than making CF2HCF2 (Scheme C). This intermediate
thermochemistry might drive the branching ratio toward Scheme A.
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3. Discussion

The average tropospheric concentration of Cl atoms, ca. 3 × 104 molecule cm−3 [6],
leads to a 1/e lifetime τCl for destruction of HFB of 15 days. In the marine boundary layer,
higher [Cl] may be expected, up to (1–3)× 105 molecule cm−3 [7,8], which implies a shorter
lifetime of 1.5–4.5 days and in this specialized environment can be the fastest removal
pathway. The rate constant for HFB + OH is unknown, but it is likely similar to that for
OH + perfluorobut-1-ene by analogy with the Cl-atom reactivity ratio discussed above, i.e.,
(1.9 ± 0.3) × 10−12 cm3 molecule−1 s−1 [4]. With an average tropospheric [OH] = 1 × 106

molecule cm−3 [9], the lifetime for removal by OH alone is τOH = 6.1 days. The overall
tropospheric lifetime of HFB, given by 1/τ = 1/τCl + 1/τOH, is τ = 4.3 days. TPF is an acid
fluoride and is therefore likely to hydrolyze rapidly in liquid water. This process has been
analyzed by Kotamarthi et al. for CF3COF [10]. They considered diffusion into clouds, then
absorption into water droplets, followed by aqueous hydrolysis, and obtained a lifetime of
2.6 days. By analogy, we use τ = 2.6 days for TPF. A similar argument applies to COF2, so
the ultimate products of HFB oxidation are soluble fluorinated carboxylic acids, which will
be rained out.

There is significant overlap between the IR absorptions of HFB and TPF and the
blackbody radiation emitted from the Earth (the radiative forcing efficiency, RFE), especially
in the region near 1200 cm−1 arising from C-F stretching modes, as seen in Figure 11.
We use the method of Hodnebrog et al. [11] to derive the radiative efficiency (RE) and
obtain RE = 0.29 and 0.18 W m−2 ppb−1 for HFB and TPF, respectively. For comparison,
our RE value for HFB is similar to the value of 0.30 recommended for perfluorobut-1-
ene [11]. Inclusion of the correction f (τ) for non-homogeneous vertical profiles of short-
lived species [11] yields final values of RE = 0.013 and 0.0052 W m−2 ppb−1 for HFB and
TPF, respectively.
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The GWP reflects the integrated IR absorbance and induced temperature change
relative to CO2 on a per mass basis for a given time period. Over a 20-year time horizon, the
GWP20 values for HFB and its decomposition product TPF are both small, at 0.36 and 0.07,
respectively. Of course, extended horizons yield smaller values, and the GWP100, to the
extent this is meaningful for short-lived species, is approximately 0.01–0.02 for both species.

4. Materials and Methods
4.1. Materials

The reagents used were HFB (Synquest, Alachua, FL, USA, 97% purity), ethane (Prax-
air, Danbury, CT, USA, 99.9%) and Cl2 (Aldrich, St. Louis, MO, USA, >99.5% purity), which
we purified by freeze-pump-thaw cycles with liquid nitrogen. O2 and Ar (Air Liquide,
Pasadena, TX, USA, >99.99% purity) were used directly from their cylinders. Carbonyl
difluoride was photochemically synthesized from a mixture of 13 mbar perfluorobutadiene,
7 mbar Cl2 and 130 mbar O2, and then unreacted starting materials and side products
were trapped with a pentane/liquid nitrogen slush at 143 K. The integrated absorbance
of a strong band at 1968.75–1907.75 cm−1 was measured for several partial pressures of
COF2, made up to 1 bar with Ar. The proportionality shown in Figure 12 confirms the
applicability of the Beer–Lambert law and the slope yields an integrated band strength
(base e) of (4.56 ± 0.05) × 10−17 cm molecule−1.
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4.2. Experimental Method

We use IR spectroscopy to probe the chemistry initiated by photolytically generated
chlorine atoms, evaluate reaction kinetics, identify products and quantify product yields.
Our apparatus has been described in detail elsewhere [12]. In overview, mixtures of HFB
and molecular chlorine diluted in a large excess of argon bath gas at 1 bar pressure and
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room temperature were exposed to steady UV illumination at 365 nm from a mercury lamp
over time scales of 10–50 min. Experiments were carried out in a long-path multipass cell
(` = 240 cm) mounted inside the sample compartment of a Nicolet iS50 FT-IR spectrometer
(Thermo Fisher Scientific, Madison, WI, USA). Sequential spectra were recorded at 1 cm−1

resolution with a mercury cadmium telluride detector (Thermo Fisher Scientific, Madison,
WI, USA) cooled with liquid nitrogen, as a function of time while HFB was depleted by
reaction 1.

For relative-rate kinetics measurements, ethane as a reference compound was added
to the initial mixture, and it was also depleted with time, via reaction 2. With k1 and k2 as
the bimolecular rate constants for reactions 1 and 2, integration of the ratio of the rate laws
yields the standard result [13].

ln
(
[HFB]0
[HFB]

)
=

k1

k2
ln
(
[C2H6]0
[C2H6]

)
(3)

Because k2 is known, k1 is obtained from measurements of the concentrations of HFB
and C2H6 ratioed to their initial values, as evaluated by spectral subtraction.

For product studies, no ethane reference is used, molecular oxygen is added to simulate
atmospheric conditions, and product concentrations are obtained as a function of the
amount of HFB consumed via the IR spectrum. When the base 10 absorbance A and
concentration c are known, in terms of the Beer–Lambert law, we may write

σ = 2.3026 A/(c `) (4)

where, with the path length ` in cm and c in molecule cm−3, the base e cross section σ is in
cm2 molecule−1. We determine σ at every discrete frequency in the absorption spectrum
from the slope of a linear plot of measured A vs. several values of c.

4.3. Computational Method

Geometries and frequencies of target molecules were obtained via density functional
theory with the B2-PLYP functional [14,15] combined with the N07D basis set developed
by Barone and coworkers for vibrational analysis [16,17]. Calculations were made with
the Gaussian16 program suite [18]. Rotation around sigma bonds leads to different local
minima, which were systematically optimized. Predictions of the IR spectrum are made via
second-order vibrational perturbation theory [17], which accounts for anharmonicity in the
fundamental vibrational modes without empirical scale factors, and, further, incorporates
contributions of overtones and combination bands. IR intensity data for each conformer
were weighted by the relative abundance at T = 298 K. This was derived from the degener-
acy of the given conformer energy, n, and the computed Gibbs energy, ∆Gi, relative to the
most stable conformer, as the ratio of ni exp(−∆Gi/RT) to the sum of all conformer terms.

5. Conclusions

For HFB, the IR absorption cross sections and reactivity toward Cl atoms have been
characterized, as well as the main products in the presence of oxygen, carbonyl difluoride
and TPF. Anharmonic IR spectra computed over Boltzmann distributions of conformers
for HFB and TPF agree with observations and help assign TPF as a major product. The
measurements yield small values for the GWP20, below 1. Because the atmospheric lifetimes
are a few days, detailed evaluation is a function of local conditions, but the results suggest
that emissions of HFB would have a negligible impact on climate change.

Supplementary Materials: The following supporting information can be downloaded online, Table S1:
IR absorption cross sections for absorption by 1,1,2,3,3,4,4-heptafluorobut-1-ene; Table S2: IR absorp-
tion cross sections for absorption assigned to 2,2,3,3-tetrafluoropropanoyl fluoride.
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