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Abstract: Aliphatic polyesters are the most common type of biodegradable synthetic polymer used
in many pharmaceutical applications nowadays. This report describes the ring-opening polymeriza-
tion (ROP) of L-lactide (L-LA), ε-caprolactone (CL) and glycolide (Gly) in the presence of a simple,
inexpensive and convenient PEG200-BiOct3 catalytic system. The chemical structures of the ob-
tained copolymers were characterized by 1H- or 13C-NMR. GPC was used to estimate the average
molecular weight of the resulting polyesters, whereas TGA and DSC were employed to determine
the thermal properties of polymeric products. The effects of temperature, reaction time, and cata-
lyst content on the polymerization process were investigated. Importantly, the obtained polyesters
were not cyto- or genotoxic, which is significant in terms of the potential for medical applications
(e.g., for drug delivery systems). As a result of transesterification, the copolymers obtained had a
random distribution of comonomer units along the polymer chain. The thermal analysis indicated an
amorphous nature of poly(L-lactide-co-ε-caprolactone) (PLACL) and a low degree of crystallinity of
poly(ε-caprolactone-co-glycolide) (PCLGA, Xc = 15.1%), in accordance with the microstructures with
random distributions and short sequences of comonomer units (l = 1.02–2.82). Significant differences
in reactivity were observed among comonomers, confirming preferential ring opening of L-LA during
the copolymerization process.

Keywords: biodegradable polymers; aliphatic polyesters; poly(ε-caprolactone); poly(L-lactide);
poly(ε-caprolactone-co-glycolide); poly(L-lactide-co-ε-caprolactone); bismuth(III) 2-ethylhexanoate;
ring opening polymerization

1. Introduction

Bio-based polymeric materials are widely used in medicine and pharmacy (e.g., tis-
sue engineering, drug delivery systems (DDSs), etc.). The most desirable are drug car-
riers derived from biocompatible polyesters, of which homo- and copolymers contain-
ing ε-oxycaproyl (Cap), glycolidyl (GG) and lactidyl (LL) units are the most commonly
used biomaterials [1,2]. Concomitantly, the advantage of polyester drug carriers is their
biodegradability. These polymers, once introduced into the organism, are well tolerated,
metabolically decomposed, and eliminated via normal metabolic pathways [1]. The most
attractive catalytic systems for the synthesis of polyesters are those consisting of metals
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(Zn, Sn, Zr, Fe). Nevertheless, the resulted polymers may contain traces of metal pollu-
tants, leading to their high toxicity, which is undesirable for biomedical application [3].
As a result, they have been studied extensively over the last few decades, and significant
progress has been made in terms of their synthesis using well-defined metalloorganic
catalysts [4]. Among these, the use of alternative green catalysts has received particular
consideration. Ring-opening polymerization (ROP) of lactones, such as L-lactide (L-LA),
rac-lactide (rac-LA), ε-caprolactone (CL), and glycolide (Gly), using tin compounds as cata-
lysts (e.g., tin(II) 2-ethylhexanoate (SnOct2)), is one of the methods of producing polyesters
applied in medicine and pharmacy. Although the Food and Drug Administration (FDA)
has approved SnOct2 as a food additive, tin(II) and tin(IV) ions or compounds tend to bind
to the SH groups of proteins. In view of this, the catalyst is cytotoxic to some extent [5],
and, thus, the resulting polymers should not be considered fully biocompatible [1]. Among
other catalysts considered as non-toxic are Zn- and Zr- based compounds [3]. Our previous
studies have shown that the polymers synthesized in the presence of diethylzinc [3] and
zirconium(IV) acetylacetonate [6] may be considered as non-toxic in terms of cyto- and
genotoxicity and thereby be suitable for pharmaceutical and medical applications.

Given the foregoing, in this work we will concentrate on bismuth(III) 2-ethylhexanoate
(bismuth octoate, BiOct3), a potential nontoxic organometallic catalyst. Bi(III) is one of the
ultratrace elements and its salts have long been used in medicine as both externally and
internally administered drugs [4,7,8]. For example, bismuth(III) subsalicylate (BiSS) is a
commercial drug for travelers’ diarrhea, nonulcer dyspepsia, and gastrointestinal com-
plaints [7]. Furthermore, toxicity studies reveal that Bi(III) is not toxic even at the highest
dose tested and it proved less toxic than Zn on cultured human kidney tubular cells [9].
According to Kowalik et al., bismuth-based complexes exhibit not only antimicrobial and
anticancer activity, but recent results also reveal the ability to reduce some side effects of
cisplatin in cancer therapy [10]. Bi(III) salts (such as BiCl3, BiAc3, BiO3, Bi(n-hexanoate)3
and BiSS) have previously been reported to act as catalysts in the copolymerization of
CL, Gly, and L-LA in particular [8,11]. These compounds are stable in storage and, most
importantly, nontoxic in the quantities needed [8]. Comparing to other nontoxic metal
catalysts, bismuth (III) compounds are, therefore, well suited to ROP of lactides [4] and
may lead to unusual, random Cap and LL sequences in the polymeric chain [11].

However, there are few reports of bismuth organometallic compounds being used as
catalysts of the ROP of lactones. Kricheldorf and Serra [12] published the first reference
using BiOct3. They highlighted its high effectivity and low tendency of racemization of
lactides, even in high temperatures (180 ◦C) [12]. Though the synthesis of polyesters in the
presence of BiOct3 has already been published, the purpose of this study was to extend
the prior research of Kricheldorf and Serra [12] towards the synthesis of the copolymers
of cyclic carboxylic esters, with a potential use as drug carriers in oncology, as well as to
evaluate the resulting polymers in relation to their thermal properties and microstructure.
The microstructure of polymers influences the kinetics of biodegradation process [13] and
is therefore important regarding drug release and, thus, pharmaceutical application.

In this paper, we describe the synthesis of CL, Gly, and L-LA homo- and copolymers in
the presence of a biosafe bismuth(III) catalyst system. The structural, physicochemical, and
biological properties of these biodegradable polymers were investigated. Low molar mass
and dispersity characterize the developed products. Furthermore, they have a random
distribution of comonomer units along the polymer chain, resulting in the polyesters being
amorphous or having a low degree of crystallinity. Most importantly, the polymers formed
are non-toxic. We hope that the polyesters produced can be used in DDSs technology.

2. Materials and Methods
2.1. Materials

L-Lactide (L-LA, (3S)-cis-3,6-Dimethyl-1,4-dioxane-2,5-dione, 98%), ε-caprolactone
(CL, 2-Oxepanone, 98 %) and poly(ethylene glycol) (PEG200, Mn = 200 Da) were purchased
from Sigma-Aldrich Co. (Poznań, Poland). Glycolide (Gly, 1,4-Dioxane-2,5-dione, 98%) was
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purchased from TCI Europe N.V. Co. (Zwijndrecht, Belgium) and bismuth 2-ethylhexanoate
from Alfa Aesar Co., part of Thermo Fisher Scientific (Kandel, Germany). Methanol
(CH3OH, analytical pure), chloroform (CHCl3, analytical pure), dichloromethane (DCM,
CH2Cl2, analytical pure) and hydrochloric acid (HCl, 35–38%) were obtained from POCH
Co. (Gliwice, Poland).

2.2. Synthesis of Homo- and Copolymers via ROP

The polymeric materials were formed in bulk by the ROP of CL, Gly, and L-LA
in the presence of a PEG200-BiOct3 catalytic system. In brief, appropriate amounts of
monomers and PEG200 (1 to 5 g in total) were placed in dry glass ampules (the initiator to
monomer ratio was constant as 1:100). Under dry argon, the reaction tubes were degassed
and the catalytic amounts of BiOct3 were charged. The reaction vessels were sealed and
placed in a thermostated oil bath under various conditions, i.e., time and temperature.
When the reaction was completed, the polymerization products were dissolved in DCM or
chloroform and precipitated in a cold methanol solution containing 5% of HCl (twice) and
a cold methanol (last precipitation). The procedure was carried out a total of three times.
The isolated polymer was dried in a vacuum oven to a constant weight and stored at 4 ◦C.

2.3. Methods
2.3.1. Structural Analysis of Polymers

Analyses of hydrogen nuclear magnetic resonance (1H NMR) and carbon-13 nuclear
magnetic resonance (13C NMR) were carried out on an Agilent 400 MHz spectrometer at
room temperature using CDCl3 as a solvent. The spectra were collected using 32 scans (1H
NMR) or 5000 scans (13C NMR) with a 1 s acquisition time.

The copolymer microstructure was characterized by means of the parameters calcu-
lated from 1H NMR and 13C NMR spectra according to the equations presented in the
literature: the average length of the lactidyl (le

LL), glycolidyl (le
GG) and caproyl (le

Cap) blocks,
randomization ratio (R), and transesterification of the second mode (TII) [14–17].

The monomer conversion (convi) was calculated using 1H NMR by comparing inte-
grated signals of equivalent protons from the monomer and the polymer, as follows:

convi =
Ii

Ii + II
(1)

where Ii and II are the integral intensities of signals from equivalent protons in the monomer
and polymer, respectively.

The microstructures of the obtained copolymers were examined using 1H NMR for
PCLGA and 13C NMR for PLACL in the most convenient spectrum ranges, namely
the methylene proton region of GG units and the ε-methylene proton region of Cap
units (PCLGA), as well as the carbonyl carbon range of Cap and LL units (PLACL).
By analogy with the literature [14–17], spectral lines were assigned to corresponding
comonomeric sequences.

1H NMR and 13C NMR spectra allow for the calculation of le
GG and le

LL using the
Equation (2) and le

Cap using the Equation (3) for 1H NMR spectrum and the Equation (4) for
13C NMR spectrum, as well as the determination of the contribution of sequences formed
as a result of a transesterification process [18].

le
XX =

1
2
× XXX + XXCap + CapXX + CapXCap

CapXCap + 1
2 (XXCap + CapXX)

(2)

le
Cap =

CapCap + XCap
XCap

(3)

le
Cap =

XCapX + CapCapX + XCapCap + CapCapCap
XCapX + 1

2 (CapCapX + XCapCap)
(4)



Molecules 2022, 27, 1139 4 of 17

where X represents glycolyl unit −OCH2CO− (G) or lactyl unit −OCH(CH3)CO− (L),
Cap is caproil unit −O(CH2)5CO−, and XCap, XXX, XXCap, and so forth are two- and
three-element sequences in the polymer chain.

TII may cause scission of glycolidyl or lactidyl units in the copolymer chain leading
to the formation of characteristic CapGCap or CapLCap sequences. The yield of TII
is a quantitative determination of the second mode of transesterification process in the
copolymer chain, and was calculated according to the Equation (5):

TII =
[CapXCap]
[CapXCap]R

(5)

where [CapXCap] is the experimental concentration of CapXCap sequence and the [CapXCap]R
is the concentration of CapXCap sequence in a completely random chain.

The [CapXCap]R can be described by the following relation (Equation (6)) when the
ratio of [X]/[Cap] is denoted as k‘:

[CapXCap]R =
k′3

(k′ + 1)3 (6)

A degree of the randomness of the copolymer chain was calculated from the Equation (7):

R =
lR
XX

le
XX

(7)

where lR
XX and lR

Cap represent the average lengths of glycolidyl or lactidyl (Equation (8)) and
caproyl blocks (Equation (9)), respectively, in a completely random copolymer chain.

lR
XX =

k′ + 1
2k′

(8)

lR
Cap = k′ + 1 (9)

2.3.2. Gel Permeation Chromatography

The molar mass (Mn) and molecular mass distribution (Ð) were determined by gel
permeation chromatography (GPC) on a Viscotek system comprising GPCmax and TDA
305 (triple detection array (TDA): RI, IV, LS) equipped with DVB Jordi gel column(s) (linear,
mixed bed) in DCM as an eluent at 30 ◦C at a flow rate of 1.0 mL min−1.

2.3.3. Cyto- and Genotoxicity

To assess the toxicity of polymeric materials, cytotoxicity and genotoxicity tests were
carried out. In brief, the cytotoxicity of polymeric matrices was assessed using the neutral
red uptake (NRU) test using BALB/c T3T clone A31 mice fibroblast cell line (American Type
Culture Collection) in accordance with the International Organization for Standardization
(ISO) 10993-5:2009 Annex A guideline [19]. The polymeric extracts for the assay were
formed by incubating the sample in 1 mg mL−1 DMEM medium with 5% bovine serum for
24 h at 37 ◦C. Polyethylene film and latex were used as reference materials.

Genotoxicity of the polymeric materials was evaluated according to ISO 13829:2000
guideline [20] by the Umu-test with and without metabolic activation using Salmonella ty-
phimurium TA3515/psk1002 (Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH, Braunschweig, Germany). The polymeric samples were incubated in PBS buffer
(GIBCO) for 24 h at 37 ◦C. The 2-aminoanthracene and 4-nitroquinoline N-oxide were used
as positive controls.
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2.3.4. Thermal Properties

Thermogravimetric analysis (TGA) was performed with a TGA Q500 V20.7 (TA In-
struments) under nitrogen flow (60 mL min−1). The measurements were carried out at
temperatures ranging from 35 to 600 ◦C, with a heating rate of 10 ◦C min−1 for the samples
placed in an open platinum pan. In order to describe the process of thermal decomposition,
the temperatures at which the sample lost 5%, 50%, and 95% of mass (T5%, T50%, and
T95% respectively), as well as the final temperature of thermal decomposition (Tf), were
presented. Additionally, the temperature of the maximum rate of thermal decomposition
(Tmax) was determined as the maximum of differential TGA (DTGA) curve. Furthermore,
the mass loss of the sample, i.e., the mass loss as a result of evacuation of residual solvents
and moisture at the temperature of 150 ◦C (∆m150), and total mass loss of the sample at a
temperature of 600 ◦C (∆mt), were calculated. ∆mt values were calculated in relation to the
masses at 150 ◦C.

Differential scanning calorimetry (DSC) measurements were performed using a DSC
Q200 instrument (TA Instruments) under nitrogen flow in the temperature range from−140
to 250 ◦C for the sample placed in aluminum pans, applying a heating rate of 10 ◦C min−1.

For the characterization of the melting and the cold crystallization processes, peak
temperatures (Tm and Tc respectively), onset temperatures (Ton), and melting and crystal-
lization enthalpies (∆Hm and ∆Hc, respectively) were determined. Based on the enthalpy
values, the crystalline phase content (crystallinity, Xc) was calculated according to the
following Equation (10):

Xc =
∆Hm − ∆Hc

∑i(Wi × ∆Hmi,100%)
(10)

where ∆Hm is enthalpy of melting, ∆Hc is enthalpy of cold crystallization and ∆Hmi,100%
is enthalpy of melting for a fully (100%) crystalline homopolymer (literature data). The
values of 106 J g−1 [21], 136 J g−1 [22] and 191 J g−1 [23] for ∆Hm,100% of PLA, PCL and
polyglycolide were used respectively. Wi is the weight fraction of the Cap, LL and GG
co-units in copolymers; for homopolymers, Wi = 1.

The glass transition temperature (Tg) was evaluated as its midpoint based on the
first derivative of DSC curve (dDSC). The temperature value of the minimum of the effect
generated on the dDSC curve was taken for this purpose [24]. Additionally, in order to
estimate Tg of the copolymers, a simple Fox Equation (11) was used [25].

1
Tg

=
w1

Tg1
+

w2

Tg2
(11)

where Tg is the glass transition of copolymers constructed from components 1 and 2
with weight fractions w1 and w2, respectively. Tg1 and Tg2 are the glass transitions of the
individual homopolymers 1 and 2, respectively.

3. Results and Discussion
3.1. Synthesis and Characterization of Polyesters

Four different polymer matrices were synthesized via ROP of CL, Gly and L-LA in
the presence of the simple, inexpensive and nontoxic PEG200-BiOct3 catalytic system.
Bifunctional PEG200 was applied as a co-initiator, resulting in hydroxyl end-capped linear
polyesters. The polymerization process was carried out at 110 ◦C and 130 ◦C. The molar
ratio of the monomers to the catalyst was 100:1. The number average molecular weight
(Mn) of synthesized polymers was controlled by the molar ratio of monomer to co-initiator,
which was constant and equal to 100:1.

The 1H NMR and 13C NMR spectra of the synthesized polymers confirmed their struc-
tures. The polymers were obtained with a good monomer conversion (almost equilibrium
conversion), acceptable yield and moderately narrow dispersities (Ð = 1.23–2.59) (Table 1).
The theoretical Mn of the polyesters was determined based on the original monomer and
PEG200 content. However, the Mn values obtained by GPC were found to be different
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(lower in most cases) from the theoretical ones. The most probable reason is contamination
of the sample with moisture, which results in hydrolysis of monomer to hydroxyl byprod-
ucts capable of initiating polymerization. As a result, polyesters with lower Mn fractions
(Figure 1) were produced, leading to an increase in Ð [26].

Another explanation for the discrepancy in the data might be a transesterification
process that occurred during the polymer chain growth. As a consequence, bond cleavage
occurs, creating a modification in the distribution of comonomeric units in the polymer
chain [17].

Figure 2 depicts the kinetics of the polymerization process. After 24 h, all monomers
show complete conversion, verifying the mentioned earlier hypothesis that bismuth deriva-
tive catalysts are effective for ROP of cyclic esters. During the polymerization of PLACL,
preferential ring opening towards lactide units was observed. L-LA conversion was almost
quantitative after 5 h, but CL conversion was substantially slower, reaching 76%, 86%, and
100% after 5 h, 7 h, and 24 h, respectively. A similar trend was observed for homopolymers
(PLA vs PCL). PLA reached almost quantitative conversion of L-LA after 7 h, compared to
93% conversion of CL for PCL.
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Table 1. Homo- and copolymerization of CL, Gly and L-LA. Temperature-dependent optimization
(24 h, PEG200:BiOct3 = 1:1).

Sample Molar Ratio Temp. (◦C) Yield (%) Convi
a (%) Mn

b (kDa) Mn
c (kDa) Ð c

PLA
poly(L-lactide)

L-LA = 1.0 110 73 100 11.7 15.5 1.23

L-LA = 1.0 130 85 100 13.9 15.3 1.64

PCL
poly(ε-caprolactone)

CL = 1.0 110 50 94 11.4 8.8 1.67

CL = 1.0 130 68 100 12.2 6.9 2.33

PLACL
poly(L-lactide-co-ε-

caprolactone)

L-LA = 0.45
CL = 0.55 110 64 99 (L-LA)

90 (CL) 13.6 7.3 2.50

L-LA = 0.50
CL = 0.50 130 56 100 (L-LA)

100 (CL) 10.2 9.7 1.87

CLGA
poly(ε-caprolactone-co-

glycolide)

CL = 0.84
GG = 0.16 110 60 100 (Gly)

99 (CL) 11.5 6.8 2.59

CL = 0.86
GG = 0.14 130 73 100 (Gly)

100 (CL) 10.3 11.8 1.66

a—calculated from 1H NMR; b—calculated from the feed ratio c—determined from GPC.
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The polymerization conditions were optimized in terms of time, temperature, and
catalyst content, and were selected based on monomer conversion, yield, and Mn agreement
with the theoretical value. The optimal polymerization conditions were set at 24 h and
130 ◦C, with the exception of PLA, which had an optimum temperature of 110 ◦C.

The polymerization process was then optimized for the lowest catalyst content while
not influencing the properties of the formed polymer matrices (conversion degree, Mn, poly-
dispersity index). Polymers were produced with a high yield and a monomer conversion
close to 1. The dispersity values ranged between 1.29 and 1.75, of which the lowest value
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was observed for PLA. The Mn of the synthesized polymers was sufficiently consistent
with the theoretically expected values (Table 2).

Table 2. Homo- and copolymerization of CL, Gly and L-LA. Catalyst content-dependent optimization
(24 h, 130 ◦C (110 ◦C for PLA), monomer:PEG200 = 100:1).

Sample Monomer/
Catalyst Molar Ratio Molar Ratio Yield (%) Convi

a

(%)
Mn

b

(kDa)
Mn

c

(kDa) Ð c

PLA 500 L-LA = 1.0 90 98 12.1 12.3 1.29

PCL 400 CL = 1.0 70 100 11.7 10.8 1.59

PLACL 300 L-LA = 0.52
CL = 0.48 79 99 (L-LA)

99 (CL) 12.6 14.9 1.55

PCLGA 1000 CL = 0.85
GG = 0.15 78 100 (Gly)

98 (CL) 11.8 10.4 1.75

a—calculated from 1H NMR; b—calculated from the feed ratio; c—determined from GPC.

TGA and DTGA curves are presented in Figure 3a,b. The characteristic values of
temperature, where the samples reach particular decomposition steps of 5%, 50% and
95% (T5%, T50% and T95%), as well as Tf and Tmax, are summarized in Table 3. Only small
amounts of residues were observed at 600 ◦C, suggesting complete thermal decomposition
of polymers into volatile products.
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Table 3. Thermal decomposition of polymeric matrices.

Sample ∆m150
(%)

∆mt
(%)

T5%
(◦C)

T50%
(◦C)

T95%
(◦C)

Tmax
(◦C)

Tf
(◦C)

PLA 0.02 98.77 304.5 371.2 394.6 377.9 414.9

PCL 0.01 100.00 351.4 408.8 434.4 413.3 464.5

PLACL 0.62 99.03 339.3 389.6 424.9 393.3 464.0

PCLGA 0.58 99.50 365.4 406.9 433.8 409.8 475.6

The data show the following sequence of thermal stability PCL≥ PCLGA > PLACL > PLA.
It was found that PLA was the least thermally stable polymer. However, the presence of
Cap units in the copolymer chain significantly increased the thermal stability of PLACL, as
shown by the shift of temperature of particular decomposition steps of thermal decomposi-
tion (compare PLACL and PLA, Table 3). For example, the shift of Tmax value was equal to
15 ◦C in relation to PLA. To the contrary, only a small effect of GG units on thermal stability
of PCLGA in relation to PCL was observed. In such cases, Tmax shifted 3.5 ◦C down.
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The curves display a one-step degradation in the case of PCL, PCLGA and PLACL
(Figure 3a,b). This confirms high homogeneity of both co-polymers, like the PCL homopoly-
mer. However, in the case of PLA, a slight shoulder on DTGA curve (with max at ca. 320 ◦C,
Figure 3b) was observed. This suggests the occurrence of an additional step of polymer
decomposition. Despite very low dispersity of PLA (Ð = 1.26), it can be supposed that in
the first step (at low temperature), the fraction of the polymer characterized by the lower
Mn (Figure 1) started to decompose.

Temperatures of glass transition (Tg), cold crystallization (Tc) and melting (Tm), as
well as onset temperatures (Ton) of melting and crystallization, enthalpy of melting (∆Hm),
enthalpy of cold crystallization (∆Hc) and degree of crystallinity (Xc), are listed in Table 4.

Table 4. Thermal parameters of polymeric matrices determined from DSC.

Sample Tg
(◦C)

Tc
(◦C)

Ton
a

(◦C)
Tm
(◦C)

Ton
b

(◦C)
∆Hc

(J g−1)
∆Hm

(J g−1)
Xc
(%)

PLA 54.4 104.6 102.1 158.9 156.9 15.5 51.4 33.9

PCL −62.9 nd nd 60.8 55.7 nd 128.5 98.1

PLACL −12.3 nd nd nd nd nd nd 0.0 c

PCLGA −56.2 −23.1 −29.1 20.0
28.3 13.8 54.7 76.5 15.1

a—cold crystallization process; b—melting process; c—amorphous; nd—not detected.

The distribution of the crystallites organization is an important factor influencing the
processes. As seen in the DSC thermogram, upon heating of the PLA sample (Figure 4a)
at temperature above glass transition, two processes are observed, i.e., crystallization (so
called cold crystallization; exothermal effect), followed by melting (endothermal effect). The
exothermal process may result from the release of energy due to rearranging of molecules
into a lower energy configuration. This results in formation of the better organized (crys-
talline) phase [27,28]. The molten polymer is characterized by a higher energy compared
to the crystalline phase. Due to the changes in the polymer energy states taking place at
heating, energy is released or absorbed, which can be observed as exothermal or endother-
mal effects. Similarly, in the case of PCLGA, both crystallization and melting are observed
at heating (Figure 4c). In comparison, only the melting endotherm was observed during
heating of PCL (Figure 4b), which can be related to the high crystalline phase content deter-
mined for this polymer (Xc = 98%). On the contrary, no effects of crystallization or melting
are observed in the case of PLACL. This suggests an amorphous nature of the copolymer.

The single glass transition (Table 4) was observed in all cases, confirming good ho-
mogeneity of the obtained polymers. This process is clearly visible in the case of PLA
(from 51.0 ◦C to 56.4 ◦C), PLACL (from −15.7 ◦C to −8.8 ◦C) and PCLGA (from −59.2 to
−54.4 ◦C), and very difficult for detection in the case of PCL (from −63.1 ◦C to −62.5 ◦C).
Additionally, the values of Tg, calculated from the Equation (11), for both copolymers
PLACL (−17.0 ◦C) and PCLGA (−52.4 ◦C) are in good agreement with the measurements
(−12.3 ◦C and −56.2 ◦C, respectively).

Thermal properties of all synthesized polymers are in close agreement with the litera-
ture data: PLA (Xc = 35% [29], Tg = 55–65 ◦C, Tm = 145–183 ◦C [30,31]); PCL (Tg = −60 ◦C,
Tm = 60 ◦C [32]; PLACL/50:50 (Tg = 4 ◦C, Tm = 158 ◦C [33]); PCLGA of low Gly content
(Tg = −60 ◦C, Tm = 54 ◦C [34,35]). It is known that molecular weight, monomer compo-
sition, and crystalline and rigid amorphous fractions development strictly affect thermal
properties of polymers [30,33,36]. Therefore, some discrepancies in the results are probably
due to chemical and structural differences in materials.
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The differences between thermal properties of homo- and copolymers might be dis-
cussed in terms of the differences in composition and the reactions leading to their synthe-
ses. Therefore, while PLA and PCL polymers are both crystalline (Figure 3a,b), PLACL
is amorphous (Figure 4d). The amorphous state of PLACL may be due to transesteri-
fication reactions occurring during the synthesis. Bond scissions in comonomeric units
of the copolymer chain lead to shortening of LL and Cap block segments. As a result,
the transesterification process increases the randomness of comonomer units along the
chain and disrupts the crystallization process, hence reducing the size of crystallites. This
conclusion corresponds to the results of D’Auria et al. [33], who analyzed random copoly-
mers of LA and CL. The authors concluded that distribution of comonomers along the
chain affects thermal behavior of the copolymer. The copolymers with low comonomer
content (LA = 0.1 and CL = 0.1) and long sequences of the prevailing comonomer unit
(lCap = 12.2 and lLL = 11.1 respectively) were crystalline, while the copolymer with LA con-
tent (LA = 0.3) was amorphous, and only small amounts of crystalline phase were observed
for the copolymers with the compositions LA = 0.7 and LA = 0.5, for which average lengths
of comonomer sequences (lLL and lCap) were in the range of 1.3–3.2.

In the case of the PCLGA, the melting endotherm with two minima in the temperature
range of 10–40 ◦C was observed (Figure 4c). This might be connected to the presence of
two types of crystallites differing in size and/or morphology. Accordingly, small, poorly
organized crystallites start melting at lower temperature, while the larger crystallites
characterized by the better ordered structure melt at higher temperature. Among the others,
this might result due to the possible presence of two different blocks in the copolymer chain:
Cap units reach domain and GG units reach domain. However, this explanation seems
insufficient considering the appearance of the single glass transition and the course of the
thermal decomposition process showing rather good homogeneity of the material. Cold
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crystallization occurring during heating at low temperature might also lead to the formation
of less perfect crystallites due to possible reorganization of the amorphous fraction, as well
as the improvement of the structure of the crystallites resulting directly after synthesis. This
may result in a diversification of the material, in which blocks of different organization will
become present. However, the most likely hypothesis (remaining in substantial consent
with the above), seems to be that in this temperature range, two processes (endothermal
and exothermal) occur simultaneously, and the thermal effects of these processes overlap.
Initially, the melting of the less crystallized fraction (endothermal) begins, followed by
melt crystallization (exothermal). The new crystallites formed gradually in this way, with a
higher degree of organization, melt at a higher temperature, which is still accompanied by
an endothermal effect.

3.2. Structural Characterization of the Synthesized Polyester Carriers

As previously stated, the type of catalyst used and the transesterification process
during synthesis have a strong influence on the microstructure of the polymers formed [1].
It was demonstrated that the structure of polymers may be controlled by modifying the
kind of catalyst and the polymerization process parameters. Higher ROP process temper-
atures, for example, result in more random copolymers as a result of TII, which induces
redistribution of comonomer units in the polymer chain [1].

The structure of homopolymers and the chain microstructure of copolymers were
investigated using 1H and 13C NMR spectroscopy. The characteristic signals were assigned
based on the literature [14,16,37,38] and verified the structure of the obtained PCL, PLA,
PLACL and PCLGA.

The 1H NMR spectrum of the synthesized PCL: 4.22 ppm (-O-(CH2)5- C(O)-O-CH2-
CH2-O-CH2-CH2-O-), 4.06 ppm (-O-CH2-CH2-CH2-CH2-CH2-C(O)-), 3.69 ppm (-O-(CH2)5-
C(O)-O-CH2-CH2-O-CH2-CH2-O-), 3.65 ppm (HO-CH2-CH2-CH2-CH2-CH2-C(O)-) + (-O-
(CH2)2-O-CH2-CH2-O-(CH2)2-O-), 2.31 ppm (-O-CH2-CH2-CH2-CH2-CH2-C(O)-), 1.65 ppm
(-O-CH2-CH2-CH2-CH2-CH2- C(O)-), 1.38 ppm (-OC-CH2-CH2-CH2-CH2-CH2- C(O)-).

The 1H NMR spectrum of the synthesized PLA: 5.17 ppm (-O(O)C-(H)C(CH3)-),
4.36 ppm (-O(O)C-(H)C(CH3)-OH), 4.28 ppm (-O-CH2-CH2-O(O)C-(CH2)5-O-), 3.68 ppm
(-O-CH2-CH2-O(O)C-(CH2)5-O-), 3.62 ppm (-O-(CH2)2-O-CH2-CH2-O-(CH2)2-O-), 1.59 ppm
(-O(O)C-(H)C(CH3)-).

The examination of the copolymers spectra, namely the 1H NMR spectra of PCLGA
(CL:Gly = 85:15) (Figure 5) and the 13C NMR spectra of PLACL (CL:L-LA = 50:50) (Figure 6),
allowed us to assign spectral lines to corresponding comonomeric sequences of PCLGA
(Table 5) and PLACL (Table 6). Using the Equations (2)–(9) [14–16], the distribution
of comonomeric units in the polymer chain was determined in accordance with the
published data.

The copolymer of low monomer content (Gly = 0.15 and CL = 0.85) characterized longer
sequences of prevailing comonomer unit (lCap = 2.82 and lG = 1.02) and low crystallinity
(Xc = 15.1 %), while PLACL (L-LA = 0.5 and CL = 0.5), having similar average lengths of
comonomer sequences (lL and lCap) of 2.80 and 1.41 respectively, was amorphous. The
quantitative evaluation of their characteristic sequences (CapGCap and CapLCap) clearly
demonstrates the effect of TII, which lead to unit redistribution in the examined copolymer
chains (Table 7). High TII value and random structure characterize the copolymers (R = 1.07
for PLACL and R = 1.33 for PCLGA).
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Table 5. Chemical shifts in 1H NMR spectrum of PCLGA.

Signal δ [ppm] Sequence

a 4.79 G G G

b 4.73 Cap G G

c 4.68 G G Cap

d 4.64 Cap G G Cap

e 4.60 Cap G Cap

f 4.16 G Cap

g 4.06 Cap Cap

Table 6. Chemical shifts in 13C NMR spectrum of PLACL, region of carbonyl carbon atoms of
ε-oxycaproyl and lactidyl units.

Signal δ [ppm] Sequence

a 173.59 Cap Cap Cap

b 173.45 Cap L Cap Cap

c 173.43 L L Cap Cap

d 172.86 Cap Cap L L

e 172.79 L L Cap L L

f 172.73 Cap L Cap L Cap

g 172.71 L L Cap L Cap

h 170.82 Cap L Cap

i 170.33 Cap L L L Cap + L L L L Cap

j 170.26 Cap L L Cap

k 170.21 Cap L L Cap

l 170.09 Cap L L L Cap

m 170.06 Cap L L L L

n 160.73 L L L L Cap

o 169.66 Cap L L L Cap

p 169.57 L L L L L + Cap L L L L

Table 7. Structural characteristics of PLACL and PCLGA (synthesis parameters: 24 h, 130 ◦C).

Kind of Copolymer/Molar Ratio The Average Length of
the Blocks TII R

poly(L-lactide-co-ε-caprolactone)
PLACL/50:50

lLe = 2.80
lCL

e = 1.41 0.70 1.07

poly(ε-caprolactone-co-glycolide)
PCLGA/85:15

lGe = 1.02
lCL

e = 2.82 0.96 1.33

lLe—experimental average length of lactyl blocks; lCL
e—experimental average length of caproyl blocks;

lGe—experimental average length of glycolyl blocks; R—randomization ratio; TII—yield of the second mode
of transesterification.

3.3. Cyto- and Genotoxicity

The polyesters produced in this work are intended for biomedical uses, such as drug
carriers in anticancer DDSs. Despite the fact that the drug cargo has substantial cytotoxic
activity, the polymeric matrices are intended to be cell and gene neutral. As a result, the four
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representatives of synthesized polyesters were evaluated for cytotoxicity and genotoxicity
(Table 8).

Table 8. Results of the umu-test and the NRU test in contrast to the untreated control at the highest
concentrations of tested extracts [1 mg mL−1].

Sample
Genotoxicity Assay Cytotoxicity Assay

IR a ± SD IR b ± SD Cells Viability ± SD [%]

PLA 0.96 ± 0.02 0.75 ± 0.11 102 ± 2

PCL 0.94 ± 0.11 0.79 ± 0.08 100 ± 1

PLACL 0.87 ± 0.03 0.82 ± 0.14 108 ± 6

PCLGA 1.04 ± 0.11 0.78 ± 0.14 97 ± 4
a version without metabolic activation, b version with metabolic activation.

The NRU test was used for the cytotoxicity testing. The quantitative estimation of
viable cells in tested cultures was based on their ability to accumulate the dye in their
lysosomes. The viability of BALB/c 3T3 cells was not reduced below 70% as compared to
the untreated control by any of the tested dilutions. As a result, all examined polymers
may be declared nontoxic in the NRU assay.

The umu-test was performed to assess the genotoxic potential of the produced poly-
meric materials. The growth of Salmonella typhimurium determining the toxicity of tested
samples was evaluated by a measurement of optical density. All tested samples were not
toxic for the Salmonella typhimurium (bacteria growth > 0.5) with and without metabolic
activation. Furthermore, the induction ratio (IR), which represents a sample’s genotoxic
potential, was <1.5 for all examined materials. This indicates that none of the produced
polymers were genotoxic.

3.4. The Possibility of Employing the Produced Polymers as Carriers of Therapeutic Drugs

Polyesters are one of the most significant groups of biodegradable polymers. Homo-,
co-, and terpolymers of L-LA, rac-LA, CL, and Gly are widely employed in medicine, e.g., as
drug carriers [3,6,39]. The advantage of DDSs over traditional drug forms is from controlled
and sustained drug release in the body, which is influenced, among other things, by the
microstructure of the chain [40] and the composition of the polymer carrier [41]. Polyesters
are distinguished mostly by their tunable microstructure and chemistry. As a consequence,
their properties may be effectively optimized (e.g., drug release profile, degradation time,
structure targeting). In our study, the synthesis conditions were optimized in terms of time,
temperature, and catalyst content, which is important for biomedical applications because
residuals of the catalyst may contaminate the obtained material. 1H and 13C NMR studies
confirmed the polymer structures and complete monomer conversion. Low molar mass
homopolymers and atactic copolymers synthesized in the presence of BiOct3 exhibit no cyto-
or genotoxicity. Based on our previous experience, the obtained polyesters with a statistical
microstructure can be used in the technology of short-term DDSs systems. Furthermore, a
high randomization ratio of the polyester chains may be favorable owing to a more uniform
drug release profile as a result of the polymer’s homogeneous hydrolytic degradation.

A recent comparison of data from the synthesis of biodegradable polymers using
bismuth catalysts has been published [7]. The results reported herein confirm the existing
data and demonstrate the tremendous potential of BiOct3 to create random polymers.
The findings are consistent with Kricheldorf’s research [5,7,42], who has been investigat-
ing the utilization of Bi(III) compounds, such as bismuth subsalicylate and bismuth(III)
n-hexanoate, in the polymerization of biodegradable polymers. Similarly, in our study
the polymers were obtained with a high yield. The catalyst enabled complete monomer
conversion with excellent reactivity. BiOct3 encouraged random distribution of comonomer
units along the chain, and the polymerization process produced polymers with low Ð.
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We are currently conducting additional research on paclitaxel-DDSs derived from these
polymers. The preliminary findings of our research enable us to confirm our hypotheses.
In our next article, we will present detailed results from structural, physicochemical, and
biological investigations (in vitro and in vivo) of these DDSs.

4. Conclusions

Four various biodegradable polymeric matrices were synthesized via ROP of CL,
Gly and L-LA in the presence of non-toxic PEG200-BiOct3 catalytic system. The catalyst
system characterizes high productivity by means of small amounts of the catalyst needed
for the polymerization process. The structures of the resulted polyesters correspond
well to theoretical assumptions. The polymers showed low polydispersity index and Mn
consistent with theoretical values. The polymers were analyzed by means of their structure
and thermal properties. The results are consistent with the literature data. BiOct3 catalysts
efficiently promoted homo- and copolymerization of CL, Gly, and L-LA in a variable range
of monomer compositions, which were coherent with monomer feed ratios. Nevertheless,
the transesterification reactions contributed to some extent to the structures with more
randomized distribution of monomers along the copolymer chains.

Thermal analysis showed single glass transition temperatures indicating good ho-
mogeneity of the polymers. The amorphous nature of PLACL and low ordering of
PCLGA deduced from the DSC curves are in accordance with random microstructures of
the copolymers.

The results showed that BiOct3 is a well-suited catalyst, particularly for L-LA, for
which preferential ring opening in relation to CL is observed during the polymerization
process. The resulted polymers did not show neither cytotoxicity nor genotoxicity. Ad-
ditionally, taking into account the extraordinarily low toxicity, BiOct3 is a particularly
attractive “green” catalyst for ROP of biodegradable polyesters, especially these predicted
for contact with the living organisms, including drug delivery systems.
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