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Abstract: The intrinsic n-type of epitaxial graphene on SiC substrate limits its applications in micro-
electronic devices, and it is thus vital to modulate and achieve p-type and charge-neutral graphene.
The main groups of metal intercalations, such as Ge and Sn, are found to be excellent candidates to
achieve this goal based on the first-principle calculation results. They can modulate the conduction
type of graphene via intercalation coverages and bring out interesting magnetic properties to the
entire intercalation structures without inducing magnetism to graphene, which is superior to the
transition metal intercalations, such as Fe and Mn. It is found that the Ge intercalation leads to
ambipolar doping of graphene, and the p-type graphene can only be obtained when forming the Ge
adatom between Ge layer and graphene. Charge-neutral graphene can be achieved under high Sn
intercalation coverage (7/8 bilayer) owing to the significantly increased distance between graphene
and deformed Sn intercalation. These findings would open up an avenue for developing novel
graphene-based spintronic and electric devices on SiC substrate.
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1. Introduction

The linear dispersion of π-bands endows graphene with novel physical properties
and vast potential for applications in electric, optoelectronic, and photo-electrochemical
fields [1–5]. One of the most effective ways to achieve linear π-bands of graphene is the
epitaxial growth of quasi-freestanding graphene on a Si-terminated SiC substrate [6,7].
However, a buffer carbon layer with a graphene-like hexagonal honeycomb arrangement
would inevitably be formed between the SiC substrate and graphene. The interfacial
states of the buffer layer can lead to a charge transfer from the underlying (6

√
3 × 6

√
3)

R30◦ SiC (0001) surface to graphene, resulting in a strongly n-doped graphene [1–3,8–11].
Modulating the p-type and charge-neutral graphene is still challenging. Furthermore,
because the Fermi level shifts upward from delocalized π-bands into valance bands, the
carrier mobility of graphene is considerably reduced [12].

Generally, the intercalation between the buffer layer and SiC substrate is beneficial for
turning the buffer carbon layer into freestanding graphene by saturating the Si dangling
bonds. Graphene may be doped with electrons or holes depending on the type and
properties of intercalations. The most widely used H intercalation [13–17] results in almost
electrically neutral graphene (weak p-type, Fermi level ~0.11 eV below the Dirac point),
while an intercalation with other gases [18–23], such as O and F, with strong oxidation ability,
produces p-doped graphene. At the same time, various metal intercalations [3,24–32] have
been studied, and they provide stability with respect to the gas intercalations and simple
preparation process with respect to the compound intercalations, such as FeSi and BxCy,
as reported in our previous work [33,34]. However, most metal intercalations are not very
effective in regulating the stable p-type and charge-neutral graphene. For example, alkali
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metal intercalations are very reactive and could easily release their valence electrons to
produce n-type graphene, or break the Dirac-point of graphene [3,24,35–37]—the band
gap of graphene increased up to 0.32 eV with increasing K intercalation coverage [3],
and Na intercalation led to a band gap of 0.29 eV for graphene [37]. Transition metal
(TM) intercalation, such as Mn, led to a Dirac half-metal character of graphene caused by
the transition-metal d characteristics [28,31]; Fe intercalation induced charge asymmetry
and multiple spin-polarized p bands in the electronic structure of graphene/Fe/SiC [32].
Overall, due to the extremely strong metallic properties or the partly-filled d-orbitals, alkali
metal and TM intercalations can easily cause the polarization doping of graphene, making
it challenging to regulate charge-neutral and the ambipolar doping of graphene.

To achieve the stable p-type and charge-neutral graphene, the intercalation materials
need to meet the following basic screening conditions. Firstly, the intercalated atomic
orbitals should have strong electron providing and holding capacity at the same time.
Secondly, the intercalation layer could stably exist between the SiC substrate and graphene.
Finally, the intercalation could only modulate the electronic structure without introducing
any magnetism to graphene. The intercalation of the main group metals without d orbitals
may overcome the negative influence on the insurmountable electron doping and magnetic
interactions of graphene. The Ge [9,38–42] and Sn [43–45] intercalations as well as the
uniform Sn1-xGex alloy intercalations with different Sn:Ge ratios [46] could be successfully
synthesized between the buffer layer and SiC substrates by chemical vapor deposition and
template methods. The Ge intercalation was found to induce ambipolar doping of graphene,
and the transition from p-type to n-type originated from a strong electron correlation of the
Ge atoms [38]. Furthermore, the charge-neutral freestanding graphene was prepared by
Sn intercalation since the conductive electrons of the Sn layer completely compensate for
the spontaneous polarization charge of the SiC substrate [43]. Although the experiments
suggest the successfully modulation of the electronic structure of free-standing graphene
by Ge and Sn intercalations, there are still a few unanswered questions: (1) How can the
conduction type (n-type, p-type, and charge-neutral) of graphene be modulated, and what
is the modulating mechanism? (2) What are the effects of the coverage and location of these
metal intercalations? (3) Would these intercalations introduce magnetism into graphene?
(4) How stable are the intercalation structures under the graphene growth temperature?

To answer these questions, we performed first-principles calculations to investigate
the structures and electronic structure of the Ge, Sn, and Sn1-xGex intercalated systems.
The effect of the coverage of intercalations and the location of the intercalated atoms on
the electronic structure of graphene has been highlighted. The calculation results ver-
ified that the p-type and charge-neutral graphene could be achieved by high-coverage
Ge and Sn intercalations, which is attributed to the charge transfer mechanism. Both the
Ge and Sn intercalations could effectively inhibit the induced magnetism in graphene,
which was different from the cases of TM intercalations [28–32]. These results provided
theoretical evidence and guidance for modulating the electron doping character of epi-
taxial graphene on SiC substrate, thus promoting the practical application of graphene in
microelectronic devices.

2. Results and Discussion
2.1. Electronic Structure Modulation by Ge Intercalations

The band structures of (2× 2)Gr− (
√

3×
√

3)SiC are compared to the (2× 4)Gr− (
√

3
× 2
√

3)SiC structure to evaluate the effect of the computational cell size on the electronic
structure of graphene (Figure 1c,d). It is found that the dominant electronic contributions
near the Fermi level and the relative position of the Dirac point of graphene to the Fermi
level remain unchanged (0.45 eV below the Fermi energy) for the structures calculated
using different computational cells. The shapes of the bands changed slightly due to the
increased band density of the (2 × 4)Gr − (

√
3 × 2

√
3)SiC structure. This alteration has

little influence on the main conclusion, and the effect of the computational cell size on the
electronic structure can thus be neglected.
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ML coverage. However, the 1/16 ML Ge intercalation was energetically unfavorable, im-
plying that modulating the p-type graphene by extreme low coverage of Ge intercalation 
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When the Ge coverages are as high as 7/8 and 4/8 BL, the graphene becomes p-type 
with the Dirac point at 0.18 eV above the Fermi level (Figure 1a,d). The transition from n-
type to p-type graphene is attributed to the stabilization of the Ge adatom between gra-
phene and the Ge layers. We take the 7/8 BL coverage as an example to illustrate the origin 
of p-type graphene. As shown in Figure 2a, the Ge adatom is riveted by three Ge atoms in 
the second Ge layer, and the bond lengths between the Ge adatom (Ge1) and other Ge 
atoms (Ge2, Ge3, and Ge4) in the second Ge layer were ~0.8 Å smaller than those between 
the Ge atoms in the same layer (Table 2). In order to analyze the interaction between Ge 

Figure 1. (a–g) Structures and band structures of 1LG/Ge/SiC with different Ge locations and
coverages. In (a), Bader charges (e) carried by 1LG (green area) and Ge intercalation (yellow area)
have been labeled. The rose red ball represents the mass center of the intercalation. In the band
structures, the pink, blue, and black lines represent the contribution of Ge intercalation, 1LG, and
interfacial Si of SiC substrate, respectively. The green circles show the graphene Dirac point.

The Ge intercalations can decouple the interactions between the 0LG and SiC sub-
strates, as shown in Supplementary Materials Figure S2b. The formation energies and
intercalation energies of the graphene/Ge/SiC system depicted in the Supplementary
Materials are shown in Table 1. According to the formation energies, it was found that
the 3/8 ML coverage for the Ge intercalations is the most favorable, and increasing or
decreasing the coverages lead to the structure energetically less preferable. This indicates
that the intercalation atoms prefer to saturate all Si dangling bonds. It is noted that the
stability of Ge intercalated structures with 7/8 BL coverage, which corresponds to BL
intercalation with an extra adatom, is significantly increased. The essential modulation
mechanism needs to be further discussed carefully. Meanwhile, the very low coverages of
metal intercalations (lower than 1/8 ML and 1/16 ML for Ge intercalations respectively)
are quite unstable (negative values of Ef), and we will not discuss these cases anymore. The
intercalation energies indicated that all the intercalation structures are stable, and the rela-
tive stability of the intercalation structures depends on the coverage—high coverages show
better thermodynamic stability. Then, their thermal stabilities were tested using AIMD
simulations. It was reported that graphene was experimentally synthesized by the thermal
decomposition of SiC at 900 ◦C, and Ge (Sn) intercalation was generated at 600–800 ◦C [46].
The AIMD simulations were thus conducted at 300, 900, and 1200 K, lasting 10 ps, and
the results for 1LG/Ge/SiC with 3/8 ML and 6/8 BL coverages are chosen and shown in
Supplementary Materials Figure S3(a,b) For both structures, the energies oscillated within
small ranges at investigated temperatures, verifying the high thermodynamic stabilities
under preparation and application temperatures. See Table 1.

Table 1. Formation energies (Ef in eV per atom) and intercalation energies (EI in eV) for different
Ge coverages.

Ge
Coverage

7/8
BL

6/8
BL

5/8
BL

4/8
BL

3/8
ML

2/8
ML

2/8
ML

1/8
ML

1/8
ML

1/16
ML

1/16
ML

Ge location - - - - - T + T T + H T H T H
Ef 0.42 0.18 0.26 0.29 0.68 0.20 0.19 −1.68 −1.62 −3.38 −3.33
EI −3.01 −1.10 −1.29 −1.15 −2.03 −0.40 −0.38 1.68 1.62 3.38 3.33
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Here, the effect of the intercalation coverage and atom location on the electronic
structure modulation of graphene has been explored. The experiments showed that some
Ge atoms deintercalated from the system with increasing temperature, resulting in a
decrease in the Ge coverage gradually [38]. Angle-resolved photoemission spectroscopy
(ARPES) can be used to accurately track the number of intercalated atoms to study the effect
of intercalation coverage on the electronic structure of graphene [25,47], thus we considered
Ge intercalations with decreasing coverages: 7/8 BL, 6/8 BL, 5/8 BL, 4/8 BL, 3/8 ML,
2/8 ML, 1/8 ML, and 1/16 ML. For the case of 2/8 ML, 1/8 ML, and 1/16 ML coverages,
we studied the different cases of Ge atoms located at the T or H position. The optimized
configurations and corresponding band structures of unfavorable 1/8 ML and 1/16ML
coverages are shown in Supplementary Materials Figure S4(a,b,c,d) and all the others are
presented in Figure 2. In 1LG/Ge/SiC structure, Ge atoms formed Ge-Si chemical bonds
(bond length ~2.4 Å) on the top of the SiC substrate and weak interaction with 1LG. Such
weak interaction is reflected by the flat structure of graphene and the distance of 3.0–3.2 Å
between Ge and 1LG, comparable to that of 3.35 Å between the graphene layers [48]. The
decoupling of 0LG from the SiC substrate can be confirmed by such structural characters
and the typical Dirac point of graphene in the band structure of 1LG/Ge/SiC (Figure 1).
Because Ge has much more metallic properties than C, the electrons prefer to transfer from
the Ge intercalation to graphene, leading to the graphene Dirac point below the Fermi level,
and the Fermi level passing through the Ge dangling bond states.
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The Ge-intercalated structures show a coverage-dependent electronic ambipolar dop-
ing of graphene. As shown in Figure 1 and Supplementary Materials Table S1, a change
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in the Ge intercalation coverage from high to low induced a reduction in Fermi level and
a transition from p-type to n-type graphene, which is consistent with the experimental
reports [9,38]. In most cases, the graphene exhibits n-type owing to the more metallic
character of Ge relative to C, which makes electron transfer from the Ge layer to graphene.
With decreasing the Ge coverage from 6/8 BL to 1/16 ML, the electron doping of graphene
is weakened, and graphene thus switched from n-type to weak p-type at 1/16 ML coverage.
However, the 1/16 ML Ge intercalation was energetically unfavorable, implying that modu-
lating the p-type graphene by extreme low coverage of Ge intercalation is impossible. This
is because when more Ge atoms are missing, more Si electronic states from the Si dangling
bonds contribute to the electron transfer and the Dirac point of graphene (Supplementary
Materials Figure S4c,d).

When the Ge coverages are as high as 7/8 and 4/8 BL, the graphene becomes p-type
with the Dirac point at 0.18 eV above the Fermi level (Figure 1a,d). The transition from
n-type to p-type graphene is attributed to the stabilization of the Ge adatom between
graphene and the Ge layers. We take the 7/8 BL coverage as an example to illustrate the
origin of p-type graphene. As shown in Figure 2a, the Ge adatom is riveted by three Ge
atoms in the second Ge layer, and the bond lengths between the Ge adatom (Ge1) and other
Ge atoms (Ge2, Ge3, and Ge4) in the second Ge layer were ~0.8 Å smaller than those between
the Ge atoms in the same layer (Table 2). In order to analyze the interaction between Ge
atoms, the projected crystal orbital Hamilton population (COHP) was performed with the
LOBSTER program [49] and VASP outputs. The COHP values between atoms can be obtain
by partitioning the wave function, pregenerated from a self-consistent DFT calculation,
into bonding, nonbonding, and antibonding contributions. It is defined as Equation (1).

−−COHPij(E)= Hij ∑
n

cn
i c∗nj δ(E− E n) (1)

where Hij is the Hamilton matrix element between atomic orbitals ∅i and ∅j, and ci
n are

the coefficients associated with ∅i in a molecular orbital. The integrated COHP (ICOHP)
calculated using the following Equation (2).

ICOHP(εf) =
∫ εf

∞
COHP(E)dE (2)

Table 2. Bond lengths (Å) and ICOHP values of Ge-Ge bonds in 1LG/Ge/SiC with a 7/8 BL coverage.

Bond Length (Å) ICOHP

Ge1—-Ge2 2.47 −3.74
Ge1—Ge3 2.72 −2.48
Ge1—Ge4 2.47 −3.74
Ge2—Ge3 3.18 −0.49
Ge3—Ge4 3.38 −0.49
Ge2—Ge4 3.59 −0.08

It is usually treated as a descriptor of the bond strength in compounds, and the negative
value of ICOHP indicates strong interaction between atoms. The calculated ICOHP values
of Ge1-Ge2/3/4 are an order of magnitude smaller than the others, demonstrating that Ge1
and Ge2/3/4 have strong chemical bonding interactions. Such strong chemical bonding
of the Ge adatom to the Ge layer induces the charge transfer from graphene to the Ge
intercalation. Bader charge calculation results show that the graphene loses 0.14 |e|, while
the Ge intercalation gains 0.18 |e|, demonstrating the formation of p-type graphene in
the presence of the Ge adatom. Meanwhile, the presence of the Ge adatom for the 4/8
and 7/8 BL coverages results in a significant change in the distance between the layers.
Specifically, the distances between the Ge layers are largely decreased by 0.3–0.6 Å, and the
distances between graphene and the Ge layer are slightly increased by 0.11–0.14 Å.
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For the low Ge coverages (2/8, 1/8, and 1/16 ML), the effect of intercalation atom
location on the band structures is also investigated. We found that the atomic location
only slightly influences the position of the Dirac point, and the electronic states near the
Fermi level as well as the conduction type of graphene remain almost the same. This
observation is consistent with the experimental conclusion that the graphene doping type
is not sensitive to the order of the intercalation layer structure [35]. Since the formation
of such low Ge coverages becomes relatively difficult, we can conclude that the doping
properties of graphene is dominantly modulated by the coverage of Ge intercalation instead
of the location.

Since Ge has metal characteristics that may introduce magnetism into the graphene
analogously to the Fe intercalation, the spin DOS and the electron density of Ge-intercalated
structures were calculated and showed in Figure 2. It is seen that the ML coverage is the
cut-off point for whether or not magnetism will be introduced into the Ge intercalated
systems—coverages higher than ML do not induce magnetism to the entire structure, while
coverages lower than ML, namely ML intercalation with Ge vacancies, the symmetry of the
spin-up and spin-down electronic states has been broken, and the magnetism of the entire
intercalation structures has thus been increased. The magnetic moments of the systems with
the same coverage are almost the same, as shown in Table S1. This is because the exchange
interaction between the electrons in the metal intercalations and the unsaturated dangling
bonds of SiC leads to the polarization of the electronic states at the Fermi level, thus
inducing the magnetism of the entire system. The number of Si dangling bonds increases
with decreasing the intercalation coverage, and the magnetism of the entire system is thus
increased. The asymmetric DOS spectra of the two spin components in Figure 2e confirmed
the maximum magnetic behavior of the Ge intercalated structures with magnetic moments
of 1.92 µB. However, the magnetism has not been extended to graphene owing to the
complete graphene π-bonds and little interaction with metal intercalations. When the Ge
coverage reduces to 1/16 ML, the Ge-intercalated structure becomes half-metal, which
arises from the electronic and magnetic couplings of the Ge layer with the SiC surface
rather than the graphene. It indicates that such a structure may fabricate spin batteries and
ideal magnetic tunnel junctions for spintronic applications.

2.2. Electronic Structure Modulation by Sn Intercalations

Similarly, the Sn intercalation can also transform 0LG into free-state graphene, as
shown in Supplementary Materials Figure S3c. The Sn intercalations also completely
saturate the Si dangling bonds by forming strong Sn–Si covalent bonds, whereas maintain
a Sn dangling bond perpendicular to the graphene rather than form Sn-C bonds. This
observation is sufficient to illustrate that the energy loss in the sp2 planarity of the graphene
is higher than the energy gain from forming the covalent Sn-C bonds. Meanwhile, the Ef
and EI of Sn intercalation system are also used to reflect the possible and preferable coverage
ranges of the intercalations in terms of energy, as shown in Table 3. The conclusions are
consistent with those of Ge intercalation system. Namely, the 3/8 ML coverage for the
Sn intercalations is the most favorable, and increasing or decreasing the coverages lead
to the structure energetically less preferable. In addition, the thermodynamic stability for
1LG/Sn/SiC with 3/8 ML and 6/8 BL coverages are chosen and shown in Supplementary
Materials Figure S5(a,b) Both structures verified the high thermodynamic stabilities under
preparation and application temperatures.



Molecules 2022, 27, 9004 7 of 14

Table 3. Formation energies (Ef in eV per atom) and intercalation energies (EI in eV) for different
Sn coverages.

Sn
Coverage

7/8
BL

6/8
BL

5/8
BL

4/8
BL

3/8
ML

2/8
ML

2/8
ML

1/8
ML

1/8
ML

1/16
ML

1/16
ML

Sn
location - - - - - T + T T + H T H T H

Ef 0.28 0.04 0.06 0.12 0.66 0.66 0.62 0.27 0.27 −4.38 −4.35
EI −1.92 −0.21 −0.30 −0.48 −1.98 −1.32 −1.24 −0.27 −0.27 4.38 4.35

We also found the coverage-dependent regulation of electronic structure, but the effect
and mechanism are different from Ge intercalation. Firstly, the distances between graphene
and Sn intercalations are very large at high coverages. Normally, the total energy of the
whole structure is contributed to two components—elastic contribution (positive effect) and
electronic effect (negative effect) [50]. The intercalation structure has a significant influence
on the structural relaxation under high coverage, resulting in the elastic contribution going
beyond the electronic effect to be the dominant factor. Increasing the Sn coverage to 4/8 BL,
the strong metallic character and sizable atomic radius of Sn atoms lead to great structural
deformation (Figure 3). Therefore, the Sn layer is separated by a large distance at 4/8 BL
coverage, making graphene closer to the Sn layer. Contrarily, the electronic effect becomes
the dominant factor relative to the elastic contribution under low intercalation coverage
(ML), and the graphene is slightly further away from the Sn intercalation.
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interfacial Si of SiC substrate, respectively. The green circles show the graphene Dirac point.

On the other hand, the electron doping of graphene, owing to the Sn intercalation,
is overall stronger than that for Ge intercalation. This difference can be attributed to the
more metallic character of Sn than Ge, resulting in the more electron transfer to graphene.
As a result, the Sn intercalation can be regulated to produce charge-neutral graphene
experimentally [43]. Our calculations verified this conclusion for the 7/8 BL coverage,
as shown in Figure 4a. Such a high coverage leads to the stabilization of the Sn adatom
and huge deformation of the second Sn layer. We choose the mass center of the second
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Sn layer to measure the distance between graphene and the second Sn layer. It is found
that the considerable deformation of the Sn layer increases the distance between graphene
and the Sn layer to ~1 Å, which is larger than the distance between graphene and the Ge
layer, and thus reduces the electron transfer with graphene and makes the graphene charge-
neutral. Given the strong spin–orbit coupling effect of Sn with the coverage decreased to
1/8 ML, the band linearity around the Dirac point has been broken, as shown in Figure 4f,g,
meaning that the electronic properties of graphene could be hardly improved relative to the
freestanding graphene. Although this situation is reversed when the Sn coverage further
decreases to 1/16 ML (Supplementary Materials Figure, the Sn intercalation with such a low
coverage is energetically forbidden. Therefore, we suggest that an adequate Sn source is
supplied in an experiment to obtain high coverage of Sn intercalation in order to modulate
the charge-neutral freestanding graphene.
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The spin DOS and the electron density of Sn-intercalated structures were calculated
and showed in Figure 4. Due to Sn intercalations are analogously to the Ge intercalation,
the effect of Sn intercalation coverage on the magnetic properties of the system is exactly
the same as that of Ge intercalation. The maximum magnetic behavior of 1/16 ML Sn
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intercalated structures has magnetic moments of 2.02 µB, which is the same as the maximum
magnetic moment of Ge intercalated structure. Notably, when the Sn coverage reduces to
1/16 ML, the spin-up channel is metallic and the spin-down channel exhibits an electronic
structure similar to the Dirac point of graphene. This change provides the capability to
modulate the magnetism and ultra-fast electronic mobility in the same structure. The spin
polarization ratio is defined as Equation (3).

δ =
∣∣∣ρ↑−ρ↓∣∣∣/(ρ ↑+ρ↓) (3)

where ρ↑ and ρ↓ are the absolute values of DOS at the Fermi level for spin-up and spin-down
channels, respectively. For the 1/16 ML coverage, both the 1LG/Ge/SiC and 1LG/Sn/SiC
is half-metals with 100% spin–polarization ratios at the Fermi level, which can be advanta-
geous for nanoscale spintronic-electric applications.

According to our theoretical research results, experimental achievement of the p-type
and charge-neutral graphene on SiC substrate is based on the precise regulation of Ge and
Sn intercalation coverages. It should be noticed that the precise control of intercalation
coverage has been achieved experimentally for many years. For example, Gierz et.al
successfully traced the intercalation atom deposition process by using angle-resolved
photoemission spectroscopy (ARPES) and precisely control the Bi intercalation coverages
of 0→0.28→0.38→0.46 atoms/u.c. (the amount of Bi atoms per graphene unit cell) [25].
Moreover, more precise control of the atom deposition amount has been achieved for the
thallium intercalation [47]. The controlling of the amount of thallium can span two orders
of magnitude, and the minimum thallium concentration that can be controlled is 0.06% of
the number of atoms in a graphene monolayer. It can be seen that the current experimental
controlling precision of the intercalation layer coverage/concentration can completely
achieve the concentration of Ge and Sn intercalations in our theoretical work. Therefore, it
is possible to achieve bipolar regulation of graphene on SiC substrate by regulating Ge and
Sn intercalation coverages experimentally.

2.3. Electronic Structure of Sn1-xGex Intercalations

According to an experimental report [46], Ge atoms could be deposited on the Sn
atomic layer to form Sn1-xGex alloy layers between graphene and the SiC substrate at
600–800 ◦C. The Sn:Ge ratio was modulated by changing the preparation temperature,
and it was inferred that the doping characteristics of graphene could thus be affected. It
was also experimentally found that the Ge atoms prefer to locate as the bottom layer and
bind to the Si dangling bonds of the SiC substrate, while the Sn atoms are thus the top
layer of the alloy intercalation. This phenomenon is confirmed by theoretical calculations.
The calculated binding energy between Ge and interfacial Si atoms is −4.19 eV, while
that of Sn is −3.81 eV, indicating that Ge atoms are more preferable to bind with the Si-
terminated surface than Sn. The calculated ICOHP values of Ge-Si and Sn-Si are −4.86 and
−4.13 respectively (Figure 5a), further confirming that Si more favorably combines with

Ge than Sn. Therefore, models of Sn1-xGex intercalations were constructed by placing
the Ge atomic layer at the bottom to bind with Si, and then, an Sn atomic layer is placed
between the Ge layer and graphene.

The optimized 1LG/Sn1-xGex/SiC configurations and the corresponding band struc-
tures are shown in Figure 5. Similarly, there is only a weak van der Waals interaction
between graphene and Sn1-xGex intercalations—the distances between them with different
Sn:Ge ratios remain around 3.0 Å, which is ~0.2–0.4 Å smaller than those of 1LG/Ge/SiC
and 1LG/Sn/SiC. This observation indicates a more substantial electron transfer from
Sn1-xGex to graphene, leading to the doping of graphene by more electrons. More im-
portantly, because Sn and Ge are metallic, the Sn1-xGex intercalation layers have a more
substantial metallic effect than the isolated Ge or Sn layers, leading to more substantial
electron transfer to graphene. This phenomenon could be reflected by the strong n-type
behavior of graphene, which was not reversed to p-type by modulating the Sn:Ge ratio.
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When the Sn:Ge ratio was small, the linear dispersion of the graphene Dirac point remains
in good standing. However, as the Sn:Ge ratio increases, the contribution of Ge atoms in the
conduction band smoothly changes to that of Sn, and the linear dispersion of the graphene
band deteriorates owing to the complicated hybridization of the electronic states of Ge,
Sn, and interfacial Si. It is therefore hard to obtain charge-neutral and p-type graphene by
Sn1-xGex alloy intercalation.
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3/3, 3/2, 4/2, 3/1, and 5/1, respectively. In the band structures, the red, pink, blue and black lines
represent the contribution of Ge intercalation, 1LG, and interfacial Si of SiC substrate, respectively.
The green circles show the graphene Dirac point.

3. Materials and Methods

First-principles calculations were performed based on the Vienna ab initio simulation
package (VASP) [51,52] in conjunction with projector augmented wave (PAW) [53]. The
electrons in C 2s22p2, Si 3s23p2, Ge 4s24p2, and Sn 5s25p2 were treated as valence elec-
trons. Generalized gradient approximation (GGA) in the Perdew–Burke–Ernzertaly (PBE)
form [54] was adopted for the exchange–correlation interaction to optimize the configu-
rations and describe the electronic properties of all the investigated structures. A 450 eV
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cutoff energy was used for the plane wave basis, and the convergence criteria were chosen
as 0.05 eV/Å and 10−4 eV/atom for the residual force and total energy, respectively. To
provide a good approximation of the experimentally reported (6

√
3 × 6

√
3) R30◦ recon-

struction [9], an interface model of graphene and SiC substrate was constructed by placing
a 2 × 2 graphene sheet (8 C atoms) on top of a (

√
3 ×
√

3) R30◦ 6H-SiC(0001) surface
((2 × 2)Gr − (

√
3 ×
√

3)SiC supercell) that contains four SiC layers with H saturating
the C bonds located at the bottom, as shown in Figure 6a. This model corresponds to a
4.1%-stretched graphene cell and a 4.4%-compressed SiC substrate. An 18 Å thick vacuum
layer was adopted perpendicular to the interface to prevent artificial interactions between
the adjacent supercells. Normally, the buffer carbon layer was abbreviated as 0LG, and
the first layer of the quasi-freestanding graphene was abbreviated as 1LG. Detailed in-
formation of the intercalated system configurations (Supplementary Materials Figure S1)
was included in the Supplementary Materials. To clarify the influence of the intercalations
on the electronic structure of graphene, “fat band” technology was used to observe the
occupation of various elements in the band structures. In addition, to further explore the
effect of intercalation coverage (correspond to different amount of atomic vacancies) on
the electronic structure of graphene, we doubled the size of the (2 × 2)Gr − (

√
3 ×
√

3)SiC
supercell along the y axis to obtain a (2 × 4)Gr − (

√
3 × 2

√
3)SiC supercell, as shown in

Figure 6b. A 7 × 7 × 1 Monkhorst-Pack k-mesh was used for structural relaxation and
electronic structure calculations. Long-range van der Waals interaction (essential for de-
scribing the graphene-intercalation interactions) was included by Grimme’s semi-empirical
correction (DFT-D2) [55]. The ab initio molecular dynamics (AIMD) simulations were
performed at 300, 900, and 1200 K using a canonical ensemble (NVT) within each time step
of 1 fs to evaluate the thermodynamic stability of the intercalated structures.
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4. Conclusions

In summary, we investigated the effect of group-IV Ge, Sn, and Sn1-xGex metal interca-
lations on the structure and electronic structure of epitaxial graphene on SiC substrate by
performing DFT calculations. It is found that the buffer carbon layer could turn into mono-
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layer quasi-free-standing graphene by intercalating these metal layers between graphene
and SiC substrate, and the doping properties of graphene depend on the type of metal
intercalations and the intercalation coverages. The Ge intercalation induces graphene am-
bipolar doping, and the p-type graphene could be obtained with 4/8 and 7/8 BL coverages.
The p-type graphene originates from the strong interaction between the adatom Ge and
its nearby Ge layer. On the other hand, the charge-neutral graphene is tailored by the Sn
intercalation with as high coverage as 7/8 BL since the charge transfer between graphene
and the Sn layer can be eliminated by the massive deformation of the Sn layer and the
resulting enlarged distance between them. Further studies show that the group-IV metal
intercalations induce interesting magnetic properties to the entire structure while keeping
graphene free of magnetism. These results help understand the effect and mechanism
of main-group metal intercalation on the electronic and magnetic property regulation of
graphene. It also provides a new path to develop novel spintronic-electric devices based on
these composite layered structures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27249004/s1, Figure S1: Configurations of Ge and Sn
intercalation systems with different coverages; Figure S2 Distribution of the electron localization
function (ELF) in the (11(_)0) plane of (a) 0LG/SiC, (b) 1LG/Ge/SiC, and (c) 1LG/Sn/SiC with 3/8
ML coverage. The black dotted boxes were used to frame the interface between graphene and the
substrate or intercalation; Figure S3: AIMD simulations of (a) 1LG/Ge/SiC with 3/8 ML coverage
and (b) 1LG/Ge/SiC with 6/8 BL coverage at 300 K, 900 K and 1200 K; Figure S4: (a-d) Structures
and electronic band structures corresponding to the atomic structures of 1LG/Ge/SiC with different
Ge locations and coverages. In the band structures, the pink, blue and black lines represent the
contribution of Ge intercalation, 1LG, and interfacial Si of SiC substrate, respectively. The green
circles show the location of the graphene Dirac point; Figure S5: AIMD simulations of (a) 1LG/Sn/SiC
with 6/8 BL coverage and (b) 1LG/Sn/SiC with 6/8 BL at 300 K, 900 K and 1200 K; Figure S6: (a-d)
Structures and electronic band structures corresponding to the atomic structures of 1LG/Sn/SiC with
different Sn locations and coverages. In the band structures, the red, blue and black lines represent
the contribution of Ge intercalation, 1LG, and interfacial Si of SiC substrate, respectively. The green
circles show the location of the graphene Dirac point; Table S1: Ge/Sn coverage-dependent Fermi
level (Ef in eV), doping type of graphene, and magnetic moment (µB) of the intercalation structures.
The numbers in brackets represent the magnetic moment of 1LG. References [56,57] are cited there.
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