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Abstract: This research work focuses on the potential application of an organic compound, santalol,
obtained from santalum album, in the inhibition of the enzyme tyrosinase, which is actively involved
in the biosynthesis of melanin pigment. Over-production of melanin causes undesirable pigmentation
in humans as well as other organisms and significantly downgrades their aesthetic value. The study
is designed to explain the purification of tyrosinase from the mushroom Agaricus bisporus, followed by
activity assays and enzyme kinetics to give insight into the santalol-modulated tyrosinase inhibition
in a dose-dependent manner. The multi-spectroscopic techniques such as UV-vis, fluorescence, and
isothermal calorimetry are employed to deduce the efficiency of santalol as a potential candidate
against tyrosinase enzyme activity. Experimental results are further verified by molecular docking.
Santalol, derived from the essential oils of santalum album, has been widely used as a remedy for
skin disorders and a potion for a fair complexion since ancient times. Based on enzyme kinetics and
biophysical characterization, this is the first scientific evidence where santalol inhibits tyrosinase, and
santalol may be employed in the agriculture, food, and cosmetic industries to prevent excess melanin
formation or browning.

Keywords: mushroom tyrosinase; melanogenesis; tyrosinase inhibitor; multi-spectroscopic
techniques; natural compounds; tyrosinase inhibitor

1. Introduction

Melanin is a light-absorbing bio pigment with coloration ranging from dark blackish-
brown eumelanin to reddish-yellow pheomelanin [1]. This molecule imparts a specific
colorway to the skin, eyes, and hair in humans [2]. Melanin is also synthesized in various
fruits and vegetables, which can be seen as a colored pigment. Melanin shields the skin
from ultraviolet (UV) rays in the sunlight by absorbing the harmful radiation [3]. Thus,
melanin production is an important process; by contrast, there are occurrences where
enhanced melanin production is a serious problem [4]. Skin disorders such as freckles,
lentigo, melasma, or pigmented acne seen across all races are the result of an uncontrollable
accumulation of melanin [5,6]. These skin disorders not only affect the individual’s physical
appearance, but they may elicit social and mental insecurities resulting in lower quality
of life (QOL) [7,8]. Another grave concern is the process of neuromelanin occurring in the
brain, where dopamine is oxidized to dopaquinones by the action of tyrosinase [9]. Previ-
ous studies revealed that hyper tyrosinase activity in dopamine-rich nigral neurons can
lead to neuronal tissue damage and apoptotic cell death. Neuromelanin is often associated
with neurodegenerative diseases like Parkinson’s disease and Huntington’s disease [10].
Similarly, prolonged melanin synthesis develops brownish-black melanin spots over food
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stocks such as fruits and vegetables and subsequently leads to a significant drop in their nu-
tritional as well as market values, accounting for huge economic loss [11]. This biosynthetic
reaction of melanin synthesis takes place in melanocytes where the amino acid L- tyrosine
is converted to the end-product melanin in a series of steps with the participation of a
key enzyme called tyrosinase [12,13]. This enzyme catalyzes two fundamental steps of
melanin production, which begin with the hydroxylation of monophenols to o-diphenols,
namely L-DOPA (L-3,4-dihydorxyphenylalanine) displaying its monophenolase activity.
The second step is the oxidation of o-diphenols to o-quinones, namely dopaquinone pre-
senting its diphenolase activity. Subsequently, o-quinones polymerize to produce melanin
in a cascade of reactions [14] (Figure 1). Evidently, tyrosinase is a polyphenoloxidase
(EC 1.14.18.1), regulatory metallo-enzyme having two copper ions at its active site, with
several isoforms. The enzyme is reported to have approximately 120 kDa of molecular
mass, distributed among two H subunits, each of ∼43 kDa, and two L subunits, each of
∼14 kDa, which is the most common form of tyrosinase. Thus, existing as an H2L2 tetramer
in the holoenzyme state [15,16], it possesses two binding sites for the phenolic substrates
along with a copper-conjugated oxygen binding site. The fact that mushroom tyrosinase
obtained from Agaricus bisporus has striking homology with mammalian tyrosinase [17]
therefore makes it a convenient target for inhibition studies for therapeutics applications in
humans as well as in the food industries as food preservatives [18].
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Figure 1. Conversion of tyrosine into melanin in presence of tyrosinase enzyme (tyrosine to melanin
conversion pathway) [19].

As stated above, tyrosinase acts as a rate-limiting enzyme in the melanin biosynthesis
pathway. Thus, the primary approach to slow down the pathway is to inhibit tyrosinase
via different strategies, of which anti-tyrosinase action by chemical modalities, such as kojic
acid, arbutin, and hydroquinones, has been widely used [20,21]. Although these compounds
with both natural and synthetic origins have been reported to possess tyrosinase inhibitory
properties, they are often limited subject to their toxicity, activity, or stability [20,22,23]. Thus,
a naturally occurring compound with an inhibitory effect on melanogenesis serves as a
good choice for commercial applications because of its organic nature and accompanied by
less toxicity and the highest compatibility when compared to its synthetic counterparts [24].
Therefore, we screened a phytochemical called santalol, derived from the essential oils of
sandalwood (santalum album). In traditional medicinal systems, it is widely used as a remedy
for skin disorders and a potion for a fair complexion [25]. Chemically, santalol is a phenolic
compound with good antioxidant abilities [26]. In addition, it is approved by the FDA
for human use and consumption [27,28]. Apparently, there is a lack of information on the
pharmacological potency of santalol against tyrosinase activity [29]. Here, in this study,
we have investigated its role as a tyrosinase inhibitor along with a plausible mechanism of
inhibition by biophysical study. Furthermore, using multi-spectroscopic techniques, we have
elucidated the interaction mechanism of the pure santalol compound towards the purified
enzyme tyrosinase, later confirmed by molecular docking results.
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2. Results and Discussion
2.1. Extraction of Enzyme Tyrosinase and Ammonium Sulphate Precipitation

A cell-free mushroom tyrosinase system was used to conveniently extract the target
protein. A total of 310 mL crude protein extract was used from the 200 g of mushroom taken
as the source. The ammonium sulphate precipitation method was used to precipitate the
crude protein by saturating the crude solution with finely divided ammonium sulphate in a
stepwise manner. The concept of salting-out was applied, where higher salt concentrations
decrease the protein solubility in a solution leading to precipitation of the protein, which
eventually comes out of the solution and can easily be recovered after centrifugation [30,31];
we obtained most of the protein, including the target protein (protein of interest, tyrosinase)
in a 60% fraction of ammonium sulphate salt concentration.

2.2. Purification of Enzyme Tyrosinase Using Chromatography

The target protein is often accompanied by other proteins and organic molecules which
tend to accumulate during homogenized extract preparation. The two-step purification
was performed to segregate the target protein from the mixture using ion-exchange and gel
filtration chromatography. When dialyzed protein sample was applied to a DEAE-cellulose
column with stepwise increment in the NaCl gradient, the target protein was eluted at
0–100 mM NaCl with phosphate buffer of the same 6.8 pH. (The result is illustrated in
Supplementary Figure S1). DEAE is basically a positively charged resin that binds to
or exchanges opposite-charged (negatively charged) protein molecules present in the
protein mixture at a particular operating pH. The eluted active fractions having maximum
absorbance at 280 nm were mixed, concentrated, and then loaded to a Superdex 200 pg gel
filtration column in order to obtain the purest form of tyrosinase [32–34].

Each of the peaks obtained after ion-exchange chromatography was collected as a sepa-
rate aliquot and run on SDS-PAGE. The purified protein obtained after both chromatographic
techniques showed a single band of 63 kDa, as shown in Figure 2. The final eluted fraction
showed major peaks of tyrosinase activity which were observed in active fractions with a
final specific activity. SDS-PAGE of the enzyme after two step-purification showed that the
resolved electrophoretic bands were progressively improved from the crude extract to the final
step of the gel filtration column chromatography. It revealed only a single distinctive protein
band for the pure form of tyrosinase with an apparent molecular weight of 63 kDa obtained.
Total amount and concentration of protein so obtained after every step of purification was
estimated with BSA as a standard, and percentage yield is summarized in Table 1.
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Table 1. Purification summary of tyrosinase.

S. No. Purification Steps
Fraction
Volume

(mL)

Protein
Conc.

(mg/mL) b

Total Amt.
of Protein

(mg)

Total
Activity
(Units)

Specific
Activity

(Unit/mg)

Yields
(%)

Purification
Fold

1 Crude extract a 310.0 1.250 387.5 4121 10.6 100 1

2 Ammonium sulphate
precipitation 30% cut-off 120 0.853 102.36 3172 30.9 26.42 2.91

3
Ion-exchange

chromatography,
DEAE-Sepharose column

65 0.552 35.88 2627.5 73.25 9.25 7.07

4
Gel filtration

chromatography, using
Superdex 200 column

45 0.15 7 2256.2 322.3 1.8 32.14

a from 200 g of wet weight of mushroom cap edible portion. b Protein concentration determined by Bradford
assay [35] using BSA as a standard protein.

2.3. Tyrosinase Activity Assay

UV-vis absorbance spectral analysis is a widely used methodology to explore the con-
formational changes occurring in the protein with respect to the formation of protein–ligand
complexes. The purified protein so obtained after two-step purification was first subjected
to its activity determination using UV-visible spectroscopy and zymogram analysis. The
initial rate of reaction is proportional to the concentration of the enzyme. One unit of enzyme
corresponded to the amount which catalyzed the transformation of 1µmol of substrate to
product per min under the above conditions and produced changes in absorbance. It has
been observed that dopachrome gives maximum absorption at 473 nm [36]. Therefore, we
monitored the change in absorption until the horizontal line or point of saturation of the
enzyme was achieved; in other words, purified tyrosinase activity was monitored until no
L-DOPA (substrate) remained for the enzyme to be converted into the product (dopachrome).
As tyrosinase protein activity is based upon the change of color of the L-DOPA substrate to red
pigment dopachrome (Figure 3), the intensity of the color is directly proportional to tyrosinase
concentration. The zymogram obtained after native-PAGE of the purified protein is depicted
in Figure 3 below. Formation of melanin was also confirmed by incubating the native-PAGE
for zymography for about 24 h (Supplementary Figure S3). All these observations clearly
indicated that the tyrosinase enzyme that we purified in the end was not only in its purest
form (single protein band 63 kDa) but also in its native confirmation (as shown in colorimetric
assay and zymography below).
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Figure 3. (A) Change in absorbance was monitored at 473 nm (dopachrome λmax = 473).
(B) Dopachrome was formed upon addition of tyrosine as substrate in an enzyme mixture proving
the active form of tyrosinase in reaction mixture. Native-PAGE gel was incubated in 5 mM L-tyrosine
(substrate) at 37 ◦C, and bands of light red-colored pigment dopachrome (shown right side) were
appeared after a few minutes of incubation, which eventually leads to production of melanin dark
brown color (shown in Figure 3 right side).
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2.4. Tyrosinase Inhibition Kinetics

Changes in the tertiary structure of tyrosinase were monitored using UV-visible scan
at 340–240 nm. We observed that, with an increase in santalol concentration from 0 µM
to 50 µM, there was perturbation in the tertiary structure of tyrosinase, which was later
confirmed by plotting absorption maxima at 280 nm (A280 nm) versus santalol concentration
(Figure 4A) To elucidate the activity of tyrosinase obtained after purification, an enzyme
kinetics study was performed in the absence as well as in the presence of santalol as a
tyrosinase inhibitor. Linearized data obtained from change in absorbance per unit time
and was fitted by Michaelis–Menten equation using GraphPad prism and sigma plot
software version 12.5. The enzyme kinetics, as measured by the Michaelis constant (Km),
are defined as the substrate concentration at which half of the maximum velocity or the
rate of the enzymatic reactions achieved. The Michaelis–Menten constant (Km) value of
the purified tyrosinase was estimated in a given range of substrate concentrations for
L-dopa (Supplementary Figure S2). In order to calculate exact Km values with different
concentrations of inhibitor, a Lineweaver–Burk plot was drawn. The apparent Km value of
protein was calculated from the Lineweaver–Burk plots relating 1/V to 1/[S]. We observed
an overall decrease in enzyme activity of tyrosinase with increase in the concentration of
santalol as inhibitor. Maximal inhibition was found to be around 50 µM of santalol.

Molecules 2022, 27, x FOR PEER REVIEW 6 of 16 
 

 

 
(A) 

 
(B) 

Figure 4. (A) (i) Effect of various concentrations of compound santalol as tyrosinase inhibitor on 

absorbance maxima A280 nm values. (ii) Effects of varying concentrations of santalol on tyrosinase 

tertiary structure monitors using near-UV visible spectroscopic scan, with inset figure showing pro-

gressive tyrosinase inhibition with increase in santalol concentration (µMolml−1). (B) (i) Lin-

eweaver–Burk plot in presence of various concentrations of santalol, with right-hand side (ii) de-

picting increase in Km values were also observed in dose-dependent manner. 

2.5. Intrinsic Fluorescence Binding Study 

An intrinsic fluorescence study was carried out to examine interactions between pro-

tein and the ligand. This can tell us various parameters for drug-protein binding. The in-

trinsic protein fluorescence is mainly due to aromatic residues such as tyrosine, trypto-

phan, and phenylalanine in the protein sequence where they act as sensitive fluorescent 

probes to investigate protein interactions with particular ligands. In addition, strong bind-

ing affinities exist between santalol and tyrosinase, possibly due to the presence of hy-

droxyl groups in santalol. From the result of the intrinsic fluorescence spectra, we ob-

served that santalol binding to the tyrosinase leads to conformational changes in tyrosi-

nase that result in gradual decreases in the spectra in a dose-dependent manner (Figure 

5A); for simplicity, we have not shown the overlapping spectra here. Although the de-

creases in the fluorescence intensities were caused by quenching, there was no significant 

wavelength shift, indicating that tyrosinase does not undergo unfolding or denaturation 

after binding with the compound santalol.  

Figure 4. (A) (i) Effect of various concentrations of compound santalol as tyrosinase inhibitor on
absorbance maxima A280 nm values. (ii) Effects of varying concentrations of santalol on tyrosinase
tertiary structure monitors using near-UV visible spectroscopic scan, with inset figure showing pro-
gressive tyrosinase inhibition with increase in santalol concentration (µMolml−1). (B) (i) Lineweaver–
Burk plot in presence of various concentrations of santalol, with right-hand side (ii) depicting increase
in Km values were also observed in dose-dependent manner.
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Using the linearized data obtained by Michaelis–Menten plot, the inhibitory type
was also determined by the Lineweaver–Burk plot (Figure 4B); for simplicity, four major
concentrations are shown in the plot. Plots clearly show a decrease in overall activity of the
purified tyrosinase with increases in santalol concentration (in a dose-dependent manner).
Santalol might be bound to the active site of tyrosinase in a competitive manner such that
its substrate (L-dopa, used in this study) is no longer accessible to the enzyme for binding,
thus its final products, eumelanin or dopachrome, are not formed. Furthermore, on the
basis of calorimetric assays, the inhibition of tyrosinase by santalol (extent of inhibition)
was confirmed using UV-visible spectroscopic measurement at 473 nm (Supplementary
Figure S4), where we compared the maximal inhibitory concentration of santalol with the
standard inhibitor of tyrosinase (kojic acid).

2.5. Intrinsic Fluorescence Binding Study

An intrinsic fluorescence study was carried out to examine interactions between pro-
tein and the ligand. This can tell us various parameters for drug-protein binding. The
intrinsic protein fluorescence is mainly due to aromatic residues such as tyrosine, trypto-
phan, and phenylalanine in the protein sequence where they act as sensitive fluorescent
probes to investigate protein interactions with particular ligands. In addition, strong bind-
ing affinities exist between santalol and tyrosinase, possibly due to the presence of hydroxyl
groups in santalol. From the result of the intrinsic fluorescence spectra, we observed that
santalol binding to the tyrosinase leads to conformational changes in tyrosinase that result
in gradual decreases in the spectra in a dose-dependent manner (Figure 5A); for simplicity,
we have not shown the overlapping spectra here. Although the decreases in the fluores-
cence intensities were caused by quenching, there was no significant wavelength shift,
indicating that tyrosinase does not undergo unfolding or denaturation after binding with
the compound santalol.

To identify the interaction mechanism of the ligand santalol with the enzyme tyrosi-
nase, the data of fluorescence quenching were presented in the form of a Stern–Volmer plot,
using the following equation:

Fluorescence quenching was described by the Stern–Volmer equation.

F0

F
= 1 + KSV [C] (1)

where F0 = fluorescence intensities before the addition of the quencher; F = fluorescence
intensities after the addition of the quencher; and KSV = Stern–Volmer quenching constant.

The value of Ksv determined by the linear regression plot of F0/F vs. [Q] at 25 ◦C was
5.32 × 104. The plot in the Figure 5B showed a good linear relationship using Stern-Volmer
(Figure 5B(i)) and modified Stern Volmer (Figure 5B(ii)), indicating that a single type of
quenching process (static or dynamic quenching) occurred during the formation of the
santalol–tyrosinase complex. For static quenching interactions, if there are similar and
independent sites in biological molecules, the apparent binding constants (Ka) and the
number of binding sites (n) can be obtained from the following equation:

log (F0 − F)/F = log Ka + nlog Q1⁄2 (2)

According to the intercept and slope value of the regression curve (Figure 5B), the
values of Ka and n for the ligand–tyrosinase interaction were calculated based on Equation
(3). The Ka value of 1.64 × 105 L/mol achieved the order of magnitude of 105 L/mol,
indicating the strong binding of the ligand to the binding pocket of enzyme tyrosinase.
Moreover, the value of n was close to one, suggesting that there was a single binding site or
a single class of binding sites in tyrosinase for the given ligand.
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(tyrosinase–santalol).

2.6. Isothermal Titration Calorimetry (ITC)

Isothermal titration calorimetry (ITC) measurements were taken to know the binding
affinity of santalol with the purified tyrosinase. ITC is a widely used technique to deduce
the interactions between proteins and other molecules based on changes in energy when
the two moieties or molecules bind to one another. The baseline was also run with the
corresponding buffer for precise measurements and was later subtracted from the main data
to obtain the best fitted final figure using various models of sequential binding. Figure 6
depicts graphical outcomes of titrated santalol (ligand) with the protein tyrosinase. The top
panel in the figure gives the raw data in power versus time (heat per unit of time liberated
from every injection of the ligand with respect to the protein), while the lower panel in
the figure displays the raw data in power standardized to the amount of the injectant
(kcal mol−1) versus its molar ratio of santalol injections into the cell containing tyrosinase.
From the data, the thermodynamic binding parameters were calculated and can be seen
to show the change in enthalpy (∆H), the association constant (Ka), and the equilibrium
dissociation constant, and the change in free energy (∆G◦), which was estimated using the
equation given below. From Table 2, it can be observed that ∆G◦ is negative and signifies
the bi-molecular reaction is spontaneous, and the negative enthalpy change signifies the
process is exothermic in nature.
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responses owing to consecutive injections of santalol in the ample cell with tyrosinase are depicted in
upper section, while the lower section depicts integrated heats of interactions as the function of the
[santalol]/[tyrosinase] molar ration.

Table 2. Calorimetric binding parameters obtained by analysis of ITC measurements on interaction
of santalol with purified tyrosinase at 25 ◦C) and pH 6.8.

Thermodynamic
Parameters

(Units)
Step 1 Step 2 Step 3

Ka
(M−1) 7.89 × 105 ± 8.5 × 104 1.32 × 104 ± 1.7 × 103 2.49 × 103 ± 2.8 × 102

∆H
(cal mol−1) −2.595 × 103 −6.497 × 103 −4.16 × 104

∆S
(cal mol−1deg−1) 18.3 −2.94 −124

∆G◦

(cal mol−1) −8.048 × 103 ± 90.0 −5.62 × 103 ± 7.87 × 102 4.16 × 103 ± 90.0

2.7. Molecular Docking Analysis

The crystal structure of PPO3 (a tyrosinase enzyme) has two molecules which have
tetramer chains. The first is polyphenol oxidase, with tetramers A, B, C, and D chains having
2–392 residues, and the second, lectin-like fold protein, with tetramers E, F, G, H chains hav-
ing 9–150 residues. In order to acquire more in-depth information on the competitive inhi-
bition mechanism between santalol and PPO3 (tyrosinase) and using kojic acid as standard,
molecular docking studies were performed by using InstaDock [37]. In molecular docking,
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the compounds produced log files, where the affinity (kcal/mol) obtained and docked poses
for the discrete compounds analyzed. The experiential binding free energy for the santalol–
PPO3 tyrosinase complex was −5.802 kcal mol−1 (−24.283 k J mol−1), and the standard
kojic acid complex was −5.408 mol−1 (−22.608 k J mol−1). The binding free energy calcula-
tions show that santalol binds to PPO3 tyrosinase protein more firmly than kojic acid and
the detailed of energies calculation in mentioned in Supplementary Figure S5 and Table S1.
To discover the active sites of tyrosinase, look for neighboring Cu atom residues that are
involved in diverse catalytic activities, which are HIS61, HIS85, PHE90, HIS94, HIS259,
HIS263, PHE292, HIS295, and HIS296 and are shown in Figure 7A,B. In previous studies,
the cavity of tyrosinase comprises two sites: the peripheral and the active site; therefore,
it can be seen in Figure 7B that copper, as presented in the yellow sphere in Figure 8B,
is brown in color, and the docking studies determined that the Cu B site has the most
conspicuous binding in comparison to Cu A, which means it was more tightly bound to
the hydroxyl group.
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Figure 8. Molecular interaction studies showing the santalol–PPO3 tyrosinase complex. (A) The surface
model of santalol-PPO3 tyrosinase complex was in active pocket. (B) Cartoon representation of tyrosinase
protein complex with santalol showing the interacted residues in expanded form. (C) The 2D interaction
analysis of complex files was done by BIOVIA here, and the different color showing bonds are light
green—carbon hydrogen bond; green—hydrogen bond; and purple—Pi alkyl bond.
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Molecular interaction studies of santalol–PPO3 tyrosinase complex revealed it is closely
bound to the true conformation active sites and is most likely contained on the catalytic
sites, which is shown in Figure 8A–C. As shown in Figure 8A, the 3D surface representation
of the santalol–tyrosinase complex clearly shows the cavity of the binding pocket, whereas
Figure 8B shows the cartoon representation of the tyrosinase protein complex with santalol
and their interactions are clearly visible. However, in Figure 8C there is a 2D interaction
diagram which probes several interacting residues in expanded form for HIS61, HIS244,
VAL248, HIS259, ASN260, HIS263, PHE264, MET280, SER282, VAL283, and ALA286, which
were involved in hydrogen bonding and hydrophobic interactions. The hydroxyl group
of santalol was oriented towards copper (Cu) B, and it was near to MET280 and SER282,
which formed a hydrogen bond with 2.26 and 3.35 Å distance.

As far the label of santalol being “safe to use” is concerned [38], toxicity evalu-
ation of santalol by machine learning methods using a pkCSM server [39] were per-
formed (Supplementary Tables S1 and S2). All the predicted outcomes obtained fell under
the category of safe to use, which correlates with the origin of the natural source, i.e.,
sandalwood oil.

The thermodynamic binding parameters and number of binding sites were measured
using ITC, whereas molecular docking in support was carried out to know the binding
sites of the ligand on the protein and the amino acids involved in the bi-molecular reaction.
Coincidently, the ∆G◦ value obtained from the average value of each step of binding in
ITC was (−5.946 kcal/mol), which is very close to the one obtained after docking analysis
(−5.8 kcal·mol−1).

3. Materials and Methods
3.1. Materials

The target enzyme, tyrosinase was obtained from an edible mushroom (Agaricus bisporus).
The test compounds, santalol (CAS no. 77-42-9, 93% pure), dimethyl-sulfoxide (DMSO), and
3, 4-Dihydroxyphenylalanine (L-DOPA), were bought from Sigma-Aldrich. All other reagents
such as phosphate buffer, Tris buffer, sodium chloride, SDS, etc. of analytical grades were
purchased from Merck ltd (Bengaluru, India).

3.2. Methods
3.2.1. Extraction of the Enzyme Tyrosinase

The protocol of Haghbeen et al., with few alterations, was carried out for extraction of
mushroom tyrosinase [40]. The mushroom tissues were made into a paste with a blender.
The mushroom slurry so obtained was mixed with pre-prepared 200 mL of cold 50 mM
phosphate buffer (pH 6.8) using a proportion of 180–200 g of mushroom caps. To remove
various undesirable cellular products such as cellulose and cell debris, centrifugation
of homogenate for 30 min at 4200× g was performed to collect supernatant to be used
as a source of enzyme. The pellet obtained after centrifugation was again mixed with
cold phosphate buffer, left undisturbed on ice with intermittent shaking, and followed by
another round of centrifugation to yield more enzyme from the supernatant.

3.2.2. Ammonium Sulphate Precipitation with Dialysis

Ammonium sulphate precipitation was done by weighing the finely grounded ammo-
nium sulphate and then mixed in the extract and keep stirring. The mix was centrifuged at
8000× g for 20 min at 4 ◦C. Different degrees of precipitation were tried for enzyme tyrosi-
nase enzyme, i.e., 30%, 60%, 90%, and different precipitates were collected. Dialysis was
conducted for different precipitates against 50 mM potassium phosphate buffer (pH 6.8)
continuously for 24 h and the buffer was changed periodically after every 7–8 h [41]. The
fraction of protein obtained after last dialysis was chosen for the study [42,43].
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3.2.3. Purification of Enzyme Tyrosinase Using Chromatography

The purification of crude enzyme obtained after dialysis was exposed to a couple
of chromatographic techniques viz. ion-exchange chromatography and gel filtration to
obtain the protein sample in its highest purity. Firstly, crude protein extract was subject to
ion-exchange chromatography using the DEAE-cellulose column (20 × 1 cm). The prepared
sample having approximately 3 mL of aqueous protein (using 3 mL loop) was poured
into the DEAE-cellulose column. The column was first pre-equilibrated with potassium
phosphate buffer (50 mM, pH 6.8) and then washed with equilibration buffer. The protein
elutions were designed in the linear gradient of 0–500 mM NaCl and 0–100 mM potassium
phosphate buffer keeping a 0.5 mL per min flow rate. The eluted fraction of protein
obtained from the ion-exchange column was then applied to Superdex 200 pg column for
gel filtration. The column was pre-equilibrated with a 50 mM phosphate buffer of pH 6.8.
The protein was eluted in the equilibration buffer at a flow rate of 0.5 mL/min. The sample
collection was performed at 4 ◦C. The active fractions were pooled, dialyzed against the
50 mM phosphate buffer of pH 6.80, and concentrated [44]. The fractions (3 mL each)
were collected for SDS-PAGE. An SDS-PAGE of 12% separating gel and 4% stacking gel
were prepared by the method of Laemmli, 1970 [45]. The previously pooled samples were
prepared by adding 1% (w/v) SDS and then boiling for 5 min at 100 ◦C in Eppendorf tubes.
To visualize the purified protein, gel electrophoresis was run in Tris-HCl buffer of pH 8.4 at
80–100 V for 3 hr. After electrophoresis, the protein bands on the gel were made detectable
by staining with standard Coomassie Brilliant Blue. Samples showing the discrete band in
SDS-PAGE were assayed for tyrosinase activity [44,46].

3.2.4. Tyrosinase Activity Assay

The enzyme activity of tyrosinase was assessed by performing absorption spectroscopy
where the rate of conversion of L-DOPA (substrate) to dopachrome (a red-colored oxidized
product) was monitored. An aliquot containing purified tyrosinase enzyme was incubated
for 5 min at 25 ◦C, L-DOPA solution (4 mg/mL) as substrate was added to the reaction
mixture for measurement at 473 nm. After incubation for additional 5 min, the mixture was
shaken again, and a second reading was measured for 10 min. The change in absorbance ap-
peared to be proportional to enzyme concentration [47]. Zymography was also performed
in order to measure the enzymatic activity of the purified enzyme. A similar protocol was
followed to that explained by Wilkesman et al. [48].

3.2.5. Tyrosinase Inhibition Kinetics and UV-Visible Spectral Measurements

The anti-tyrosinase activity of santalol was measured using UV-Vis spectroscopy. The
stock solution of santalol (1 mM) was prepared using phosphate buffer solution. Absorption
measurements were carried out using a Jasco F-660 UV spectrometer in a 1.0 cm quartz
cuvette at room temperature. The change in absorbance at 473 nm was measured by
subsequently adding santalol but keeping protein concentration constant in each reading
as described in various reports [49,50]. We also monitored overall spectral changes before
and after addition of santalol in the purified tyrosinase enzyme at pH 6.8. Before every
measurement, all the samples were incubated for 5–10 min at RT and the spectra were
measured in the range of 240–340 nm [36].

3.2.6. Intrinsic Fluorescence Binding Study

The binding affinity of santalol towards purified protein tyrosinase was evaluated by
examining changes in the fluorescent intensities [51,52]. These quenching experiments were
performed on a spectrofluorometer (Model no. FP-6200). Slit widths of 10 nm and a quartz
cuvette with 1 cm path length were used for both emission and excitation, and temperatures
were set to 25 ◦C. Measurements were performed with 25 µM tyrosinase in 30 mM potassium
phosphate buffer of pH 6.8, with excitation wavelength set at 280 nm and emission spectra
recorded between 300 and 400 nm. Mathematical evaluation of fluorescence quenching data
was performed using Stern-Volmer and modified SternVolmer plots [51].
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3.2.7. Isothermal Titration Calorimetry (ITC)

To evaluate the thermodynamic parameters and binding interaction of tyrosinase with
ligand molecules in the buffer solution, ITC was used. The isothermal titration calorimetry
(ITC) is the excellent method to elucidate binding interaction and for that VP-ITC Calorimeter
(MicroCal, 22 Industrial Drive East, Northampton, MA, USA) apparatus was utilized. We
calibrated the instrument before carrying out the ITC experiment and also washed it with
double-distilled water twice to make the sample cell free of any unwanted impurity. The
experiments were carried out at 25 ◦Cat pH 6.8 using 25 mM phosphate buffer, and the
calorimeter cell was injected with a 30 µM of the protein solution (tyrosinase). Degassing
was performed for about 20–30 min. to ensure no air bubble is formed in the samples. This
step plays important role to avoid the unwanted foam formation in the sample wall of ITC
jacket. Therefore, standard procedure of degassing was employed using MicroCal system
installed with ITC instrument, based on vacuum processing, which removes air trapped in
form of small bubbles or foam in each sample of the protein and ligand. The ligand (santalol)
of 900 µM was titrated in the cell, and each ligand solution was loaded with 10-microliter
aliquots in each 260 s step through the syringe. The data was normalized against the results of
titration of santalol into tyrosinase and was evaluated by the MicroCal Origin ITC software
with a three-step sequential binding model as reported earlier [53–55], which could fit to
the data to generate the change in binding enthalpy (∆H), change in entropy (∆S), and the
association constant (Ka). By these primary measurements, secondary parameter changes in
Gibbs free energy (∆Go) can be calculated by using the relation:

∆G◦ = −RT ln Ka = ∆H − T∆S (3)

where R is the gas constant and T is the absolute temperature.
The heat of dilution of the ligand in phosphate buffer was subtracted from the titration

data. MicroCal Origin 8.0 was used to calculate the stoichiometry of association constant
(Ka), enthalpy change (∆H), and binding (n).

3.2.8. Molecular Docking Analysis

To obtain more comprehensive information about the inhibitory mechanism between
santalol and tyrosinase, molecular docking studies were performed by using Autodock
4.0. The three-dimensional (3D) crystal structure of Agaricus bisporus tyrosinase (PPO3) was
obtained from RCSB PDB databank PDB ID: 2Y9X (https://www.rcsb.org/structure/2Y9X/,
accessed on 1 October 2022). InstaDock [37] was used in a molecular docking learning
approach which prepares the receptor molecule pdb format into pdbqt with a simple click
[33105480; 34293449]. PPO3 (tyrosinase) includes two copper atoms that participate directly
involved in the numerous catalytic activities. The target ligands were docked on a predefined
catalytic site using PyMOL and AutoDock Vina to determine the 3D grids of the target protein
PPO3 [30521996; 19499576; 34469971]. The compound’s structure was derived from PubChem
database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 1 October 2022) in SDF format
for ligand preparation, where the energy minimization and PDBQT file conversion was done
via PyRx 0.8 [25618350]. Assortment of the binding affinities scores further switched on
the studies of the receptor–ligand interaction which interprets the interacted residues in the
catalytic sites. The conceivable dock conformations of 2D ligand–receptor interactions were
presented by using Discovery Studio [20401516; 33592201]. Further, binding analysis by using
the visualization approach was carried out to understand the binding pattern of the ligands
with a receptor. Then, further evaluation was carried out based on interactions to avoid false
positives and select examples highly interactive with the binding pocket of PPO3.

4. Conclusions

Tyrosinase is the major enzyme responsible for the synthesis of melanin pigment, but the
hyper-pigmentation associated with the enhanced activity of tyrosinase is highly undesirable.
It promotes unwanted food browning and dermatological disorders in humans. Thus, screen-
ing and elucidation of the potential inhibitor for this enzyme serve as good applications in

https://www.rcsb.org/structure/2Y9X/
https://pubchem.ncbi.nlm.nih.gov/
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commercial domains such as agriculture, medicine, the cosmetics industry, and other pharma-
cological sectors. Despite the presence of a wide array of reported tyrosinase inhibitors, very
few of them are non-toxic and effective at the same time. In this study, we propose a safe to
use phytochemical called santalol derived from sandalwood with anti-tyrosinase activity. A
plausible kinetic mechanism analyzed by UV-visible spectroscopy is presented where santalol
mediates competitive inhibition as it fits into the catalytic pocket of the enzyme and alters
its structure, which hinders the binding of the original substrate L-tyrosine. Furthermore,
the fluorescence quenching study and isothermal titration calorimetry results also suggested
that there is a very strong binding between tyrosinase and the test compound santalol, in
accordance with the molecular docking study. Our results indicate that santalol may serve as
a novel as well as natural anti-tyrosinase agent, although the clinical and industrial trials are
yet to be elucidated. Santalol has been used since ancient times for beautification purposes,
but a detailed mechanism of action of its inhibition has not been unveiled; therefore, this is the
first study which provides a possible mechanism for santalol’s action on tyrosinase activity
as well as the effect of the santalol compound on structural integrity. However, the findings
we attained here in this study need further investigation in pigment cell assays or in animal
models and in clinical studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248915/s1. Figure S1 (A): Elution profile on DEAE-
cellulose column chromatography. A linear gradient of NaCl was 0–100 mM. (B) Gel filtration profile
using Superdex 200 pg column showing large peak (peak I) of tyrosinase using concentration protein
fraction obtained after ion-exchange chromatography; Figure S2: Michaelis–Menten kinetics in
presence and absence of santalol as inhibitor (0–50 µM); Figure S3: native-PAGE profile (zymogram)
obtained after incubation in tyrosine substrate solution 5 mM for about 24 h indicating the formation
of dark brown melanin pigment (loaded in increasing concentration gradient from lane 1 to lane
5; Figure S4: Colorimetric assay performed in presence and absence of santalol and kojic acid;
Figure S5: 2D ligand interaction studies between (a) kojic acid–tyrosinase and (b) santalol–tyrosinase
complexes; Table S1: Detailed docking studies against Crystal structure of PPO3 (PDB ID: 2Y9X);
Table S2: Toxicity evaluation (Santalol) with machine learning methods using pkCSM server.
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