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Abstract: Bacterial biofilms are difficult to treat due to their resistance to traditional antibiotics.
Although photodynamic therapy (PDT) has made significant progress in biomedical applications,
most photosensitizers have poor water solubility and can thus aggregate in hydrophilic environments,
leading to the quenching of photosensitizing activity in PDT. Herein, a benzoselenadiazole-containing
ligand was designed and synthesized to construct the zirconium (IV)-based benzoselenadiazole-
doped metal-organic framework (Se-MOF). Characterizations revealed that Se-MOF is a type of
UiO-68 topological framework with regular crystallinity and high porosity. Compared to the MOF
without benzoselenadiazole, Se-MOF exhibited a higher 1O2 generation efficacy and could effec-
tively kill Staphylococcus aureus bacteria under visible-light irradiation. Importantly, in vitro biofilm
experiments confirmed that Se-MOF could efficiently inhibit the formation of bacteria biofilms
upon visible-light exposure. This study provides a promising strategy for developing MOF-based
PDT agents, facilitating their transformation into clinical photodynamic antibacterial applications.

Keywords: antimicrobial agents; bacteria; biofilms; irradiation; metal-organic frameworks

1. Introduction

In recent decades, bacterial resistance to antibiotics has occurred frequently due to
the misuse and overuse of antibiotics, leading to a failure to treat bacterial infectious dis-
eases [1–3]. In addition, most bacterial infections are related to the formation of biofilms.
Generally, bacteria can secrete extracellular polymeric substances such as lipids, proteins,
and polysaccharides and embed themselves to form a cohesive network containing multiple
cells [4,5]. Compared to separated bacteria, bacterial biofilms are 10–1000 times more resis-
tant to antibiotics [6,7]. Although numerous antibacterial agents and antiseptic techniques
have been proposed, there remains a pressing need for new antibacterial reagents that are
not dependent on antibiotics and can increase the efficiencies of killing pathogens resistant
to antibiotics and inhibiting the formation of bacterial biofilms [8–10].

Photodynamic therapy (PDT) has been widely studied as a promising treatment
strategy for bacteria ablation because it does not cause bacterial resistance to light treat-
ment [11–13]. The PDT process begins when a photosensitizer (PS) is activated by light of
the appropriate wavelength to transfer energy to molecular oxygen and produces highly
cytotoxic reactive oxygen species, primarily singlet oxygen (1O2), which damages the
membrane and DNA of bacterial cells and leads to cell death. To date, various organic PSs
have been developed, including porphyrins [14,15], phthalocyanines [16,17], and boron
dipyrromethene [18,19]. However, the use of organic PSs is often limited by their aggrega-
tion in physiological environments, leading to the loss of photosensitizing activity [20–23].
Inorganic nanomaterials can also act as PSs to kill bacteria under light irradiation but
exhibit severe toxic effects on specific mammalian cells [24–26].
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Metal-organic frameworks (MOFs) are a class of porous materials composed of in-
organic metals and coordinating organic ligands [27–29]. Recently, MOFs have been
widely explored for biomedical applications due to their unique properties, including
tunable composition and size, large surface area, and high porosity for the delivery of
various therapeutic agents [30–32]. When PSs are incorporated into MOF skeletons, various
photosensitive MOFs have been developed for photodynamic antibacterial applications.
For example, porphyrin-based MOFs have been explored in bacterial treatment, as they
can avoid the self-quenching of PSs and facilitate the diffusion of 1O2, thus improving the
PDT efficacy of photosensitive MOFs [33–35]. Although various photosensitive MOFs have
been studied for photodynamic antibacterial applications, there is still a need to develop
a simple strategy for preparing photosensitive MOFs, which can effectively inhibit the
formation of bacterial biofilms.

In this study, we report a strategy for preparing zirconium (IV)-based benzoselenadiazole-
doped MOFs with mixed ligands and demonstrate their effectiveness for the photodynamic
inactivation of bacteria and biofilms. The structure and preparation strategy of the MOFs
are illustrated in Figure 1. The dimethyl-substituted dicarboxylate ligand (mTPDC-H2) was
first synthesized to construct a topological UiO framework (Me-MOF). Furthermore, the
benzoselenadiazole-containing ligand (SeTPDC-H2) was synthesized and mixed with
mTPDC-H2 to form the benzoselenadiazole-doped MOF (Se-MOF). To endow MOFs with
photodynamic properties, the introduction of selenium atoms in the Se-MOF can effectively
exert the heavy-atom effect that enhances the intersystem crossing of the exciting energy.
In addition, the incorporation of benzoselenadiazole-containing ligands into MOF skeletons
can also avoid the aggregation of organic photosensitizers [36]. The photodynamic antibacterial
activity of Me-MOF and Se-MOF against Staphylococcus aureus (S. aureus) bacteria was studied.
Finally, the bacterial biofilm model was established to evaluate the inhibition effect of Me-MOF
and Se-MOF on biofilm formation under visible-light irradiation.

Figure 1. Schematic representation of the preparation for Me-MOF and Se-MOF.

2. Results and Discussion

The synthetic processes of mTPDC-H2 and SeTPDC-H2 are illustrated in the
Supplementary Materials (Schemes S1 and S2), and their chemical structure was determined
by 1H NMR spectroscopy (Figures S1 and S2). Using acetic acid (HAc) as an additive, the
mixture solution of ZrCl4 and mTPDC-H2 in N,N’-dimethylformamide (DMF) was heated
at 105 ◦C for 48 h. The resulting precipitation was collected by centrifugation and washed
three times with DMF to give Me-MOF. The morphology of Me-MOF was observed by
scanning electron microscopy (SEM). As shown in Figure 2A, Me-MOF has an octahedral
morphological structure, and its average diameter is approximately 1.2 µm. Furthermore,
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mTPDC-H2 and SeTPDC-H2 were mixed in a mole ratio of 4:1 to prepare the Se-MOF using
similar methods. It can be seen in Figure 2B that there was no difference in morphology
between Me-MOF and Se-MOF. Furthermore, the porous structure on the surface of the
MOF was observed in the enlarged SEM images of both samples.

Figure 2. SEM images of (A) Me-MOF and (B) Se-MOF. (C) FT−IR spectra of (a) mTCDP-H2,
(b) SeTPDC-H2, (c) Me-MOF, and (d) Se-MOF. (D) XRD patterns of the Me-MOF and Se-MOF.

The formation of MOF structure was confirmed using Fourier transform infrared
(FT-IR) spectroscopy. The FT-IR spectra of Me-MOF and Se-MOF were measured and
compared with those of mTPDC-H2 and SeTPDC-H2 (Figure 2C). For mTPDC-H2 and
SeTPDC-H2, there was a characteristic peak at 1690 cm−1 due to the stretching vibrations
of the carboxyl C=O group. However, the intensity of the peak at 1690 cm−1 decreases
significantly and two new peaks at 1540 and 1417 cm−1 were observed in the FT-IR spectra
of Me-MOF and Se-MOF, indicating the formation of a coordination bond between the
Zr4+ and carboxyl groups [37]. Powder X-ray diffraction (XRD) patterns of Me-MOF and
Se-MOF are shown in Figure 2D. Three characteristic peaks at 2θ = 4.54◦, 5.24◦, and 9.16◦

were observed for two MOF samples, and their relative intensity was consistent with
the simulated pattern from single-crystal data, confirming their regular crystallinity and
UiO-68 topological framework [38,39].

The nitrogen adsorption/desorption isotherms were measured to verify the porous
feature of the MOFs. As shown in Figure 3A, a typical type I reversible isotherm was ob-
served for the Me-MOF and Se-MOF. According to Brunauer-Emmett-Teller (BET) analysis,
Me-MOF and Se-MOF have surface areas of 2991 and 2882 m2 g−1, respectively. As shown
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in Figure 3B, an average pore diameter of ~2 nm was calculated by Barret-Joyner-Halenda
(BJH) analysis. Next, two MOF samples were dispersed in DMF, and fluorescence spectra
were measured at room temperature. Compared to Me-MOF, Se-MOF has a longer exci-
tation wavelength in the range of 400–475 nm (Figure 3C). Furthermore, the maximum
fluorescence emission of Se-MOF was at 523 nm, but no fluorescence was observed for
Me-MOF (Figure 3D).

Figure 3. (A) Nitrogen sorption isotherms and (B) Barrett−Joyner−Halenda pore distribution of the
Me-MOF and Se-MOF. (C) Excitation spectra (λem = 522 nm) and (D) emission spectra (λex = 390 nm)
of the Me-MOF and Se-MOF dispersed in DMF. (E) UV−vis absorption spectra of mTPDC-H2 and
SeTPDC-H2 in DMF. (F) ESR spectra of a PBS solution (pH 7.4) containing Me-MOF or Se-MOF before
and after light irradiation (450 nm, 3 mW cm−2).
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UV-vis absorption spectra of mTPDC-H2 and SeTPDC-H2 in DMF were also recorded
(Figure 3E). The results show that SeTPDC-H2 has both UV and visible light absorption
(260–470 nm), while mTPDC-H2 only has UV absorption (260–330 nm). Thus, a blue
light-emitting diode (LED) lamp (450 nm) was used as the light source to stimulate the
photoactivity of Se-MOF in the following experiments. Next, electron spin resonance (ESR)
was used to evaluate the efficiency of 1O2 generation for Me-MOF and Se-MOF under
450 nm light irradiation with a density of 3 mW cm−2 for 5 min. First, two MOF samples
were dispersed in phosphate-buffered saline (PBS) solutions (pH 7.4) at a concentration of
1.0 mg mL−1, and 2,2,6,6-tetramethylpiperidine (TEMP) was used to monitor
1O2 generation before and after irradiation. As shown in Figure 3F, no noticeable change in
the ESR signal was observed for Me-MOF after irradiation, which should be attributed to
the fact that mTPDC-H2 has no absorption at 450 nm. However, a much stronger character-
istic signal of 1O2 was observed in the ESR spectra of Se-MOF under light irradiation. These
results show that incorporating SeTPDC-H2 into the MOF skeletons enables Se-MOF to
generate 1O2 under 450 nm light irradiation, indicating the application potential of Se-MOF
as a photodynamic agent.

The photodynamic antibacterial activity of Me-MOF and Se-MOF against S. aureus
was evaluated using a two-fold serial dilution method [40–42]. The bacteria were incubated
with different concentrations of MOF materials, followed by irradiation with a LED light
(450 nm, 3 mW cm−2) for 20 min. After light irradiation was repeated three times, the
bacterial suspension was diluted and cultured on Luria-Bertani (LB) agar plates. As shown
in the digital photographs (Figure 4A), the number of bacteria was calculated according
to ImageJ software and analyzed for comparison. As shown in Figure 4B, the results
showed that the photoactivity of Se-MOF was significantly higher than that of Me-MOF
under identical conditions. This outcome should be because Se-MOF produced 1O2 under
450 nm light irradiation, thus causing more significant photodamage to bacterial cells.
In addition, the dark toxicity of Me-MOF and Se-MOF against S. aureus was also studied.
In the absence of light, no differences in bacterial viability were observed between Me-MOF
and Se-MOF (Figure 4C). Thus, these results further demonstrated the potential of Se-MOF
for antibacterial PDT applications.

The bacterial biofilm model was established to investigate the inhibition effect of
Se-MOF on biofilm formation under visible light irradiation. Both PBS and Me-MOF were
used as control samples. Since Me-MOF has the same physical and chemical properties
as Se-MOF, Me-MOF was selected as the control to avoid interference by other factors
(controlled release of antibacterial components, sizes, morphologies, surface charges, and
interaction with the bacterial cell wall) on bactericidal performance [43,44]. First, S. aureus
bacteria were incubated in the medium containing Me-MOF or Se-MOF at an equiva-
lent concentration of 50 µg mL−1. After being irradiated three times with a LED light
(450 nm, 3 mW cm−2) for 20 min, the bacterial suspension was cultured on 96-well plates.
The biofilm inhibition efficiency of Se-MOF at different time points was studied by crystal
violet (CV) staining. Representative images of the plate are presented in Figure 5A and the
optical density (OD) at 590 nm was measured using a microplate reader. The data indicated
that Me-MOF has no inhibition effect on the biofilms of bacteria under 450 nm light irradi-
ation. However, Se-MOF significantly inhibited the formation of bacteria biofilms under
identical conditions. As the 1O2 produced by Se-MOF inhibited bacterial reproduction, it
destroyed bacterial aggregation to form biofilms. Therefore, these results confirmed that
Se-MOF could be used as photosensitive MOFs for the photodynamic killing of bacteria
and inhibition of biofilm formation.
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Figure 4. (A) Representative photographs of S. aureus colonies in LB agar plates after being incubated
with different concentrations of Me-MOF or Se-MOF, followed by irradiation three times with a LED
light (450 nm, 3 mW cm−2) for 20 min or incubation in the dark. (B,C) Percentage viability of bacteria
S. aureus after different treatments, followed by light irradiation (B) or incubation in the dark (C).
Data are presented as mean ± standard deviation (n = 3; ** p < 0.01).

Figure 5. (A) Representative photographs of CV−stained biofilms after being incubated with
Me-MOF or Se-MOF, followed by irradiation three times with LED light (450 nm, 3 mW cm−2)
for 20 min. (B) Quantification of the OD measurement from the CV−stained biofilms in (A). Data are
presented as mean ± standard deviation (n = 3; * p < 0.05 and ** p < 0.01).
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3. Materials and Methods
3.1. Synthesis of mTPDC-H2 and SeTPDC-H2

The synthesis procedures are described in the Supplementary Materials.

3.2. Preparation of Me-MOF

mTPDC-H2 (200 mg, 0.58 mmol) was dissolved in DMF (100 mL), and then ZrCl4
(150 mg, 0.64 mmol) and acetic acid (3 mL, 0.05 mmol) were added to the solution. The
mixture was heated to 105 ◦C and stirred for 48 h. Then, the crude product was collected by
centrifugation and washed three times with DMF (100 mL) and ethanol (100 mL), respectively.
Finally, the sample was dried under reduced pressure and denoted as Me-MOF.

3.3. Preparation of Se-MOF

mTPDC-H2 (140 mg, 0.4 mmol) and SeTPDC-H2 (44 mg, 0.1 mmol) were dissolved in
DMF (100 mL). After adding ZrCl4 (120 mg, 0.51 mmol) and acetic acid (3 mL, 0.05 mmol)
to the solution, the mixture was heated to 105 ◦C and stirred for 48 h. Then, the crude
product was collected by centrifugation and washed three times with DMF (100 mL) and
ethanol (100 mL), respectively. Finally, the sample was dried under reduced pressure and
denoted as Se-MOF.

3.4. Antibacterial Assay

Monoclonal colonies of S. aureus grown in the LB agar plate were transferred to
an LB culture medium (10 mL) and grown at 37 ◦C for 12 h. After the bacterial suspen-
sion was diluted to 105 CFU/mL (OD600nm = 0.001), 100 µL of the diluted bacterial suspension
was incubated with different concentrations of Me-MOF or Se-MOF in a 96-well plate. The plate
was irradiated with a blue LED light (450 nm, 3 mW cm−2) for 20 min, and the irradiation was
repeated three times. After the bacteria were further incubated at 37 ◦C for 12 h, the bacterial
solution was diluted 10−5 times and 100 µL of the diluted bacterial solution was streaked on LB
agar plates using the spread plate method. After the plates were cultured for 12 h, the number
of colony-forming units was counted by ImageJ software.

3.5. CV Staining of Bacteria Biofilms

The bacterial suspension was diluted to 107 CFU/mL (OD600nm = 0.1), and 100 µL of
the diluted bacterial suspension was incubated with Me-MOF or Se-MOF at an equivalent
concentration of 50 µg mL−1 in a 96-well plate. The plate was irradiated with a blue LED
light (450 nm, 3 mW cm−2) for 20 min, and the irradiation was repeated three times. At
different times of incubation (6, 12, and 24 h), the biofilms were observed and quantified
using a CV staining method [45–47]. The biofilms were fixed with 4.0% paraformaldehyde
and then stained with an aqueous CV solution (0.1% w/v) for 30 min. After removal of
the CV solution, the stained biofilms were washed three times with PBS (pH 7.4) and then
dissolved in an ethanol solution (95% v/v). Finally, the optical density at 590 nm (OD590nm)
was measured using a microplate reader (Varioskan LUX, ThermoFisher SCIENTIFIC,
Waltham, MA, USA) to determine biofilm biomass.

4. Conclusions

In summary, we have synthesized Se-MOF as an antibacterial material for the pho-
todynamic inactivation of bacteria and biofilms. The obtained Se-MOF is a topological
UiO-68 framework with a diameter of ~1.2 µm. The results demonstrated that incorporating
benzoselenadiazole-containing ligands into MOF skeletons endowed them with high effi-
ciency to produce 1O2 under 450 nm light irradiation, causing photodynamic inactivation
of S. aureus bacteria. In particular, Se-MOF could efficiently inhibit the formation of bacte-
rial biofilms upon visible-light irradiation. Thus, Se-MOF may be promising MOF-based
PDT agents for the photodynamic killing of bacteria and inhibition of biofilm formation.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27248908/s1, Experimental details for the synthesis of
mTPDC-H2 and SeTPDC-H2; Schemes S1 and S2: synthetic route of mTPDC-H2 and SeTPDC-H2;
Figures S1 and S2: 1H NMR and 13C NMR spectra of mTPDC-H2; Figures S3 and S4: 1H NMR and
13C NMR spectra of SeTPDC-H2.
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