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Abstract: Materials with outstanding mechanical properties and excellent dielectric properties are
increasingly favored in the microelectronics industry. The application of polyimide (PI) in the field of
microelectronics is limited because of the fact that PI with excellent mechanical properties does not
have special features in the dielectric properties. In this work, PI composite films with high dielectric
properties and excellent mechanical properties are fabricated by in-situ reduction of fluorinated
graphene (FG) in polyamide acid (PAA) composites. The dielectric permittivity of pure PI is 3.47 and
the maximum energy storage density is 0.664 J/cm3 at 100 Hz, while the dielectric permittivity of the
PI composite films reaches 235.74 under the same conditions, a 68-times increase compared to the
pure PI, and the maximum energy storage density is 5.651, a 9-times increase compared to the pure
PI films. This method not only solves the problem of the aggregation of the filler particles in the PI
matrix and maintains the intrinsic excellent mechanical properties of the PI, but also significantly
improves the dielectric properties of the PI.

Keywords: polyimide; fluorinated graphene; composites; dielectric properties

1. Introduction

With the progress of science and technology and technological innovation, electronic
components are developing towards integration, miniaturization and high speed [1–4].
Although traditional ceramic materials have excellent dielectric properties, they struggle to
meet the new demands of the development of the electronics industry due to their great
brittleness, high density, severe losses and difficulty to process [5–7]. Polymer materi-
als have the advantages of excellent flexibility, lightweight, tensile resistance and good
processability [8–15], but their dielectric permittivity is generally low [16,17]. Therefore,
polymer-matrix dielectric composites are widely studied and applied, as they can combine
the excellent properties of each component [18–24].

Polyimide (PI) with a large number of imide rings in the main chain can be ob-
tained by poly-condensation and imidization of equimolar amounts of dianhydride and
diamine [25,26]. PI possesses excellent mechanical, thermal and optical properties, as well
as good processability, and can therefore be used as the matrix for high dielectric compos-
ites [27]. The dielectric properties of PI matrix composites depend mainly on the type and
dispersion of the filler. When inorganic ceramic particles, such as BaTiO3 and CaCu3Ti4O12
(CCTO) are used as filler, the PI composites have high dielectric permittivity, low dielectric
loss and the dielectric properties of the composites are less dependent on temperature and
frequency, but there are problems with inhomogeneous filler dispersion and severe loss of
the mechanical properties of the PI [27–32]. With organic fillers, such as polyvinylidene
fluoride (PVDF) and polysulfone (PSF), the resulting materials possess better distribution
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of each component, but the improvement of the dielectric properties is not obvious [33–36].
When conductive materials, such as carbon nanotubes (CNTs), graphene oxide (GO) and
Ag are used as filler, better enhancement can be obtained at lower ratios, but there is
difficulty in dispersing the filler particles and the dielectric loss of the composite increases
significantly near the percolation threshold [37–44]. Therefore, it is still highly desired to
search for good fillers, which can homogeneously disperse into the PI matrix, giving rise to
the enhancement of both dielectric properties and mechanical properties.

Graphene is a carbon material with a single layer of two-dimensional honeycomb
crystal structure with tightly stacked carbon atoms connected by SP2 hybridization, and has
excellent properties, such as high electrical conductivity, high strength and high thermal
conductivity [45,46]. Owing to its wide range of applications in physics, electronics and
materials science, graphene is considered as a revolutionary material for the future [47,48].
Due to the huge van der Waals force between graphene sheets, they tend to be combined
with each other and are difficult to be dispersed in polymers [49,50]. Fluorinated graphene
(FG) is a new type of carbon material formed by fluorinating some or all of the carbon atoms
in the graphene sheets [51,52]. As a new derivative of graphene, FG maintains the high
strength properties of graphene, while introducing novel interfacial and physicochemical
properties, such as reduced surface energy and enhanced hydrophobicity, arising from the
introduction of fluorine atoms [53–55]. At the same time, FG also exhibits excellent proper-
ties, such as high temperature resistance, wear resistance and corrosion protection [56,57].
Due to the low polarization rate and the strong electronegativity of the fluorine atoms, the
surface energy between the carbon sheets can be reduced, resulting in an easier dispersion
of FG in the polymer.

In this work, FG is used as a filler to prepare PI composite films with ultra-high
dielectric permittivity and low dielectric loss. PI composites are fabricated by in-situ
reduction of FG in PAA composites. Compared to other types of PI composite films, this
method not only solves the problem of aggregation of the filler particles in the PI matrix
and maintains the intrinsic excellent mechanical properties of the PI, but also significantly
improves the dielectric properties of the PI. Dispersed in the PI matrix uniformly, graphene
sheets with excellent electrical conductivity can form a large number of micro-capacitance
structures with each other, thus significantly improving the dielectric properties of the PI
composite films.

2. Results and Discussion
2.1. Characterization of PI Composite Films

Inorganic materials added to PI as fillers often have the problem of inhomogeneous
dispersion, causing a great loss of mechanical properties. The problem of inhomogeneous
filler dispersion was solved by in-situ reduction of FG in PAA/FG–PEG composites. As
shown in Figure 1a, the surface of the pure PI is smooth. When the FG–PEG addition ratio
was 8 wt. %, the surfaces of the PI/rFG composite films were smooth compared to the
pure PI and there was no accumulation of filler particle (Figure 1b). Other proportions of
PI/rFG also had no accumulation of filler particle. As shown in Figure 2, FG was relatively
chemically stable and remained stable at 360 ◦C. The prepared FG–PEG–DMAc mixture was
annealed at different temperatures. When the temperature exceeded 250 ◦C, the absorption
peak disappeared at 1220 cm−1 (C-F) and appeared at 1630 cm−1 (C=C), indicating that the
FG was reduced. Figure 1c–f clearly shows that the composites contained elements of C,
N, O and F. The elemental analysis and SEM images of the FG are shown in Figure 2. FG
with a lamellar structure contains only two elements, C (49.12 wt. % or 7.255 g/mol) and
F (50.88 wt. % or 7.515 g/mol). Without the addition of PEG, the PI/FG still possessed a
relatively higher F amount of 2.03 wt. %, while the amount of F in the composite was only
0.25 wt. % when using PEG as a reducing agent (Figure 1g,h). The significant decrease of F
content in the composite film indicates the reduction of FG to rFG.
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Figure 1. The characterization of PI composite films. (a) SEM image of the interface of the PI films;
(b) SEM image of the interface of the PI/rFG-8 wt. % composite films; (c–f) element mappings of the
PI/rFG-8% composite films; (g) the EDS of the PI/rFG-8% composite films; (h) the EDS of the PI/FG
composite films with 8 wt. % FG of added without PEG.

The properties of the PI composite films are related to various factors, such as the
degree of imidization, the dispersion of the filler particles, the components, etc. The
process of forming PI by dehydrating PAA into a ring is called imidization. As shown in
Figure 2, the carboxyl (1709 cm−1) and amide (1661 cm−1) absorption peaks in PAA are
transformed into asymmetric stretching vibration peaks (1776 cm−1), symmetric stretching
vibration peaks (1717 cm−1) and bending vibration absorption peaks (740 cm−1) of the
imide structure, indicating that the PAA has been fully formed into PI. The characteristic
absorption peak of graphene in the PI/rFG composite films is not obvious due to the
influence of PI.
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Figure 2. The characterization of the FG, PEG–FG and PI composite films. (a,b) the SEM image of the
FG; (c) the EDS of the FG; (d) the FT-IR spectra of the PAA, PI, PI/FG-8% and PI/rFG-8% composite
films; (e) the FT-IR spectra of graphene, FG–PEG and FG.

2.2. Thermal Properties and Mechanical Properties

The thermal performance of the PI/rFG composite films with high dielectric properties
is an important requirement in practical applications. In this work, the thermal properties
of the PI/rFG composite films were analyzed by TGA and DMA. As shown in Figure 3a,b
and Table 1, the pure PI started to decompose at 450 ◦C, decomposing by 5% at 562.3 ◦C
and remaining at 61.27% at 800 ◦C. Compared to the pure PI, the thermal performance of
the PI/rFG composite films is slightly reduced. During the imidization process, the PEG
inside the PI did not completely escape. Along with the increasing temperature, the PEG
will continue to decompose and escape from the PI matrix, resulting in a slight decrease
in the heat resistance of the PI. Figure 4b and Table 1 show the DMA curves and the glass
transition temperature of the PI/rFG composite films with different proportions of FG–PEG
added in the PI matrix. The glass transition temperature of the pure PI was measured as
284.1 ◦C. With 8 wt. % proportion of FG–PEG added in the PI matrix, the glass transition
temperature increased to 294.5 ◦C. Graphene in the PI matrix can effectively block the
movement of PI molecular chains, thus increasing the glass transition temperature of the PI.
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Figure 3. The thermal property and mechanical properties of the PI/rFG composite films. (a)
Thermogravimetric analysis (TGA); (b) dynamic mechanical analysis (DMA); (c) stress–strain curve
of the PI/rFG composite films; (d) modulus corresponding to the rFG content.

Table 1. The thermal and mechanical properties of the PI/rFG composite films.

Sample T-5%
(◦C) Residue-800 ◦C Tg (◦C) Stress

(MPa) Strain Modulus
(GPa)

PI 562.3 61.27% 284.1 159.7 8.2% 3.6
PI/rFG-0.5% 560.3 60.54% 284.5 168.4 8.1% 3.8
PI/rFG-1% 557.1 59.85% 285.3 183.5 7.4% 4.4

PI/rFG-1.5% 555.5 59.06% 287.4 178.5 6.9% 4.8
PI/rFG-2% 550.7 59.36% 288.7 175.9 5.4% 5.5
PI/rFG-3% 545.5 59.13% 289.3 170.2 4.6% 5.8
PI/rFG-4% 541.3 58.75% 291.1 155.3 3.6% 6.1
PI/rFG-6% 534.5 58.27% 293.2 145.8 3.1% 6.5
PI/rFG-8% 530.1 57.88% 294.5 130.1 2.3% 7.3

In addition to excellent thermal properties, PI composites also need to have superior
mechanical properties. As can be seen from Figure 3c,d and Table 1, the mechanical
properties of PI are promoted. With the increasing proportion of rFG in the PI, the tensile
strength of the PI/rFG composite films increases at first and then decreases. The tensile
strength of pure PI was measured to be 159.7 MPa, and when the proportion of FG–PEG
was added in the amount of 1 wt. %, the tensile strength of the PI composite films reached
a maximum of 183.5 MPa, which was 15% higher than the pure PI, and the tensile strength
of the PI/rFG composite films would gradually decrease if the proportion of FG–PEG
added continued to increase. Moreover, the modulus of the PI/rFG films also improved in
correlation with the proportion of FG–PEG added. PI/rFG composite films maintain a good
mechanical strength and flexibility. By in-situ reduction of FG in the PAA composites, rFG
is uniformly distributed in the PI matrix. When the PI/rFG composite films are stressed
by external forces, the interaction between the rFG and PI chain segments will lead to
an increase in tensile strength. When the proportion of rFG is too high, the rFG will
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agglomerate in the PI matrix, resulting in uneven stress loading in the films, so the tensile
strength and elongation at the break of the PI composite films are reduced.
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Figure 4. Dielectric property of PI/rFG composites films. (a) Curves of dielectric permittivity of the
PI/rFG composite films with frequency; (b) curves of dielectric loss of the PI/rFG composite films
with frequency; (c) curves of conductivity of the PI/rFG composite films with frequency; (d) dielectric
permittivity and dielectric loss of the various PI/rFG composite films at 100Hz; (e) the Weibull
distribution of dielectric breakdown strength of the PI/rFG composite films; (f) energy storage
density and breakdown strength of the PI/rFG composite films.

2.3. Dielectric Properties

The dielectric permittivity, dielectric loss and conductivity of the PI/rFG composite
films are shown in Figure 4a–c and Table 2. As for PI, the dielectric permittivity at 100 Hz is
3.47 and the dielectric loss is 0.009. Furthermore, Figure 4d demonstrates the positive corre-
lation between the dielectric permittivity of the PI/rFG composite films and the addition of
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FG–PEG. With 8 wt. % of FG–PEG added, the dielectric permittivity of the PI/rFG com-
posite films reaches 235.74, which is 68 times higher than the pure PI, while the dielectric
loss remains at 0.534. This result could be attributed to the fact that the dielectric permit-
tivity of the dielectric material is closely related to the polarization. Graphene with good
electrical conductivity is embedded in the PI matrix, forming numerous micro-capacitor
structures. A strong polarization effect is formed between the numerous micro-capacitor
structures under the action of the electric field. The increase in interfacial polarization due
to the higher proportion of FG–PEG added leads to a corresponding rise in the dielectric
permittivity of the PI/rFG composite films. Because of polarization, charged particles can
overcome the energy loss caused by thermal motion under the influence of an electric field
force, so there is a corresponding increase in dielectric loss. In different proportions of rFG,
because the interface polarization occupies the main position in the low frequency band
and the directional polarization occupies the main position in the high frequency band, the
change trend for dielectric permittivity and dielectric loss of the PI/rFG composite films
with frequency are different [58].

Table 2. The dielectric properties of various PI composite films.

Filler Filler
Content

Dielectric
Permittivity

Dielectric
Loss

Breakdown
Strength
(kV/mm)

Energy Storage
Density (J/cm3) Ref.

PSF 40 wt. % 6.40 0.015 152 0.64 [33]
PVDF 50 wt. % 8.85 0.018 - - [34]
MOF 20% wt. % 8.80 0.034 208 0.39 [31]

Ag@SiO2 50 vol. % 11.70 0.015 - - [39]
BaTiO3 50 vol. % 29.66 0.009 59.5 0.465 [28]
LiTFSI 30 vol. % 38.18 1.600 42 0.30 [59]

GO 1 wt. % 68.00 0.600 - - [60]
MWCNTs 20 vol. % 217 1.580 45 1.957 [38]

CCTO 16.4 vol. % 171.00 0.450 - - [27]

rFG

0 vol. % 3.47 0.009 210 0.664

This
work

0.5% 3.77 0.019 200 0.663
1% 4.06 0.028 185 0.616

1.5% 4.19 0.035 160 0.476
2% 5.11 0.037 140 0.543
3% 96.50 0.040 115 5.651
4% 136.54 0.052 90 4.897
6% 171.02 0.410 65 3.198
8% 235.74 0.534 40 1.648

The breakdown strength of the PI/rFG composite films was analyzed through the
Weibull distribution as shown in Figure 4e. A total of 20 points per film were tested
separately for electrical breakdown and then calculated using Equations (1)–(3)

P = 1 − exp

[
−
(

E
E0

)β
]

(1)

Pi =
i − 0.50
n + 0.25

(2)

log[−In(1 − P)]= βlogE − βlogE0 (3)

where E is the measured breakdown strength; P is the cumulative probability of the
electrical failure; β is the shape parameter describing the scatter of the data; i is the number
of ordering E from the smallest to the largest; and n is the number of all samples. The
breakdown strength of the PI/rFG composite films reduces along with the proportion
of rFG increasing. In the effect of a strong electric field, rFG and residual PEG in the PI
composite films leads to a decrease in the breakdown strength.
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The energy storage density of the PI composite film is calculated by the dielectric
permittivity and dielectric loss (W = 0.5
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0 = 8.854 × 10 −12 F/m). As Figure 4f
and Table 2 show, the energy storage density of the PI/rFG-8% composite films reached
a maximum value of 5.651, which is 9 times higher than the pure PI films (0.664). With
different particles as fillers, the dielectric properties of PI could be adjusted to various
values in a wide range. In contrast, with FG–PEG as fillers, the dielectric properties of PI
are significantly improved, as shown in Table 2.

3. Experimental
3.1. Materials

Biphenyltetracarboxylic dianhydride (BPDA, 99.5%, Chinatech Chemical Co., Ltd.,
Tianjin, China), oxydianiline (ODA, 99.0%, Chinatech Chemical Co., Ltd., Tianjin, China),
dimethylacetamide (DMAc, AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China),
FG (F/C = 1.05, Hubei ZHUOXI Fluorochemical Co., Ltd., Hubei, China), and polyethylene
glycol (PEG, MW: 400, AR, Wuxi Yatai United Chemical Co., Ltd., Shanghai, China).

3.2. Preparation of FG/PI Composite Films

A total of 2 g of FG and 8 g of PEG were added into 90 g of DMAc, and then the
mixture was sonicated to achieve the uniform dispersion of FG (300 W, 30 min). PEG was
added to promote the dispersion of FG in DMAc and reduce the FG to graphene (rFG). The
PAA was obtained by reacting equimolar amounts of BPDA and ODA at −5 ◦C for 10 h.
The FG–PEG solution and PAA were mixed together with different contents by magnetic
stirring (1 h). After coating, all the casting films were thermally treated at 335 ◦C for 20 min
to obtain PI/rFG films. As a comparison, pure PI films and PI/FG films without PEG were
prepared simultaneously. According to the weight contents of the FG in PAA, the resultant
composite film samples were named as PI, PI/rFG-0.5%, PI/rFG-1%, PI/rFG-1.5%, PI/rFG-
2%, PI/rFG-3%, PI/rFG-4%, PI/rFG-6% and PI/rFG-8%, respectively. All the preparation
processes are shown in Scheme 1.
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3.3. Characterizations

The morphology was characterized by scanning electron microscopy (SEM, TESCAN
CLARA, Liestal, Switzerland). An energy dispersive spectrometer (EDS, TESCAN CLARA,
Liestal, Switzerland) was used to analyze the elements. The molecular structure was
characterized by Fourier transform infrared spectra (FT-IR, TENSOR-27, China) at the wave
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number ranges from 400 cm−1 to 2800 cm−1. An LCR digital bridge (TH2819A, China)
was applied to test the dielectric properties. In order to avoid undesired resistance and
capacitance, all of the samples were adhered with silver conductive (7.0 cm × 7.8 cm)
on two sides. The thermal properties were characterized by thermogravimetric analysis
(TGA, TGA-55, Perkin-Elmer, Waltham, MA, USA) under a N2 atmosphere at a heating
rate of 10 ◦C/min. Dynamic mechanical analysis (DMA, PerkinElmer Diamond, Perkin-
Elmer, USA) was used to characterize the glass transition temperature of the PI composite
films under a normal air atmosphere at a heating rate of 10 ◦C/min. The mechanical
properties were analyzed by an electronic testing machine (CMT8102, Shenzhen, China)
with a stretching rate of 10 mm/min.

4. Conclusions

PI with excellent mechanical properties and heat resistance has been widely applied
in the field of microelectronics, and in order to correspond to the rapid development of
the industry, PI/rFG composite films with ultra-high dielectric properties were fabricated
by introducing graphene into the PI matrix through the method of in-situ reduction of
FG. PI/rFG composite films significantly improved the dielectric properties of PI without
losing mechanical properties and thermal properties. The dielectric permittivity of pure PI
is 3.47 and the maximum energy storage density is 0.664 J/cm3. The maximum dielectric
permittivity of the PI composite films in the same condition is 235.74, which is 68 times
higher than pure PI, and the energy storage density is 5.651, which is 9 times higher than
that of pure PI films.
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