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Abstract: Facing the explosive growth of data, a number of new micro-nano devices with simple
structure, low power consumption, and size scalability have emerged in recent years, such as
neuromorphic computing based on memristor. The selection of resistive switching layer materials
is extremely important for fabricating of high performance memristors. As an organic-inorganic
hybrid material, metal-organic frameworks (MOFs) have the advantages of both inorganic and
organic materials, which makes the memristors using it as a resistive switching layer show the
characteristics of fast erasing speed, outstanding cycling stability, conspicuous mechanical flexibility,
good biocompatibility, etc. Herein, the recent advances of MOFs-based memristors in materials,
devices, and applications are summarized, especially the potential applications of MOFs-based
memristors in data storage and neuromorphic computing. There also are discussions and analyses of
the challenges of the current research to provide valuable insights for the development of MOFs-based
memristors.

Keywords: metal–organic frameworks; memristor; data storage; neuromorphic computing

1. Introduction

The rapid development of cloud computing, integrated circuits, and 5G networks
has driven derivative applications, such as autonomous driving, the Internet of Things,
and virtual reality, but also brings a challenge of how to store and compute the massive
data [1,2]. According to the report by International Data Corporation, a world-renowned
data company, the annual data generated worldwide will increase from 64 ZB in 2021 to
175 ZB in 2025 [3]. To the traditional von Neumann computing architecture that separates
the storage and computation, the data will be frequently transmitted and visited between
memory and processors during processing the massive data, which leading to a serious
energy consumption [4]. The computing power and efficiency of traditional devices depend
on the density of the integrated circuits (IC). However, as the minimum fabrication size
of complementary metal oxide semiconductor (CMOS) devices gradually approaches the
physical limit, the development of IC falls into the bottleneck period of Moore’s Law [5].
It means that the “storage wall” and “bandwidth wall” of the von Neumann architecture
make it unable to cope with the challenge from massive data [6,7]. There is an urgent need
to develop a series of post-Moore era’s storage and computing devices, which has simple
structure, low power consumption, and size scalability [8].

As one of the candidates for high-performance post-Moore devices, memristors have
not only been systematically studied in terms of mechanism principles, fabrication technol-
ogy, neural networks, circuit design, etc., but also have a certain market share in commercial

Molecules 2022, 27, 8888. https://doi.org/10.3390/molecules27248888 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27248888
https://doi.org/10.3390/molecules27248888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27248888
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27248888?type=check_update&version=1


Molecules 2022, 27, 8888 2 of 45

applications of memory, hardware security, computers, etc. Taking memory as an example,
the market forecasts memristive memory to reach USD 5.6 billion by 2026, accounting
for 2% of the market share. Memristor is also called resistive random-access memory
(RRAM) [9], which represents the relationship of magnetic flux to electric charge [10]. It is
a non-volatile two-terminal device with simple structure [11–13], i.e., electrode/resistive
switching layer/electrode sandwich stack. When the voltage applied between the two
electrodes reaches the set voltage and reset voltage, respectively, the resistance value of
the switching layer will reversibly switch between a high resistance state (HRS) and a low
resistance state (LRS) [14,15], which is several orders of magnitude smaller than HRS. Im-
portantly, lower applied voltages enable memristors to have a characteristic of low power
consumption [16–18]. Meanwhile, the fabrication process of memristors is compatible with
CMOS process technology [19], allowing it to be large cross-bar arrays easily and exhibit
a size scalability. More excellent properties of memristors can be realized by changing or
adjusting the materials of resistive switching layer [20–25].

Presently, the reported resistive switching materials can be roughly divided into in-
organic resistive switching materials and organic resistive switching materials, and each
has its own advantages [26]. For example, memristors based on inorganic resistive switch-
ing materials represented by metal oxides have the advantages of high switching ratio,
excellent cycle stability, and fast inversion speed; memristors based on organic resistive
switching materials have the advantages of mechanical flexibility, biocompatibility, and
decomposability [27]. As an organic-inorganic hybrid materials (Figure 1a), MOFs are self-
assembled by organic ligands and inorganic metal ions or clusters relying on coordination
bonds (Figure 1b), so that they can combine the advantages of inorganic materials and
organic materials well to develop MOFs-based memristors with better performance. The
emergence of several toolkit extensions for synthesizing MOFs benefits from the diversity
and tunability of organic molecular structures and metal ion species, which provides a
good theoretical guide for the experimental protocol and design of MOFs with specific
structures and pore sizes [28]. A research roadmap of MOFs for electronic exploration was
first proposed in 2011 and updated and in 2017 [29]. It highlighted the important of MOFs
as the component of solid-state electronics [30], stimulating researchers to investigate their
potential applications. There are many breakthroughs in the potential applications of MOFs
in electronics, even though the discussed MOFs have been strictly restricted to exclude the
most of coordination polymers [31]. It served as a guide to lead the community to discuss
the possibilities of MOFs in virtually all major application areas, including sensors, FETs,
electrical characterization, storage, and neuromorphic computing.
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Figure 1. (a) the structure of conductive MOFs, Cu[Cu(pdt)2] and Cu[Ni(pdt)2]. Reprinted with per-
mission [32] from Wiley. (b) single Cu(pyrazine) in Cu[Ni(pdt)2], which is connected by Ni(dithiolene)
units. Reprinted with permission [33] from Wiley.

In commercial applications, MOFs have not yet been used in electronic devices, but
there are many conceptual devices about it have been validated [34–36], especially MOFs-
based memristors have been reported to exhibit excellent low power consumption, resistive
state regulation, and long-term stability. More and more studies focus on the perfor-
mance improvement of device and the exploration of underlying mechanism [37]. These
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fundamental properties are the essence of enabling potential applications. For example,
the synaptic function of MOFs-based memristors is necessary to enable neuromorphic
computing, which can be achieved by applying electric fields or light. The reported flex-
ible MOFs-based memristors also show an irreplaceable advantage in wearable devices.
Organic or inorganic memristors have been systematically researched and preliminarily
commercialized, so we believe that MOFs-based memristors with high performance will
make faster progress on this basis.

In this review, we focus on the development of MOFs-based memristors in the past two
decades, summarize and discuss the properties and fabrication of materials, structure and
electrical parameters of devices, and resistive switching mechanism (Figure 2). According
to the latest reported progress of MOFs electrical properties and memristor applications,
the two main potential applications of data storage and neuromorphic computing are
deeply analyzed. Finally, we try to discuss the challenges and opportunities encountered
from the three levels of fabrication process, device, and application. We hope that the
outlook of future research and development of MOFs-based memristors will facilitate their
development in storage and energy-efficient neuromorphic computing applications.
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2. MOFs-Based Memristors

Limited by the low repeatability and high formation voltage of traditional metal oxide
memristors [38,39], many new functional materials (perovskites [40], 2D materials [41,42],
biomaterials [43], polyoxometalates [44], organic materials [45,46], etc.) have been explored
for memristor applications. Among them, the research of MOFs-based memristor is still in
the preliminary stage because of the absence of a high-performance MOF series and a clear
development direction. At the same time, it is generally believed that insulating materials
with high porosity are easy to short circuit and not suitable for electronic devices. However,
the framework of MOFs not only provides a variety of conduction mechanisms (organic
conduction, chemical bonds conduction, space conduction of π conjugation, etc.), but also
bring some unique properties. For instances, the guest molecules can fill the holes left by
the skeleton to improve the overall conductivity of the material; the regular porous skeleton
with limited pore size provides a smooth path for the selective migration and penetration
of ions. Therefore, it has good application prospects in RRAM, flexible electronic devices,
photovoltaic, sensors, and other fields for MOF materials.

At present, people have adopted a series of methods to modify MOF materials by
utilizing their unique characteristics of structure, conductive mechanism, design and syn-
thesis, resulting in that the MOF materials play an important role in the field of memristor.
It is particularly important to comprehensively introduce the development of MOFs-based
memristors. Table 1 lists some performance parameters of MOFs-based memristors and
others memristors in order to exhibit the superiority of MOFs materials.
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Table 1. Performance list of Memristors based on MOFs or some other materials.

Device Structure Memory Effect SET/RESET Voltage [V] ON/OFF Ratio Retention [s] Endurance Ref.

Ag/Rb-CD-MOF/Ag unipolar *** ±2~4/±10 10 >105 ~20 [35]
Ti/TiN/CuxO/Cu bipolar 2.8/1.1 103 >105 6 × 10 [38]

ITO/EVA:ZnO NPs/ITO WORM 4 103 4 × 104 - [39]
ITO/PMMA/CsPbBr3/PMMA/Ag bipolar 2.6/−2.8 6×105 >104 5000 [40]

Ag/h-BN/Cu foil bipolar 0.72/−0.37 1 × 102 3 × 103 550 [41]
Ag/MoS2@PVA/Ag bipoalr 3/−3 1.28 × 102 1 × 105 1 × 103 [42]

Mg/Ag-doped chitosan/Mg bipolar 1.63/−0.82 >102 >104 >60 [43]
ITO/1 */Ag bipolar 0.52/−0.4 (270 ◦C) 55.5 (270 ◦C) - - [44]
Al/PEDOT:

PSS-EB-NCNT/Al bipolar −2/3 103 1 × 104 100 [45]

ITO/Ni-BPTA/Al unipolar −1.65/−2.81 1:104:108 * >104 104 [46]
Ag/ZIF-8/Au/PDMS bipolar 3.5/−1.4 - 3000 10 [47]

Ag/UiO-66@PVA/FTO unipolar 0.37/0.07 ~104 104 5 × 102 [48]
Ag/FJU-23-H2O/Ag ** bipolar 0.2/−0.5 105 104 100 [49]

Ti/(SiO2/Si)/Pt/RSMOF-1 bipolar ±7.5/∓1.5 ∼30 >6000 50 [50]
ITO/POMOF/Ag bipolar 1.77/−3.42 102 - 100 [51]

Al/Zn-TCPP nanosheets
@PVPy/ITO bipolar −0.5/2.4 103 104 103 [52]

Au/HKUST-1/Au/PET bipolar 0.76/−0.48 18.5 104 107 [53]
Ag/MIL-53/GaInSn@PDMS bipolar −1.2/0.3 200 >105 200 [54]

(PET/Ti/)Au/ZIF-8/Al bipolar −1.9/~1.5 ~104 4000 - [55]
(PET)/rGO/MoS2@ZIF-

8/rGO WORM - 7.0 × 104 1500 - [56]

1 * = [Co(H2O)6]2[Co3(bpdo)4(H2O)10][Co4(H2O)2(B-a-PW9O34)2]·2bpdo·14H2O. * The device has three resistance
states. ** MOF single crystal test conditions. *** The basic concepts of the parameters can be found in the
introduction to Section 2.3.

2.1. Materials Properties

A key requirement for the design and manufacture of electronic devices containing
MOFs is to understand their fundamental charge transport laws. Compared with silicon
and organic semiconductor materials, little is known about the performance of MOFs.

MOFs are porous network structure crystals composed of metal ions or metal clusters
and organic ligands. Its skeleton is made up of organic ligands, which leads to low
conductivity of general materials [57]. It is well known that crystals with a high degree
of order and almost no defects will provide an effective transport pathway for charged
particles [58]. Therefore, there are many ways to improve the conductivity of MOFs. For
example: (1) Modification and optimization of organic linkers for assembling frameworks;
(2) Using the periodic pore array inside the MOFs material to achieve ion penetration,
capture and transport in the supramolecular network; (3) The use of organic semiconductors
to fill voids or introduce appropriate host molecules can also help to change the electrical
properties of the host material, thereby allowing ion and electron transport [59].

In the following, we will introduce the conductive mechanism of MOFs and other
available basic properties from multiple perspectives.

Under sufficient external stimuli, the active electrons generated in the molecule can
hop to the electron-deficient region along the chemical bond (coordination bond, etc.)
between the metal and the linker in the MOFs. However, it requires a certain amount of
cations to penetrate between the pores, and enough energy for electron to hop the band
gap, this has certain requirements for the stability of the molecule itself under applied
energy. Among the MOFs materials, UiOs (UiO is the abbreviation of Oslo University)
material is composed of a Zr-containing octahedral [Zr6O4(OH)4] metal cluster core,
which is connected to 12 aromatic molecules containing para-dicarboxyl groups, such
as terephthalic acid (BDC), to form a series of three-dimensional microporous structure
materials containing octahedral central pore cages and eight tetrahedral corner cages.
Because of its high coordination number, the material has superior heat resistance, acid
resistance and alkali resistance stability [42]. In UiO-66 fabricated by Tran et al., they found
that when a sufficient positive voltage is applied, The Ag+ generated by the electrode
discharge accepts electrons that jump through the metal junction Zr6 and is reduced in
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the UiO-66 cavity to form silver nanoparticles [60]. The high porosity of materials and
penetrability of Ag+ between electrodes enable the Ag+ to be continuously reduced, causing
the silver nanoparticles to splice together to form a weakly bound vertically conductive
channel inside the almost insulating UiO-66. The whole process is shown in Figure 3a–d.
Naturally, the thickness of the silver conductive wire is closely related to the applied voltage
in this process, but a thicker conductive wire also means a weaker cycle.
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Electrical conductivity through the space is very rare in MOFs, such as equistructural
metals-organic framework M2(TTFTB) (M = Mn, Co, Zn, Cd; H4TTFTB = tetrathiafulvalene
tetrabenzoates) [61], and highly conjugated phenanthrene molecular sieve NNU-27 having
a long-range π-stacked zigzag chain form. Electrons can be sterically conducted from the
stacking direction through π stacking [62]. Although both are conductive through space
charge transport, the conductivity of NNU-27 is five times than that of M2(TTFTB) due
to the presence of a more conjugated long-range π-conjugated arrangement in NNU-27,
which is a key factor in enhancing charge mobility between aromatic molecules. The
conjugations in M2(TTFTB) and in NNU-27 are both arranged along the c-axis of the crystal,
whereas their ligand planes are perpendicular and parallel to the c-axis, respectively. The
space charge transport in M2(TTFTB) is carried out in a ‘spiral ladder’ manner, while the
conductive path of NNU-27 is a zigzag chain to have a wider π electron overlap region, so
that its charge transport path is more conjugated than that in M2(TTFTB).

Compared with the other two conduction methods, it has received more research for
the charge transport mechanism established by guest molecules. PCNs (Pocket-Channel
Frameworks) series MOFs materials contain multiple cubic octahedral nanocage pores,
which have great potential in the field of gas adsorption due to their outstanding specific
surface area and adsorption properties [63]. HKUST-1 is a classical PCN material composed
of Cu ions and 1,3,5-benzenetricarboxylate (BTC) ligands in a cubic lattice [64]. Under the
synergistic effect of regular porosity, the appropriate interaction between the adsorbed
guest molecules and the skeleton contributes greatly to the improvement of conductivity.
A classic example is the introduction of different amounts of tetracyanoquinodimethane
(TCNQ) into the pores of HKUST-1, which can control the conductivity of the material by
six orders of magnitude [58]. Wang et al. also found that loading ferrocene on HKUST-1
can increase the overall electron density by conjugating molecules on the framework. It
can help some iron ions that are loosely bound to obtain a better penetration/movement
performance in molecular sieves, leading to a greatly improvement for the switching
performance of device [59].



Molecules 2022, 27, 8888 6 of 45

ZIFs (Zeolitic Imidazolate Frameworks) are another type of MOF materials with good
adsorption capacity and have a zeolite-like structure [65]. ZIF-8, which often appears in this
paper, is self-assembled by Zn and N on dimethylimidazole in a four-coordinated manner.
In view of its permanent pore properties and easy synthesis, it also has certain advantages
in adsorbing gas.

Liu et al. made memristors with high chemical and thermal stability using ZIF-8
(zeolite imidazole skeleton-8) material [49]. Based on the pore properties of ZIF perma-
nent pores and the adsorption of small molecules by host-guest interaction, the resistive
switching characteristics of ZIF can be chemically modulated. The thermal resistance of
the device will gradually decrease to another stable thermal resistance state in methanol
vapor, and the thermal resistance change curve accords with the methanol adsorption
isotherm of ZIF-8 molecular sieve. The simulation results show that before pressurizing the
ZIF-8 crystal, the adsorbed methanol molecules are arranged in a relatively free packing
mode in the ZIF-8 crystal cage, and the angle between the hydrogen bond and the c-axis is
irregularly distributed (Figure 4b). By applying an electric field in the c-axis direction of the
ZIF-8 single crystal, the methanol molecules can be arranged in an orderly manner, and its
dipoles are basically arranged along the direction of the external electric field (Figure 4a,b).
When the operating condition of the device changes from air to saturated methanol vapor,
the HRS value of the ZIF-8-based memory decreases sharply, and the corresponding resis-
tance turn-off ratio decreases from 107 to 104. At the same time, the test shows that the
adsorption of other types of alcohols can also show a similar changing trend, and there is a
more obvious change in fewer carbon chains. It may be related to the number of adsorbed
molecules, polarity, and other factors (Figure 4c,d).
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He et al. also used the chemically inert rare earth metal-based MOFs to protect the
halogenated metal salts embedded in viologen and chose it as guest molecules to improve
photothermal stability [66]. In addition to adsorption and embedding, the interaction
between host and guest molecules can also format the new bonds. In other unclassified
MOFs, Yao et al. reported a chiral MOFs-based FJU-23-H2O, in which several lattice water
molecules were filled in the hexagonal nanochannels to form hydrogen bond with the
oxygen atom O31 of frameworks (Figure 5a,b) [50], while the c-axis direction was not fully
connected. When a voltage of 0.2 V was applied to the single crystal, the conductivity of
FJU-23-H2O increases sharply by a factor of 32 as the guest water molecule turns to form a
new hydrogen bond with O11 of the linker (Figure 5c). At the same time, the conduction
between the levels is achieved on the c-axis, leading to the huge change in the conductivity.
This process has been experimentally proven to be reversible.
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Pan et al. designed an indium MOFs (denoted as RSMOF-1) with the chemical formula
[InC16H11N2O8]·1.5H2O and a twofold-interpenetrated three-dimensional (3D) β-quartz
topology (Figure 6a). The morphology of the crystals is hexagonal prismatic [51]. The guest
water molecules are trapped in the hexagonal helix nanochannels, which has an amine-
function-alized wall along the c-axis, making the water molecules form a hydrogen-bonding
network (Figure 6b). The presence of amino groups in the channels provides abundant
sorption sites for water molecules through hydrogen-bonding interactions. From the result
of first-principles MD simulation, the formation of N···H-O···H-N bridge structures will
occur in random directions without the effective regulation of external electric fields, so
that RSMOF-1 is characterized by intrinsic nonpolarity (Figure 6c). However, an external
electric field may force the N···H-O···H-N bridge structure to flip and get aligned along
the external field direction, resulting in an order-disorder-type ferroelectric polarization of
RSMOF-1.

Ionic conduction is an important principle in many energy storage and conversion
devices, and is widely used in fuel cells, lithium-ion batteries, and etc. The regularly
arranged nanochannels and the limited pore size of MOFs is beneficial to selectively
transport ions, which exhibits great advantages in the process of ion penetration and
conduction. Yoon et al. used the characteristics of abundant hydroxide ions and small pore
size in the synthesized Rb-CD-MOF [35] and used the MOFs to generate and selectively
pass OH− to conduct electricity while promoting the redox process on the electrode surface.
In the presence of water, RbOH in MOFs is decomposed into Rb+ and OH− (Figure 7a),
and positive potential will be oxidized at the silver electrode/MOFs interface, where OH−

provides an alkaline environment at the interface. Because of the selective passage of MOFs
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aperture to ions, Ag+ only stays at the interface inducing the passivation of the electrode
and corresponding electrical characteristics (Figure 7b).
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In addition to the selective passage, the porous structure also has a favorable effect
on the penetration and transport of ordinary ions, such as the transport of electrode metal
ions between layers, which is an important feature of conductive filament mechanisms. It
is precisely because of the excellent ion transport properties of MOFs that the electrode
metal ions can shuttle between the upper and lower electrodes and form metal conductive
wires to connect. More detailed examples and introductions can be found in Section 3.2 Ion
penetration.

The unique features of MOFs also provide new interesting design ideas for the devel-
opment of memristors. some reports that the MOFs are directly used as functional layers
due to its excellent crystalline property. Yoon et al. took advantage of the characteristic
of γ-cyclodextrin-based Rb-CD-MOF that can grow to millimeter-sized single crystals to
fabricate devices with high performance, which shows short preparation process of film
and economic benefits [35]. Coincidentally, the above-mentioned Yao et al. also prepared
single crystals that can be directly used in the fabrication of devices (Figure 8) [50].
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Due to the high plasticity of MOFs, the original heat-labile materials can also have ther-
modynamic properties through improvement and modification, such as the replacement of
skeleton and the change of energy band. It is reported that utilizing the thermodynamic
properties of MOFs to design RRAM with high performance. Chen et al. synthesized a
thermochromic polyoxometalate-based MOF, referred to as POMOF for short, with the
chemical formula {[Co2(bpdo)4(H2O)6](α-GeW12O40)}·4(H2O)}n (α − 1) [67]. In heating
conditions, the lattice water is removed, the intramolecular hydrogen bonds are strength-
ened with decreasing distance, and the organic linker shrinks, but the Kegkin-type POM
(α-GeW12O40)4− anion passes through a large number of C-H . . . OPOM hydrogens. The
bonds are anchored in the metal shellac cation [Co2(bpdo)4(H2O)6]n

4n+ so that the high tem-
perature cannot destroy its skeleton (Figure 9a–c). As a result, although this temperature is
very dangerous for general organic linkers at high temperature of 150 ◦C, the functional
layer of the device can change color while the memristive properties of device are still
maintained, and it can be used to a temperature sensor depending on the color change of
functional layer with temperature. Rana et al. used Ag-TCNQ to fabricate a temperature-
stimulated RRAM device, which is different from the phase change memory that affects the
electrical properties through temperature. The Ag-TCNQ reported by them uses thermal
energy in metal-semiconductor Alternation of Schottky barriers at the interface achieves
switching performance [68]. A more detailed introduction can be found in the mechanism
section below.

2.2. Synthesis of Functional MOFs

There are many methods for synthesizing MOFs, and different synthesis methods
have a relatively large influence on the quality of the product [52]. We have selected several
synthesis methods of MOFs commonly used in memristor research.

2.2.1. Solvothermal Reaction

Solvothermal reaction is a chemical method that the reactants are mixed together and
reacted at a certain temperature and pressure. Autoclaves and organic or non-aqueous
solvents are usually used as closed systems and solvents, respectively. Relying on the
high temperature and high pressure enclosed condition, this method provides a special
physical and chemical environment for precursors to be activated in liquid phase or other
supercritical conditions, realizing the chemical reactions and crystallization processes that
are difficult to occur at normal condition. The process is easy to control the formation of
phase and the shape of particle size, and its product also has good dispersibility.
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The FJU-23-H2O skeleton was synthesized by solvothermal method. Firstly, the
monomer zinc nitrate and 5-triazole isophthalic acid were mixed in a mixed solvent of
DMF and water. Then, the mixture solution is heated in the reactor to initiate self-assembly.
Finally, the crystals were obtained after cooling. The product has three crystallographically
independent Zn(II) atoms bridged with three fully deprotonated L2− ligands in the chiral
hexagonal space group P65, forming their own single honeycomb sheets. It is worth noting
that these three honeycomb sheets are not coincident due to a six-fold helix parallel to
the c-axis, and the parallel six-layer stack provides a helical arrangement of 18 sheets
with a pitch of 59.808 Å, which is the highest-level stack ever observed (Figure 5a) [50].
Similarly, the constituent materials of RSMOF-1 are synthesized [51], including monomers
indium nitrate, 2-amino-1,4-phthalic acid, and 1,4-diazepine Hexa[2.2.2]octane, as well as
the product and crystal morphology are a double interpenetrating 3D β-quartz topology
and hexagonal prism respectively.

As the most classic solvothermal reaction, hydrothermal method is also applicable
to the synthesis of MOFs. In the report of Chen et al., they used water as a solvent,
added various raw materials and reacted at high temperature in a Teflon-lined stainless
steel container for several days to obtain their self-made POMOF material [51]. Although
this method is simple and convenient, the bulk product may affect the application in
electronic devices.

2.2.2. Surfactant-Assisted Method

The surfactant molecules selectively adsorb on the surface of MOFs to control the
growth of crystal and make them grow into two-dimensional (2D) MOFs nanosheets
according to anisotropy, which was first reported in 2009 to synthesize MOFs. Surfactants
have been widely used to control the growth of nanocrystals with size and shape, and
they play a key role in controlling the growth of MOFs crystals by selectively adsorbing
on specific faces of the nanocrystals, leading to anisotropic MOFs (Figure 10). Unlike the
solvent method to obtain bulk products, the anisotropic growth method can prepare of
ultra-thin MOFs nanosheets, while the traditional solvent method can only obtain bulk
products [69].
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Figure 10. The traditional synthesis and surfactant-assisted synthesis of MOFs. Top: During the
synthesis of MOFs in the traditional method, the isotropic growth generates the bulk crystal of MOFs.
Bottom: By using developed surfactant-assisted synthetic method, resulting in the formation of
ultrathin MOFs nanosheets. Reprinted from [69] with permission from Wiley.

In this way, the MOFs material M-TCPP (M is metal Zn, Cu, Cd or Co) with switch-
ing properties was synthesized Ding et al. Take Zn-TCPP as an example [53]: Firstly,
Zn(NO3)2·6H2O, PVPy and pyrazine were dissolved in a mixed solvent containing DMF
and ethanol; then, the mixed solvent of TCPP was added to the above reaction system; lastly,
Zn-TCPP nanosheets can be obtained as shown in Figure 11a–d [69]. The nanowires with
two-dimensional structure are larger than the bulk than the surface, and have more highly
accessible active centers, which is of great significance for electrochemical and sensing
applications. It is also proved by comparative tests that the memristor characteristics of the
nanosheets are much better than those of the bulk products [53].

Molecules 2022, 27, x FOR PEER REVIEW 12 of 47 
 

 

and ethanol; then, the mixed solvent of TCPP was added to the above reaction system; 
lastly, Zn-TCPP nanosheets can be obtained as shown in Figure 11a–d [69]. The nanowires 
with two-dimensional structure are larger than the bulk than the surface, and have more 
highly accessible active centers, which is of great significance for electrochemical and 
sensing applications. It is also proved by comparative tests that the memristor character-
istics of the nanosheets are much better than those of the bulk products [53]. 

 
Figure 11. (a) STEM image of Zn-TCPP nanosheets obtained by SEM with a transmission electron 
detector. Inset: Tyndall effect of colloidal Zn-TCPP nanosheet in ethanol. (b) TEM image of a single 
Zn-TCPP nanosheet. (c) HRTEM image of Zn-TCPP nanosheet and corresponding FFT patterns (in-
set). (d) SAED pattern of Zn-TCPP nanosheets in (b). Reprinted from [69] with permission from 
Wiley. 

2.2.3. Liquid Phase Epitaxy Approach 
Liquid phase epitaxy is a method in which solid substances are precipitated from 

solution and deposited on a substrate to form a single crystal thin layer. It is also called 
liquid phase self-assembly method, which is the main method for growing compound 
semiconductor single crystal thin layers in the production of electronic devices. 

In this method, a film-like product is grown directly on the surface of the substrate 
by repeatedly dipping the substrate in solutions of various monomers to initiate chemical 
reactions on the surface of the substrate (Figure 12). The final product film shows high 
quality, good morphology consistency, and low root mean square roughness. Meanwhile, 
its desired thickness can be controlled by the number of substrate wettings [54]. 

 

Figure 11. (a) STEM image of Zn-TCPP nanosheets obtained by SEM with a transmission electron
detector. Inset: Tyndall effect of colloidal Zn-TCPP nanosheet in ethanol. (b) TEM image of a single
Zn-TCPP nanosheet. (c) HRTEM image of Zn-TCPP nanosheet and corresponding FFT patterns
(inset). (d) SAED pattern of Zn-TCPP nanosheets in (b). Reprinted from [69] with permission from
Wiley.
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2.2.3. Liquid Phase Epitaxy Approach

Liquid phase epitaxy is a method in which solid substances are precipitated from
solution and deposited on a substrate to form a single crystal thin layer. It is also called
liquid phase self-assembly method, which is the main method for growing compound
semiconductor single crystal thin layers in the production of electronic devices.

In this method, a film-like product is grown directly on the surface of the substrate
by repeatedly dipping the substrate in solutions of various monomers to initiate chemical
reactions on the surface of the substrate (Figure 12). The final product film shows high
quality, good morphology consistency, and low root mean square roughness. Meanwhile,
its desired thickness can be controlled by the number of substrate wettings [54].
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Following this method, Pan and co-workers prepared the memristor with functional
layer of HKUST-1 (Cu3(BTC)2) [70]. The Au-OH substrate was immersed in the ethanol
solution of the metal solution Cu(CH3COO)2, then the solution was removed and the
substrate was dried in a nitrogen reactor. Subsequently, the substrate was soaked in the
ethanol solution of the ligand benzene-1mine3-tricarboxylic acid (BTC) and then dried
again. The above process was repeated 100 times to grow 100 layers of Cu3(BTC)2 on
the substrate. High quality continuous MOFs nanofilms with good resistance switching
properties and mechanical flexibility were obtained: film thickness of ~130 nm, particle
size of 40–80 nm, and root mean square roughness of ~4 nm.

Yi et al. also adopted this method to synthesize MIL-53, a hydrogen-bond-driven
expansion-contraction breathing MOF [55], by sequentially immersing the surface-function-
alized composite electrode in a saturated aqueous solution of raw material AlCl3 and
terephthalic acid (H2BDC) for several minutes. Different from the above methods, Yi
et al. synthesized the material at a high temperature to drive the self-assembly of two raw
materials. The material is eventually attached to the electrode, eliminating the need for
membrane formation. Albano et al. also synthesized film-like SURMOF by introducing
samples into copper acetate and BTC, which is similar to the method of liquid phase
epitaxy [56].

In addition to the preparation of high-quality film-like products, MOFs can be grown
on the substrate in a certain direction by pre-functionalizing the substrate. In the study of
Wang et al., they pre-functionalized a gold-coated silicon substrate with (111) orientation
by depositing a self-assembled monolayer of 16-mercaptohexadecanoic acid (MHDA) and
make HKUST-1 film along the (001) direction to grow on the substrate [59]. Park et al. also
adopted the method of repeated wetting, which is that the Au bottom electrode covered
polyethylene terephthalate (PET) was immersed in piranha solution to functionalize it with
hydroxyl groups, and then obtain an active film with desired thickness through layer-by-
layer deposition (Figure 13a) [71]. The synthesis of the product was proved by XRD and
SEM characterization (Figure 13b,c).
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Figure 13. Synthesis of ZIF-8 thin film on the substrate. (a) Synthesis method of the ZIF-8 thin
film on the gold-coated flexible substrate. (b) XRD pattern after coating with ZIF-8 thin film.
(c) Cross-sectional SEM image of ZIF-8 thin film on the Au bottom layer. Reprinted with per-
mission [71] from RSC.

Some researchers also refer to it as the layer-by-layer synthesis method, which can
synthesize the skeleton structure that is difficult to obtain by ordinary methods. Rana et al.
replaced all copper in the pre-deposited Cu-TCNQ framework with Ag, thereby obtaining
Ag-TCNQ with a Cu-TCNQ framework structure (Figure 14) [68], which is a structure that
is usually difficult to obtain by solvothermal reactions. Although it appears to be a simple
ion-exchange reaction on the surface, it is finally determined to be a redox reaction in which
Ag+ oxidizes Cu+ to Cu2+ through the analysis of the growth of LBL films in each cycle by
FESM and EDXS analyses.

2.2.4. Template Method

The template method uses the original flat material as a template and allows the
synthesized substances to be attached to the template in the shape of the material. The
method is simple and practical to prepare material with the shape of the template, but a
suitable template needs to be obtained first. The above-mentioned liquid phase epitaxy
method is also a template method in essence.

In the microstructure of MOFs, there are many layered 2D MOFs derived along the 2D
plane direction, which allows this part of the material to rely on traditional 2D materials as
templates to assemble molecules on the 2D plane. Huang et al. used the two-dimensional
material MoS2 as a template and prepared a ZIF-8-coated MoS2 material by mixing the
template with the ZIF-8 synthesis raw material reaction solution. The TEM characterization
image and formation process are shown in Figure 15a–c [72].

2.2.5. Microwave Heating

Through the frequent change of the polarity of the molecules in the material under the
external alternating electromagnetic field, frictional heat is generated. Because the inside
and outside of the material are heated uniformly and quickly at the same time, microwave
heating method can increase the growth rate of the film to achieve rapid production.
Precursors are usually dissolved or dispersed in solvents, and the mixture is then heated in
a microwave oven for a few seconds to several hours to form the desired product [73,74].



Molecules 2022, 27, 8888 14 of 45

Molecules 2022, 27, x FOR PEER REVIEW 14 of 47 
 

 

sectional SEM image of ZIF-8 thin film on the Au bottom layer. Reprinted with permission [71] from 
RSC. 

Some researchers also refer to it as the layer-by-layer synthesis method, which can 
synthesize the skeleton structure that is difficult to obtain by ordinary methods. Rana et 
al. replaced all copper in the pre-deposited Cu-TCNQ framework with Ag, thereby ob-
taining Ag-TCNQ with a Cu-TCNQ framework structure (Figure 14) [68], which is a struc-
ture that is usually difficult to obtain by solvothermal reactions. Although it appears to be 
a simple ion-exchange reaction on the surface, it is finally determined to be a redox reac-
tion in which Ag+ oxidizes Cu+ to Cu2+ through the analysis of the growth of LBL films in 
each cycle by FESM and EDXS analyses. 

 
Figure 14. Schematic diagram of sacrificial LbL growth. Dipping of a preformed Cu-TCNQ thin film 
into AgNO3 solution (1) into TCNQ solution (2) and again into AgNO3 solution (3) Successive dip-
ping into AgNO3 and TCNQ solutions makes one cycle of LbL. (4) All the original Cu-TCNQ films 
were sacrificed to obtain the (4a) structure with all metal elements replaced. Reprinted with permis-
sion [68] from ACS. 

2.2.4. Template Method 
The template method uses the original flat material as a template and allows the syn-

thesized substances to be attached to the template in the shape of the material. The method 
is simple and practical to prepare material with the shape of the template, but a suitable 
template needs to be obtained first. The above-mentioned liquid phase epitaxy method is 
also a template method in essence. 

In the microstructure of MOFs, there are many layered 2D MOFs derived along the 
2D plane direction, which allows this part of the material to rely on traditional 2D mate-
rials as templates to assemble molecules on the 2D plane. Huang et al. used the two-di-
mensional material MoS2 as a template and prepared a ZIF-8-coated MoS2 material by 
mixing the template with the ZIF-8 synthesis raw material reaction solution. The TEM 
characterization image and formation process are shown in Figure 15a–c [72]. 

Figure 14. Schematic diagram of sacrificial LbL growth. Dipping of a preformed Cu-TCNQ thin
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dipping into AgNO3 and TCNQ solutions makes one cycle of LbL. (4) All the original Cu-TCNQ
films were sacrificed to obtain the (4a) structure with all metal elements replaced. Reprinted with
permission [68] from ACS.
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Figure 15. (a) TEM image of MoS2@ZIF-8 hybrid structures. (b) TEM image of a curled MoS2@ZIF-8
structure, showing the MoS2 nanosheet and ZIF-8 coating. (c) Schematic illustration of the formation
process of nanosheet@MOF hybrid structures. Reprinted with permission [72] from ACS.

Tran et al. synthesized another common MOFs material UiO-66 by microwave heat-
ing [60]. The reaction raw materials of zirconium tetrachloride (ZrCl4) and 1,4-phthalic
acid (H2BDC) were simply dissolved in the mixed solvent of glacial acetic acid (AcOH) and
N, N-dimethylformamide (DMF), and then the product was obtained after only 3 min in a
microwave reactor. However, although this method is fast and has a high product quality,
it generally only yields a powdery product.
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2.2.6. Interface Synthesis

Interface synthesis is a synthesis method that directly reacts on thin incompatible
two-phase interfaces to obtain thin film products. The film can be directly transferred to
the substrate by immersing the substrate in the reaction solution, which is a simple method
to prepare large-area thin-film products without relying on the substrate.

Zhang et al. fabricated large-scale d-p conjugated coordination polymer films at
the gas-liquid interface through a mild coordination reaction between cobalt salts and
ligands 1,2,4,5-phenylenetetramine tetrahydrochloride. The synthesis schematic diagram
and preparation principle are shown in Figure 16a,b, and the SEM characterization diagram
of Figure 16c, respectively [75]. The resulting brown membrane has a weak dependence
on the substrate, making it can be easily transferred to any substrate by using a supporter
to lift the membrane from the reaction solution. This characteristic makes it has a good
practicability in various fields. According to the similar gas-liquid phase system, Liu
et al. utilized the mild coordination reaction between cobalt salts and ligands 1, 2, 4, 5,
5-phenylenetetramine tetrahydrochloride (HHTP) to synthesize Cu3(HHTP)2 nanometer
thin films at room temperature. The films have large transverse scale, high uniformity and
thickness can be controlled by reaction time [76].
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Figure 16. (a) Illustration of the polymer membrane formation process at the interface. (b) Schematic
of the polymer membrane at the air-liquid interface. (c) SEM images of the as-prepared membrane
with a thickness of 300 nm. Reprinted with permission [75] from RSC.

2.2.7. Electrochemical Synthesis

Electrochemical synthesis of MOFs, as a minority method, has not been reported in
the field of memristors. In view of its advantages that directly form films on the substrate
or electrode and control their morphology and thickness, this method has a great prospect
in the field of memristors, so we will briefly describe its characteristics.

As the name implies, this method is carried out by electrically driven synthesis. The
electrode reaction can generate the metal nodes (metal ions or metal clusters), which are
assembled with the active ligands in the electrolyte. Finally, the formed MOFs film will
attach on the electrode surface [77].

In research of Cao et al., MOF-5 was electrochemically synthesized using a double
zinc electrode and ammonium fluoride aqueous solution of BDC. In the electrode system,
the anode zinc electrode is oxidized to release Zn2+ gradually, causing its concentration to
greatly increases on the anode surface, yet the cathode electrolyzed water to produce OH−,
which can react with the ligand BDC to deprotonate it. After these two reactions, a thin
film of MOF-5 on the surface of the anode can be found [78].
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Alizadeh et al. reported two techniques for simultaneous growth of MOFs films on
two electrodes at one time [79]. One is similar to the above example. The difference is
that there is also an appropriate amount of free Zn2+ in the electrolyte. Because of the
increase of OH− concentration on the cathode surface, the free Zn2+ can also react with the
activated ligand BTC to obtain the MOFs film on the cathode surface (Figure 17a). Another
technology requires adding a separator in the middle of the electrolysis chamber in order to
only pass H+ and OH−. Firstly, it is still dependent on the electrolysis of water to produce
OH− to activate the ligand in the electrolyte and crystallize on the cathode surface of the
cathode chamber filled with the Zn2+ solution to obtain a Zn-based MOF film. Some OH−

passed through the middle partition to activate the ligands of the anode chamber. Because
the anode chamber is not added by other metal ions, Cu-based MOFs films can be obtained
on the anode surface after releasing the Cu2+ produced from the reaction (Figure 17b).
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2.3. Device Structure and Electrical Parameters

The memristor is considered by the International Technology Roadmap for Semicon-
ductors to be one of the most promising candidates for the next-generation in-memory
computing architecture. Most memristors are two-terminal or three-terminal device struc-
tures, where the two-terminal memristor is an electrode/insulator/electrode sandwich
(Figure 18a). Each layer of material is closely related to the overall switching performance
of the device, and for most devices, the layers are also interdependent. The top electrode
and the bottom electrode are usually used as the input port and output port of the signal
respectively, and they are prepared with the same metal (such as Pt, Au, Al) to make the
tested I–V curve have excellent symmetry. A three-terminal memristor is a structure that
mimics CMOS (Figure 18b), and its three port functions correspond to the source, drain,
and gate of CMOS. The non-volatile characteristic of three-terminal memristor enables
it to realize the functions of traditional CMOS-based circuits and reduce circuit power
consumption through the optimization of circuit structure. MOFs are composed of inor-
ganic metals and organic ligands, which can form a huge extended library of MOFs by
combination. Different materials of resistive switching layer will give memristors with
different properties. By continuously optimizing the structure and performance of the
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MOFs, the MOFs-based memristor have better basic electrical properties than others. Next,
we will introduce the basic device structure of the substrate, electrode, and functional layer,
and the integration of the device. Finally, we will summarize the basic parameters of the
classical memristor so that readers can compare the advantages of different devices.
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Figure 18. (a) Structure of two-terminal memristor. Reprinted with permission [80]. (b) Structure of
three-terminal memristor. Reprinted from [81] with permission from Wiley.

In order to make a bottom electrode with suitable thickness and high quality, it is also
very important as a substrate for depositing the bottom electrode. Especially in flexible
electronic devices, one of the important application fields of RRAM devices, the basic
condition for making the devices bendable is to use a flexible substrate. In the work of
Pan et al. [70], they used PET as the device substrate to fabricate a flexible RRAM that can
withstand bending of 2.8% strain and maintain a uniform performance during repeated
bending at 2.0% strain (Figure 19a–d), which is benefited from the inherent flexibility of
the organic linkers in MOFs. Park et al. also used the substrate to increase the number of
device bends to 100 times [71].
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Beside organic flexible substrates, some liquid metals such as eutectic gallium-in-
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Figure 19. (a) Endurance performance of the Au/HKUST-1/Au/PET flexible device at the strain
level of about 2.0% over 300 consecutive cycles. Inset of (b) Room-temperature retention performance
of the high and LRSs of the flat and bended devices. Evolution of the (c) HRS/LRS resistances and (d)
set/reset voltages of the Au/HKUST-1/Au/PET flexible devices as a function of the bending times
at the strain level of 2.0%. Reprinted from [70] with permission from Wiley.

Beside organic flexible substrates, some liquid metals such as eutectic gallium-indium
(EGaIn) and gallium-indium-tin (GaInSn) alloys are also important soft and elastic electrode
substitutes in flexible electronic device [82,83]. In the work of Yi et al., they used the
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breathing material MIL-53 and the composite substrate of GaInSn and PDMS to increase
the maximum strain to 10% [55]. At such large stretching strain, the memory device well
maintains its non-formed bipolar resistive switching behavior, and under stretching at
room temperature can hold for at least 104 s (Figure 20a–f).
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Moreover, Lee et al. have perfected the process of paper substrates and success-
fully synthesized paper substrates using all-dry, solvent-free induced CVD techniques
(Figure 21a) [84]. It is printable, disposable, foldable, and environmentally friendly
(Figure 21b–e), as well as paper-based device can be completely destroyed to prevent
hacking. It will surely have a place in the flexible substrate of RRAM devices in the future.
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Figure 21. Fabrication process of paper substrate-based memory. (a) Schematics of the fabrication
process. (b) Fabricated nanopaper-based memory. The memory is displayed in the form of an airplane
prepared by folding, i.e., origami, demonstrating the foldable memory feature. (c) Top view SEM
image of the fabricated device. (d) Cross-sectional TEM image of the direction along a–a′ of (c). (e) I–V
characteristic of the fabricated device showing memory operation. Reprinted with permission [84]
from Springer Nature.
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Electrodes as the basis of the device, it mainly plays the role of packaging and ener-
gization. There are extremely strict requirements for the thickness, quality, and material of
electrodes. Currently, the thickness and quality of electrodes can be adjusted by regulating
the process parameters of the electron beam deposition technology. Its common materials
include Au, Ag, Cu, Si, ITO, FTO, and which electrode material to choose needs to consider
the electrical properties and the influence of the material on the resistive switching effect.

The metal electrode also contributes significantly to the RRAM-type device mechanism
in most cases. One of the more common functions is to form a Schottky barrier with the
insulating layer/functional layers. The research of Ding et al. shows that the height and
width of the Schottky barrier between electrodes and the insulating layer of Zn-TCPP@PVPy
can be easily tuned by applying a bias voltage (Figure 22a) [53]. With the increase of the
applied voltage, all trap sites in Zn-TCPP are filled, and the carriers can form conductive
paths (CPs) to move freely, resulting in the resistive state from HRS to LRS (Figure 22b).
The Ag-TCNQ produced by Rana et al. also established a Schottky barrier between the
electrodes EGaIn, Ti or Pt, which shows a temperature-controlled change in electrical
conductivity [68].
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In addition, in some cases, the electrode material can also directly participate in the
switching mechanism, which makes the electrode material more selective. In the report
of Yoon et al., they found that both the top electrode (TE) and bottom electrode (BE) must
use Ag material to achieve the resistive switching effect at both positive and negative
potentials [35], because OH− in Rb-CD-MOF can only undergo redox reactions on the
surface of Ag (Figure 23). Experiments show that such a reaction does not occur on the
surface of the Au electrode. Similarly, in some conductive filament mechanisms, conductive
filaments are also formed by the migration of electrode materials after ionization, and
reduction into conductive paths [60].

Insulator is the middle part of the device, also could be called as functional layer,
which is the most critical part to realize resistive switching. The understanding of new
high-electrical performance RRAM devices needs to start from this aspect. The design and
mechanism of this layer also would be introduced in other chapters describe in detail.

There are some reports shows that several single crystal materials can be used directly
to fabricate a complete device [59,67], but most bulk materials cannot have suitable resistive
switching performance unless they are fabricated into nanometer-thick films [59]. Therefore,
the film forming process of the functional layer is also an important step to improve the
device performance. In addition to the methods of direct film formation during MOFs
synthesis, such as template method [72], liquid phase epitaxy [55,56,58,69,71,72], and
interfacial polymerization [75], the most classic film formation method for conventional
materials is spin coating. The key to spin coating film formation is the viscosity of the
functional layer system, so that some MOFs are doped by film-forming agents, such as
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PVPy (polyvinylpyrrolidone), PMMA (poly-(methyl methacrylate)) and PVA (polyvinyl
alcohol) [54,60,66], to improve viscosity.
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Figure 23. Cyclic voltammetry was performed on metal/MOF/metal structures in which the elec-
trodes were made of (i) silver/gold, (ii) gold/silver, and (iii) gold/gold. Experiments were performed
under ambient conditions with a scan rate of 0.07 Vs−1 and with 100 mm RbOH loaded into the MOF.
The experiments reveal that memristor-type hysteresis and NDR require a positive (anodic) potential
to be applied to silver, leading to its oxidation. Reprinted from [35] with permission from Wiley.

Spin coating is a film-making method that uses a solution to spread evenly on a
rotating disc due to centrifugal force, with the advantages of simple process and adjustable
thickness. As mentioned above, the M-TCPP material is mixed with the film-forming
agent PVPy and then applied by spin [53]. In Figure 24, Zn-TCPP nanosheets mixed with
PVPy are spin-coated on the glass substrate with ITO as BE. After annealing the film,
50 nm aluminum (Al) was thermal evaporated as top electrode (Figure 24a). Finally, the
device with the structure of glass/ITO (185 nm)/M-TCPP@PVPy (35 nm)/Al (50 nm) is
obtained (Figure 24b). Huang et al. and Tran et al. also spin-coated MOF materials on their
respective substrate [60,73]. It is also worth mentioning that the follow-up studies show
the film-forming agent PVA also has a certain influence on the conjugation effect of MOFs
and switching mechanism.
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So far, a number of MOFs-based memristors have been reported with electrical or
optical properties [85], and its two-terminal devices can be ranged in the size from 20 µm



Molecules 2022, 27, 8888 21 of 45

to sub-100 nm to have many excellent properties, such as outstanding tolerance, wonderful
retention, high on-off ratio, and low power dissipation. At the same time, it reported that
the three-terminal memristor using a high-conductivity MOFs as field effect transistor is
reported has the advantages of low power consumption and high conductivity. MOFs-
based memristors have achieved milestone breakthroughs in single device fabrication
and performance, but the in-memory computing architecture requires higher information
density and faster signal transmission. As the number of devices increases, the array
integrated by 2D planar will result an unacceptable signal delay. Moreover, it will lead to
non-linear update of the weights, which will affect the learning accuracy and efficiency of
the neural network [86,87]. The memory with 3D architecture, by contrast, can not only
reduce the delay effect through shortening the connection distance, but also significantly
reduce the interference caused by nonlinear weight changes during network training [88,89].
According to the port number of the memristor, the following section will be divided into
3D in-memory computing architecture of the two-terminal memristor and three-terminal
memristor for discussion.

In neuromorphic computing circuits, memristors have synaptic functions, and the
stimulation and inhibition between the presynaptic and posterior membranes can be
achieved by modulating ion transport in MOFs. The electrodes in the horizontal and
vertical directions correspond to the two ends of the synapse, and the intersection is the
resistive switching layer. The 3D in-memory computing architecture of the two-terminal
memristor is shown in Figure 25, which is characterized by TEM. This 3D architecture can
allow electrodes in the same direction to receive training pulses at the same time, thereby it
has the dual advantages of improving the recognition accuracy of the neural network and
reducing power consumption of device [90,91]. Considering this, a new architecture of gate
transistor has been proposed that a four-layer vertical RRAM computing unit combined
with CMOS [92]. This architecture can realize the logic of NAND (Not AND) gate and NOR
(Not OR) gate by operating the specific pulse. It is worth mentioning that NAND gates
are logically complete sets, which means that any circuit function can be implemented
with NAND gates. Recently, an eight-layer memory-computing architecture array has been
successfully fabricated [93].
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Compared with two-terminal memristors, three-terminal memristors can achieve more
complex input environments and higher controllability of synaptic weights [94]. In the
biological brain, multiple synapses are interconnected, and three-terminal memristors can
simulate its stimulation or inhibition to achieve multiple neural circuit transmissions [95].
To the three-terminal devices based on memristor, 3D memory-computing architecture is a
necessary process for it to realize neuromorphic computing. Kim proposed a 3D integration
method of synapses, neurons, and synapses by using traditional metal processes, as shown
in Figure 26a. Similarly, three-terminal memristors can also be extended to 3D vertical
memory computing architectures, as illustrated in Figure 26b. However, the integration of
three-terminal devices is more difficult than that of two-terminal devices. Regardless of
whether it is a two-terminal device or three-terminal device, there are always some problems
in inorganic and organic memristors. With the emergence of MOFs, these problems are
expected to solve by MOFs-based memristor.
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(b) CMOS-based 3D three-terminal memristor vertical in-memory computing architecture. (a) Repro-
duced with permission [96] from ACS. (b) Reproduced with permission [97] from Springer Nature.

In terms of device performance, we will also introduce the electrical parameters of the
memristor. According to the characteristics of stored information, the electrical switching
characteristics of RRAM devices can be divided into volatile and non-volatile types. Accord-
ing to the current-voltage (I–V) curves, nonvolatile switches can be generally classified into
three types: write-once-read-many (WORM), unipolar, and bipolar hysteretic behavior. In
WORM-type memory, the electrical switch from HRS to LRS is irreversible, i.e., the original
state cannot be restored (Figure 27a). The unipolar and bipolar hysteresis behaviors both
show electrically reversible switching behavior. The unipolar hysteresis shows the behavior
of erasing and writing under the same polarity voltage (Figure 27b), but the bipolar memory
devices need to operate at different polarities respectively (Figure 27c). Because RRAM
has fast resistive switching and low power consumption, it is very advantageous in fast
data writing, reading and erasing. Recently, the exploration of the application of RRAM
in neural synapses or performing logical operations in memory has attracted extensive
research attention to solve the Neumann bottleneck problem [98].
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Figure 27. (a) WORM resistive switch, (b) reversible unipolar switch, and (c) bipolar switch.
Reprinted with permission [98] from RSC.

As an electronic component, the main indicators for measuring RRAM devices include
switching ratio, retention time, cycle stability, erasing speed, operating voltage etc.

The switching ratio (ION/IOFF) refers to the resistance ratio of high and low resistance
states, which determines the degree to which a voltage is applied to distinguish the logic
states of “0” and “1”. For current logic circuits, the power of 10 is more appropriate value.

The retention time refers to the effective holding time of the resistance state of the
device, which is an important parameter for the non-volatile characteristics of the device.

The cycle stability refers to the effective erasing and writing times and quality of
the device.

The erasing speed refers to the time required to switch between high and low resistance
states. The shorter erasing time means more sensitive device.
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The operating voltage includes threshold voltage (Vth) and reset voltage (VReset). Vth
also is called set voltage (VSet) can make device change from HRS to LRS, which can be
regarded as a writing process; the reset voltage is the voltage at which LRS changes back to
HRS, which is an erasing process. The magnitude of two voltages determines the voltage
operating range and power cost of device.

3. Memristive Switching of Metal Organic Frameworks

The designability of MOFs provides many conveniences for the design of RRAM
devices, and research reports in recent years have also derived a relatively complete mecha-
nism testing system. While there is no detailed and unified theory for many mechanisms,
there are also many in-depth literature reports. In the following, we will discuss their effects
on device performance from mechanism point to provide more ideas for molecular design.

3.1. Charge Trapping

When the charge carrier density of the applied voltage injection is lower than the free
carrier density produced by thermal excitation in the MOFs film, many traps or holes will
be produced in the material to trap electrons [75]. At this time, the device shows ohmic
conductivity. With the gradual increase of bias voltage, the space charge will appear, and the
trap is gradually filled with the injected free carriers, resulting in a significant decrease in
its density. At the same time, the formed built-in electric field in trap can shield the external
electric field and further limit the carrier injection [67], so that the charge can move freely in
the system to enable it with more excellent conductive properties (Figure 28c–f) [75]. This
law is called trap limited-space charge limited conduction mechanism (TL-SCLC).
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Figure 28. (a) Fitted I–V curves of the memory device at the set process. (b) Fitted I–V curves of the
memory device at the reset process. (c–f) Transportation mechanisms of charge carriers from low
conductive state to intermediate conductive state and further to high conductive state. Reprinted
with permission [75] from RSC.

Generally speaking, when the system is in the space charge limited conduction (SCLC)
state, the charge movement is limited, and the device is HRS. When the trap is filled, the
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charge can move freely [53,66]. Obviously, the most direct way to verify this mechanism is
to explore the I–V relationship in the operation of the device. At low voltage, the current
is proportional to the voltage (I∝V, Ohm’s law), while it is proportional to the square of
the voltage (I∝V2, Child’s law) as the voltage increases. (Figure 28a). According to this
mechanism, the process should be reversible, i.e., the conduction law will return to the
ohmic law, when the voltage decreases from high to low voltage (Figure 28b). However,
the resistance value of the device changes to the LRS. It requires a higher negative voltage
to reset the resistance of device to HRS, achieving the complete reversible process. In the
M-TCPP-based device designed by Ding et al. [53], the Schottky barrier height and width
formed between Zn-TCPP@PVPy and TE/BE can be readily adjusted by applied voltage
bias. With the increase of applied voltage, all the trapping sites in Zn-TCPP have been filled
and the charge carriers can form CPs to move freely, inducing to the RS from HRS to LRS.
With the increased voltage bias from 0 to −3 V, the current will suddenly increase at −0.5 V
(VSet = −0.5 V), which indicates the device was switched from HRS to LRS. This process is
named “programming”. With the voltage increasing from 0 to 3 V, a sudden decrease in
current occurs at 2.5 V (VReset = 2.5 V), which is “erasing” process (Figure 29a).
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charges in MoS2 are retained after turning off the power, due to insulating ZIF-8 material 
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Figure 29. (a)Typical I–V curve of Zn-TCPP nanosheet-based RRAM device. (b) Retention test of
Zn-TCPP nanosheet-based RRAM device. (c) Switching endurance of Zn-TCPP nanosheet-based
RRAM device under I–V sweep mode and (d) under the pulsed voltage stresses mode. Reprinted
from [53] with permission from Wiley.

There is almost no fluctuation after 104 s retention test, 100 times sweep cycle, and
1000 times pulses cycle for Zn-TCPP nanosheet-based RRAM, which shows excellent mem-
ory stability and reliability (Figure 29b–d). By setting different compliance current (ICC)
during the set process, the multistate reversible data level can be achieved.

The electrical test of the ZIF-8-coated MoS2 as the functional layer-based device
developed by Huang et al. also showed SCLC characteristics [72]. Moreover, the trapped
charges in MoS2 are retained after turning off the power, due to insulating ZIF-8 material is
used as encapsulation matrix, which enables the high conductivity and nonvolatility of the
memory device. The device also exhibits WORM memory effect: the device starts out in a
low conductivity state (OFF state); the current state increases abruptly from 7.0 × 10−10 to
5.0 × 10−5 A (On state), when the applied voltage sweeps to 3.3 V; the ON/OFF ratio over
7.0 × 104 at 0.5 V; it has yet to recover OFF state, even if the applied voltage is reversed to
−6.0 V. It is the inerasable data storage characteristic (Figure 30a). The ON and OFF states
of the device did not undergo significant fluctuation even after more than 1.5 × 103 s of
test under ambient conditions at a reading bias of +0.5 V (Figure 30b–d).
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Figure 30. (a) The I–V characteristics of the MoS2@ZIF-8 based flexible memory device. Inset: the
schematic of the device. (b) The retention-ability test of the memory device at a reading voltage of
0.5 V in the ON and OFF states. Experimental data and fitted lines of the I–V characteristics in (c) the
OFF state and (d) the ON state. Reprinted with permission [72] from ACS.

At present, there is no clear corresponding molecular structure for the trap, and the
specific structure of the trap is also being explored. In the work of Chen and collabora-
tors [67], they used XPS and UV-vis characterization and DFT calculations to demonstrate
that under an applied voltage, the POM anion in the cationic framework of MOFs can
accept electrons to realize the injection of electrons, resulting in a reversible reduction
and the resistive switching behavior of the device (Figure 31a). The electron-poor metal
viologen and molecular remodeling also contribute to the switching performance. The
device they designed has an average on-off ratio of 100, can be cycled for 100 cycles, and
is solvent/acid/base stable. The device can still show good stability without significant
decrease in on-off current and cycle stability when heated to 150 ◦C (Figure 31b–e), and its
bistable performance will reappear while cooling to room temperature.

3.2. Ion Penetration

MOFs materials benefit from their adjustable size, regular and rich pore structure
characteristics, so that the transmission and penetration of ions inside the material have
a smooth path. In the process of electrification, metal electrodes are often ionized, when
the electrode ions can penetrate along the direction of the electric field is conducive to
the generation of filamentous conductive mechanism. It is also known as electrochemical
metallization (ECM) or conductive bridge (CB) mechanism, which is usually the resistance
transition behavior in some regions of functional materials [99]. Since the filament size is
much smaller than the device area, the formation has great randomness, but the greater the
voltage, the stronger the directivity [53].

Among them, the metal conductive filament mechanism is reported in more literatures.
The electrode metal is ionized under the action of an electric field, penetrates through the
intermediate functional layer, and is re-reduced to metal with its help, leaving behind metal
particles. Under the cumulative effect of the electric field, the metal particles accumulate
to form a conductive filament that connects the positive and negative electrodes, so that
the overall resistance of the device is greatly reduced. For the confirming this mechanism,
the conductive filaments will be regulated by using different electrodes in control exper-
iments [58,67], and then it is directly observed by the characterization methods such as
AFM and XPS [56,60].
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Figure 31. (a) I–V curve s of the ITO/POMOF/Ag device with one cycle; (b) I–V characteristics of
the ITO/POMOF/Ag device at room temperature with nine cycles; (c) I–V curves treated by heating
at 150 ◦C with nine cycles; (d) cycle endurance of the ITO/POMOF/Ag device at room temperature;
(e) cycle endurance of the device treated by heating at 150 ◦C. Reprinted with permission [67]
from ACS.

The Ag/MIL-53/GaInSn@PDMS device designed by Yi et al. was directly character-
ized by AFM and XPS data [55]. In the C-AFM measurement, several current response
points with a diameter of ~10 nm were observed at a bias voltage of −3 V, which is in
line with the characteristic of tiny diameter filamentous conduction paths (Figure 32a,b).
When the device is switched to LRS, the electrode metal Ga and In signals appear at the
same position, which indicates that the gallium in the galinstan alloy is injected from the
soft electrode into the MOFs (Figure 32c). The XPS spectra shows that the Ga 2p1/2 and
Ga 2p3/2 species are respectively at the binding energies of 1143.45 and 1116.69 eV in the
LRS core-level. It confirms that the injected gallium has been electrochemically reduced
to metallic Ga atoms, and they form an elastic conductive filament to connect the anode
and cathode.

The phenomenological model of resistive switching illustrated in Figure 32d. When a
negative voltage is applied to the top electrode, oxidation of the gallium atoms into the Ga3+

cations occur in the GaInSn@PDMS soft composite electrode. Under the applied electric
field, the Ga3+ cations migrate across the MIL-53 layer and are reduced by electrons injected
from the Ag electrode. When the opposite voltage is applied, the rupture/electrochemical
dissolution of the Ga conduction path occurs at the weakest point, and the device reverts
to HRS (Figure 32e). This device has forming-free bipolar switching characteristic with the
ON/OFF ratio of ~200. Its HRS and LRS are programmable, accessible, and stable in the
repeated switching cycles, and they can be readily retained for >105 s (Figure 32f).

In the Ag/UiO-66@PVA/FTO device designed by Tran et al. [60], when a positive
voltage was applied to the top electrode, the Ag electrode was oxidized and migrated
between the functional layers of UiO-66-PVA, and some penetrated through the functional
layer and was in the FTO. The bottom electrode is reduced to form nano-silver particles,
which gradually form a small Ag conduction path. When the applied voltage is large
enough, electrons can hop along the Zr6 junction or Ag+ in UiO-66. Such tiny filaments
of conductive electrical signals were captured using C-AFM (Figure 33a–d). As a further
verification, tests have shown that thicker conductive filaments are formed at higher
voltages and hard to breakage, so the resistive switching effect is thus significantly reduced.
At low voltage, the device has low operation voltage (V < 0.5 V), high ON/OFF ratio (~104),
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excellent endurance (5 × 102 cycles), longtime retention (104 s). Its VSet and VReset are
0.37 V and 0.07 V, respectively (Figure 33e–h).
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Figure 32. (a) Conductive atomic force microscopic current maps of the MIL-53/GaInSn@PDMS
structure in its initial high state, and (b) after being set at −3 V. (c) XPS depth-profiling analyses
of the Pt/MIL-53/GaInSn@PDMS device in its initial and low-resistance states. (d) Schematic
illustration of switching mechanism in Ag/MIL-53/GaInSn@PDMS device. (e) Room-temperature
current-voltage characteristics, and (f) retention and endurance performance of the unstretched
Ag/MIL-53/GaInSn@PDMS device. Reprinted from [55] with permission from Wiley.
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Figure 33. C-AFM images of UiO-66-PVA film drawn on silver substrate with bias voltages of
(a) 0.5 V and (c) 1.0 V. Figure (b,d) is (a,c) three-dimensional C-AFM images, respectively. The
Ag/UiO-66-PVA/FTO (e) in the voltage range of −0.5→ 0.5 V. (f) The retention time for data storage.
(g) Endurance test during 100 cycles (h) and the cumulative probability during 500 cycles of Ag/UiO-
66-PVA/FTO RRAM device. Reprinted from [60] with permission from Elsevier.

The transport of ions is clearly not limited to metal ions. Using a redox mechanism
similar to a primary battery, other ions can also be conductive in a smooth flow. Different
from the direct migration of ionized electrode element ions, the components in MOFs can
also directly participate in the redox reaction and produce ion transport charges. In the
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Rb-CD-MOF molecular memristor designed by Yoon et al., they made use of the redox
mechanism that OH− and silver electrode can be passivated to design a memristor with
reversible characteristics [35]. The memristive performance varies with ion concentration
and water content. The number of moved ions, as we know, determines the current
conduction of MOFs. However, the dissociation energy of RbOH is very large under
anhydrous conditions, so that there is a low ion content of Rb+ and OH− in the system, and
the material hardly shows conductivity.

Due to the limitation of the penetration of the electrode element Ag+ by the MOF
sub-nanometer channel, the change of the apparent resistance of the device is generated by
the redox process at the interface between OH− and silver anode in MOF. Under alkaline
conditions and positive potential, silver forms a layer of silver hydroxide (AgOH) and
silver oxide (AgOx) on its surface (Figure 34a). This process is self-limited because further
oxidation requires mass transport of hydroxide ions through the oxide layer. When the
silver electrode is further oxidized and passivated accordingly, the initial current increases
first and then decreases with the increase of voltage, which is the characteristic of complex
differential resistance (NDR). The large Faraday current corresponds to the Read ‘On’ or ‘1’
state, and the reduction of current by passivating the electrode corresponds to the Read
‘Off’ or ‘0’ state. When the polarization is reversed, the original silver oxide layer and
the other electrode are reduced and oxidized, respectively, so that the current reaches its
maximum value again and then is weakens as the Faraday process completes (Figure 34b,c).
In the cyclic voltammetry test, the initial negative energization process is regarded as a
Switch ‘On’ state, and the complete process for the forward voltage is regarded as a Switch
‘Off’ state. It is worth noting that this memory is most clearly observed in wet nitrogen or
air and disappears completely in dry nitrogen or dry oxygen. As shown in Figure 34d, the
switching device has a distinguishable on/off ratio (~150) at the scanning rate of 0.07 Vs−1.

There are also device studies that do not rely on electrodes to achieve redox perfor-
mance. Park et al. achieved a redox memory mechanism by using an aromatic imidazole
ring group ZIF-8 with redox properties [71]. The organic linker consists of an imidazole
ring and a methyl group between two nonadjacent nitrogen atoms. When an electric field
is applied on the device with Au/ZIF-8/Al structure, the zinc ions at the localized nodes
act as hopping sites between organics (Figure 35a–d). At the set voltage, Zn2+ will be
delocalized and reduced, and the remaining N atoms in the imidazole will be connected to
form a conjugated conductive path, causing the system to become LRS. The conductive
path will break when apply a positive voltage to the Au bottom electrode, and the system
will change back to HRS. Two resistance state are stable during the holding test for 4000 s
or cycle test for 40 times, and their on-off ratio is high to 104. Meanwhile, the performance
of device can be maintained over 100 bending test cycles (Figure 35e–h).

3.3. Skeleton Reorganization

In general, the MOFs skeleton is mainly used to support regular pores without the
requirement of conductivity. However, due to the strong modification and regulation
advantages of organic components, the materials can also be switched back and forth be-
tween high conductivity and weak conductivity through the conjugation of chemical bonds
such as π bonds or the regulation of non-chemical bond forces such as hydrogen bonds,
which coincides with the core electrical characteristics of RRAM devices. By switching the
intramolecular configuration of MOFs, it is easy to regulate the formation of intramolecular
π stacking and hydrogen bond [59,100], resulting in changes in molecular conductivity and
a resistive switching effect.
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Figure 34. (a) A model of the electrochemical mechanism that leads to the switching behavior and
memory effect in Ag/MOF/Ag devices. (b) Cyclic voltammetry is shown for three different scan
speeds of a Rb-CD-MOF device flanked by silver electrodes. (c) In a full cycle, the system passes
through two highly conductive states and two non-conductive states. (d) A “0” or “1” state was
written into the MOF memory and repeatedly read with three scan rates. Reprinted from [35] with
permission from Wiley.
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V is applied, two electron density peaks of H1w1 towards O11 and O31 are observed. This 
means that the hydrogen bonds of O1w H1w1…O31 and O1w H1w1…O11 exist at the 
same time. Therefore, the device is switched from HRS-1 to HRS-2. In Figure 36a, it shows 
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forms a hydrogen bond with O11. It will transform the short hydrogen bond fragments to 

Figure 35. (a) Chemical formula with zinc and linker precursor. (b) One zinc atom and two 2-
methylimidazole molecules combined to form tetrahedron nodes. (c) Metal nodes and imidazole
linkers connected to construct a zeolitic structure. (d) ZIF-8 thin film coated on gold substrate.
(e) I–V characteristics of the Au/ZIF-8/Al structured device. (f) Retention time analysis of the LRS
and HRS states of the ZIF-8 ReRAM. (g) Resistive switching performance over repeated switching
cycles. (h) Bending stability of the flexible ZIF-8 ReRAM with repetitive bending cycles. Reprinted
with permission [71] from RSC.

FJU-23-H2O is a kind of classical material which can adjust bistability by intramolecu-
lar hydrogen bond conversion [50]. In the absence of applied voltage, the electron density



Molecules 2022, 27, 8888 30 of 45

peak of H1w1 is toward O31 and deviates from O11. The hydrogen-bonded chain in the
channel is divided into short-range hydrogen-bonded fragments by O1w hydrogen H1w1
. . . O31 interaction, which make device in the HRS-1 state. When a DC voltage of 0.1 V
is applied, two electron density peaks of H1w1 towards O11 and O31 are observed. This
means that the hydrogen bonds of O1w H1w1 . . . O31 and O1w H1w1 . . . O11 exist at
the same time. Therefore, the device is switched from HRS-1 to HRS-2. In Figure 36a, it
shows the molecular structure before and after the transition from LRS to HRS-2. When the
voltage increases to 0.5 V and then scans back to 0.2 and 0.1 V, the O1w atom is distorted
and forms a hydrogen bond with O11. It will transform the short hydrogen bond fragments
to interact with the complete hydrogen bond helix extending throughout the crystal, which
keeps the resistance of device in the LRS when the bias voltage is lower than VSet. The
rectifying effect occurs when a negative voltage is applied. The electron density peak of
the H1W1 atom returns to O31 at a DC voltage of +0.5 V. The short-range hydrogen bond
fragments were recycled again, resulting in a reset from LRS to HRS-1. From the test results
in Figure 36b–d, the device has ultra-low set voltage (~0.2 V), long holdover performance
(104 s), high switch ratio (105), and high rectification rate (105).
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the c direction. 

RSMOF-1 exhibits symmetric and bipolar resistive switching behavior at room tem-
perature, as shown in Figure 37a of DC current-voltage (I–V) characteristics. When the 
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ure 37b,c). Tow states can be retained for at least 6000 s (Figure 37d). 

Figure 36. (a) The illustration of the applied DC voltages following the sequences as the points
from 1 to 7. (b) Endurance performance (c) Semilogarithmic plot of the room-temperature I–V
characteristics with 100 consecutive cycles. The red line represents the result of the first round of
voltage sweeping. The arrows indicate the sweeping direction, while the numbers 1 to 4 represent the
sweeping sequence. ICC stands for the compliance current. (d) Retention performance of the three
conductance states over 104 s. The resistance of the sample was read at 0.05 V. Reprinted from [50] as
open-access.

The RSMOF-1 of Pan et al. can also undergo intramolecular hydrogen bond path
transition under the action of an electric field [51]. Its resistive and ferroelectric switch-
ing properties are strongly regulated by the guest water molecules in the nanochannels,
which utilizes the electric field-controlled hydrogen-bonding to interact with amino-linked
RSMOF-1. The presence of amino groups in the channel provides abundant adsorption sites
for water molecules through hydrogen bonding interactions. Changing the sample tem-
perature will interfere the interaction with hydrogen-bonding and partially remove guest
water molecules, which may significantly affect the ferroelectric properties of RSMOF-1.

First-principles MD simulations show that RSMOF-1 is nonpolar in nature, which
means the formation of N·H-O·H-N bridge structures will occur in random orientations.
Under the modulation of external electric field, the N·H-O·H-N bridge structure is forced
to flip and arranges along the direction of the external electric field, resulting in an ordered-
disordered ferroelectric polarization RSMOF-1. It will occur that the resistance transition
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from HRS to LRS when the majority of the bridging hydrogen bonds are aligned in the
c direction.

RSMOF-1 exhibits symmetric and bipolar resistive switching behavior at room temper-
ature, as shown in Figure 37a of DC current-voltage (I–V) characteristics. When the voltage
is swept in the direction of 0 V→ 13 V→ 0 V→−13 V→ 0 V, the RSMOF-1 switches con-
tinuously between two resistive states, and this process has uniformly distributed threshold
voltages (VSet ≈ ±7.5 V, VReset ≈ ±1.5 V) and stable on/off ratio (~30) (Figure 37b,c). Tow
states can be retained for at least 6000 s (Figure 37d).
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Figure 37. (a) Semilogarithmic plot of the room-temperature current-voltage (I–V) characteristics of
the single crystal. (b) I–V curves and (c) distribution of the set/reset voltages and the ON/OFF ratio
for 50 consecutive cycles. (d) Retention performance of the two conductance states over 6000 s. The
resistance of the sample was read at 0.1 V. Reprinted from [51] with permission from ACS.

In the modification of the chemical composition of the skeleton, some people have
also tried to use the activity of the group to reorganize the skeleton structure. When Joule
heating is performed, the linker with the carboxyl group and other heat-removable groups
may lose the carboxyl group, and the remaining aromatic fragments will spontaneously
connect to form a conjugated conductive molecular channel. Based on the in-depth analysis
of XPS images, Pan et al. suggested that electric field-induced Cu2+ ion migration may
be responsible for the uniform resistance switching observed in HKUST-1 nanofilms [70],
which may lead to the subsequent pyrolysis of the trimesic acid linkers and the formation
of highly conductive film.

When a strong electric field is applied to the Au/HKUST-1/Au sandwiched structure,
Cu2+ ions at local crystal defects can be transferred from the BTC linker to the gold layer
and reduced to copper atoms. In HKUST-1 nanofilms, the negatively charged vacancies
are relatively unstable, and heating can make carboxyl groups removes from the aromatic
linker and releases as carbon dioxide through the top electrode. Then the pyrolysis of the
triacid linker may lead to the coupling of adjacent benzene rings and the formation of sp2-
hybridized carbon-rich channels. Carrier transport through this locally conjugated system
will be more efficient than the transition between Cu2+ ions or BTC junctions, resulting in
the device transitioning from a high-resistance state to an LRS. The reverse voltage can
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destroy the aromatic conductive filaments and reset the device to HRS, as illustrated in
Figure 38a.
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Figure 38. (a) Schematic illustration of the switching mechanism in HKUST-1 nanofilms. (b) Current-
voltage characteristics during the dynamic bending test. (c) Resistance changes under different stress.
(d) The maintenance of resistance value under multiple bending. Reprinted from [70] with permission
from Wiley.

The device exhibits a uniform and repeatable resistive switching effect (VSet = 0.76
± 0.023 V, VReset= −0.48 ± 0.017 V, on/off ratio = 18.5). Its high performance can be
maintained in extreme application environments, the I–V curve is basically unchanged in
the dynamic bending experiment of 0.25–2 mm/s, and it can withstand up to 2.8% tensile
strain. The effective temperature of the device is between ±70 ◦C. No significant change
in HRS/LRS resistance or set/reset voltage was observed when the device was bent for
160 times (Figure 38b–d).

3.4. Other Mechanisms

Different from the above more classical design ideas, there are also a small number of
research reports on other properties of MOF materials. In view of the fact that there are
few but novel studies in this field, here is still a brief summary of several unconventional
mechanism forms.

Tunneling is a form of transbond conduction, but the barrier between the donor part
and the receiver part of the frame is too high to jump charge transfer. At present, only a
small amount of literature has reported the related mechanism [30], which is controversial.
Han et al. found that adding metal nanoclusters (NCs) to Rb-CD-MOF can make the modi-
fied materials have moderate electrical conductivity [101]. At the same time, its electrical
conductivity increases by four orders of magnitude under light irradiation (Figure 39a,b),
which results from the NCs distributing in the pores of MOFs. According to the report,
the activation energy of thin film of metal NCs is consistent with the activation orbital
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model that the inverse cube root of the AgNC volume fractions (v−1/3) is proportional
to the average distance between NCs, so the conductivity decreases exponentially with
the increase of distance between NCs. In short, the electrical transmission in NCs-MOFs
is realized through the tunnel transmission between NCs. As shown in Figure 39c, the
characteristic of optoelectronic regulation makes MOFs crystal promising applications in
optical switching device.
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verification, it was finally confirmed as a metal-semiconductor interface mechanism. Be-
cause the effective work function of Ag-TCNQ is much lower than that of EGaIn and the 
phenomenon of band bending, a Schottky-type barrier and depletion layer will appear at 
the interface (Figure 40a). The electronic property of device exhibits non-ohmic conduc-
tion and ohmic conduction at room temperature and high temperature respectively, 
which is a characteristic of temperature-controlled switching characteristic. The device 
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Figure 39. (a) Illustrates the experimental arrangement for measuring photoconductance of MOF
crystals. (b) Two examples of I–V characteristics of AgNC@Rb-CD-MOF crystals under light irradia-
tion (630 mW/cm2) and in the dark. The conductivities are, respectively. Changes in the conductivity
of (c) a blank Rb-CD-MOF (first row), a AgNC@Rb-CD-MOF (second row) over several irradiation
cycles. The bottom data are the recorded conductivity changes of AGNC@RB-CD-MOF when exposed
to different power intensities of light under vacuum. Reprinted with permission [101] from ACS.

Since organic materials are generally afraid of high temperature, although the Schot-
tky barrier principle indicates that the temperature-regulated memristor also has certain
feasibility, the use of temperature regulation will still make the device risk of fire. Rana
et al. synthesized Ag-TCNQ with Cu-TCNQ framework structure by LBL method [68]
and formed the device with eutectic gallium-indium alloy EGaIn. After exclusion and
verification, it was finally confirmed as a metal-semiconductor interface mechanism. Be-
cause the effective work function of Ag-TCNQ is much lower than that of EGaIn and the
phenomenon of band bending, a Schottky-type barrier and depletion layer will appear at
the interface (Figure 40a). The electronic property of device exhibits non-ohmic conduction
and ohmic conduction at room temperature and high temperature respectively, which is a
characteristic of temperature-controlled switching characteristic. The device realizes the
reversible switching from HRS to LRS between 300 K and 400 K, and its switch ratio is
close to 105. The distinct characteristics of thermally driven reversible resistance switching
(HRS↔LRS) are shown in Figure 40b–d.
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4. Application of MOFs-Based Memristor

Limiting to the traditional architecture of von Neumann and CMOS technology, there
is a balance between the device count, operating frequency, and circuit performance. Each
time the CPU processes data, it needs to re-read the data in the memory, resulting in
increase of power consumption and latency. The binary information storage capacity has
severely limited the CPU’s energy-efficient data processing speed. At the same time, the
device has only two states of on and off, which requires complex circuit structure when it
calculates high-order tasks. In the post-Moore era, developing devices with new computing
architectures are important to continue Moore’s Law and break through the performance
of chips. With the in-depth research into biological brains and the rapid development of
memristors, a state-of-the-art architecture of in-memory computing has been proposed and
attracts with widespread attention. Neural network algorithms and device 3D integration
lay the foundation for neuromorphic hardware circuits. Extremely high work efficiency and
power have stimulated the potential of edge computing, enabling more artificial intelligence
devices in life.

4.1. Data Storages

The electrical properties and non-volatility of MOFs-based memristors have excellent
potential in resistive memory. The memristor changes its resistance under the action of
voltage or charge, and this change will remain when the external stimulus is removed.
The highest resistance value and lowest value are defined as logic ‘0’ and ‘1’of binary
information storage, respectively. Compared with traditional CMOS devices, memristors
theoretically have infinite resistance states and have excellent information density. The
voltage required for a memristor to change from HRS to LRS (Set process) is the threshold
voltage of VSet, and there is a threshold voltage of VReset for LRS to HRS (Reset process).
The level of the threshold voltage is directly related to the switching speed of the resistance
state and the power consumption. The research time of MOFs-based memristor is relatively
short, but it is believed that the excellent performance of MOFs will soon revolutionize
the commercialization of existing memristor, which led by inorganic materials and organic
materials. In 2014, Yoon selected Ag as the terminal electrode and Rb-CD-MOF single
crystal as the resistive switching layer to prepare the first MOFs-based memristor, its
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hysteresis curve has proven it is a memristor, even if the resistive switching needs ultra-
high threshold voltages. The concept of a MOFs-based memristor as a non-volatile memory
is validated (Figure 41b). Memory performance is mainly related to storage capacity, access
time, bandwidth, and period, therefor community researchers are driven to optimize the
basic electrical properties of MOFs-based memristors, such as area, threshold voltage,
switching speed, tolerance, and retention. In 2015, Pan developed a new MOFs material of
HKUST-1 for memristor, and its I–V curve shows excellent symmetry and low threshold
voltage, which means the device has a low power consumption (Figure 41a). The device can
achieve more than 1.0× 107 c ycles (Figure 41c), and still has outstanding resistive switching
effect under the extreme temperature disturbance of −70–70 ◦C (Figure 41d). However,
its small on/off ratio makes device hard to distinguish the resistance state during high-
frequency reading and writing. Park proposed an Al/ZIF-8/Au/memristor with excellent
on/off ratio (106) [71], low power dissipation (Vset = 1~2 V) and retention (4 × 103), but the
reported number of cycles is only 40. Furtherly, a MOFs-based memristor with Ag/PVA-
UiO-66/FTO/glass structure was reported [60], which has reasonable endurance (500),
retention (104), threshold voltage (0.5 V), on/off ratio (104), and size (area of modification is
50 nm). With the continuous emergence of new MOFs with high-performance, MOFs-based
memristors will appear to be more suitable for non-volatile memory.

Molecules 2022, 27, x FOR PEER REVIEW 36 of 47 
 

 

MOF single crystal as the resistive switching layer to prepare the first MOFs-based 
memristor, its hysteresis curve has proven it is a memristor, even if the resistive switching 
needs ultra-high threshold voltages. The concept of a MOFs-based memristor as a non-
volatile memory is validated (Figure 41b). Memory performance is mainly related to stor-
age capacity, access time, bandwidth, and period, therefor community researchers are 
driven to optimize the basic electrical properties of MOFs-based memristors, such as area, 
threshold voltage, switching speed, tolerance, and retention. In 2015, Pan developed a 
new MOFs material of HKUST-1 for memristor, and its I–V curve shows excellent sym-
metry and low threshold voltage, which means the device has a low power consumption 
(Figure 41a). The device can achieve more than 1.0 ×107 c ycles (Figure 41c), and still has 
outstanding resistive switching effect under the extreme temperature disturbance of −70–
70 °C (Figure 41d). However, its small on/off ratio makes device hard to distinguish the 
resistance state during high-frequency reading and writing. Park proposed an Al/ZIF-
8/Au/memristor with excellent on/off ratio (106) [71], low power dissipation (Vset = 1~2 V) 
and retention (4 × 103), but the reported number of cycles is only 40. Furtherly, a MOFs-
based memristor with Ag/PVA-UiO-66/FTO/glass structure was reported [60], which has 
reasonable endurance (500), retention (104), threshold voltage (0.5 V), on/off ratio (104), 
and size (area of modification is 50 nm). With the continuous emergence of new MOFs 
with high-performance, MOFs-based memristors will appear to be more suitable for non-
volatile memory. 

 
Figure 41. (a) I–V curves of Au/HKUST-1/Au/PET memristor [70]. (b) Performance of the memris-
tor-based memory. Reprinted from [35] with permission from Wiley. (c) Resistive state retention. 
(d) Temperature disturbance and cycling tolerance of the device. (a,c,d) reprinted from [70] with 
permission from Wiley. 

4.2. Artificial Synaptics for Neuromorphic Computing 
In the biological brain, information transmission between neurons is achieved 

through synapses. By imitating the mechanistic principles of biological brain computing, 
the synthesized MOFs-based memristor will realize the synaptic plasticity of the device. 
In the neuromorphic circuit that the device simulates the synapse, the top electrode and 
the bottom electrode correspond to the presynaptic membrane and the postsynaptic mem-
brane respectively, and the resistance value represents the weight value of the neural net-
work. According to the types of signals transmitted by synapses, they are divided into 

Figure 41. (a) I–V curves of Au/HKUST-1/Au/PET memristor [70]. (b) Performance of the memristor-
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4.2. Artificial Synaptics for Neuromorphic Computing

In the biological brain, information transmission between neurons is achieved through
synapses. By imitating the mechanistic principles of biological brain computing, the
synthesized MOFs-based memristor will realize the synaptic plasticity of the device. In
the neuromorphic circuit that the device simulates the synapse, the top electrode and the
bottom electrode correspond to the presynaptic membrane and the postsynaptic membrane
respectively, and the resistance value represents the weight value of the neural network.
According to the types of signals transmitted by synapses, they are divided into chemical
synapses (generally mammals) and electrical synapses (common in fish and amphibians).
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MOFs-based memristors also have electrical and optical synaptic devices corresponding to
external stimuli.

4.2.1. Electrical Artificial Synaptic

Ding and colleagues proposed the first MOFs-based memristor to achieve synaptic
plasticity with both learning and signaling functions. They proposed the synthesis process
of the Zn-TCPP MOF and the structure of synaptic based on it are shown in Figure 42a, and
Figure 42b, respectively. The corresponding relationship between biological synapses and
hardware circuits is vividly displayed (Figure 42c). Changes in the current of the device
over 10 cycles (Figure 42d) and a single cycle (Figure 42e) were recorded. It was found
that when 20 consecutive positive pulses of 3 V were applied, the device current rapidly
rose to 2 µA, and then it returned to slightly larger than the initial value while applying
20 consecutive negative pulses of −8 V. The experimental results show that the synapse
based on Zn-TCPP MOF has excellent conductance change and consistency, which can be
well used to simulate the change of synaptic weight value (potentiation and depression)
under the action of signal. The learning and forgetting processes of synaptic devices are
verified to be biologically consistent, as shown in Figure 42f. The number of pulses required
for the first, second, and last learning are respectively 80, 19, and 9. On the contrary,
their forgetting times gradually increase and in order as follows: 100 s, 125 s, and 155 s.
While the device demonstrates multiple synaptic plasticity, it requires the application of
pulses of very high amplitude and low frequency, which is disadvantageous in high-speed
neuromorphic computing. Later, Jeon proposed a high reliability synaptic device (Ag/ZIF-
8@PVP/ITO). The device has excellent electrical properties, such as operating voltages
of 1.24 V and −2.75 V, and high on/off ratio (7.8 × 103). With 100 pulses as a cycle, i.e.,
50 potentiation and 50 depression, the conductance value can be stably regulated within
10 cycles (Figure 43a). The absolute value of enhancement and suppression voltages are
same of 0.8 V, and the pulse frequency reaches the level of 1.0 MHz (1.0 × 106). It is
evaluated that the conductance value changes of five cells during the enhancement and
inhibition process (Figure 43b), which shows that the device has good consistency and
symmetrical regulation process. Although the device can control the conductance value
stably and reliably within 10 cycles, the conductance begins to drift in the 11th cycle. It
is worth mentioning that the device has the Spike Timing Dependent Plasticity (STDP)
feature related to timing, which is a necessary feature to realize the new generation of
Spiking Neural Network (SNN). The effect of the pulse direction on the synapse and the
effect of the arrival time of the presynaptic and post-synaptic pulses on the synapse need
to be considered. The definition of ∆t is shown in the Figure 43c, and STDP is similar to a
typical timing asymmetric form Figure 43d.

4.2.2. Optical Artificial Synaptic

Liu and colleagues first reported a novel 2D MOF material (Cu-THPP), and the device
based on it exhibits excellent synaptic plasticity under light stimulation. The realization
of opto-synaptic devices is based on the response of the MOF molecular structure to light
stimuli. The optical device still maintains good stability and high response in air, and
it has great potential for future robotic retina applications. As shown in Figure 44a, the
conductance state of synapse is adjusted after sensing the light stimulation, and then it
transmits the information to the next neuron. An optical signal was applied at the gate of
the 2D Cu-THPP-based synaptic device (Figure 44b), and its performance was evaluated
by testing the current changes in the source and drain, which respectively correspond the
membranes of presynaptic and post-synaptic. Through applying different wavelengths
of light stimulation to the synaptic array, the results show that the MOFs material is most
sensitive to 420 nm wavelength and has a best current response (Figure 44c). The current of
MOFs-based synaptic devices rapidly generates or gradually decreases as the light is turned
on or off, which is similar to the short-term potentiation (STP) characteristic (Figure 44d).
Through applying multiple identical light pulses in succession, the obtained current curve
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resembles the genetic memory curve in biology, as shown in Figure 44e. In addition, the
synaptic device was positively correlated with light time and light intensity, and the gate
voltage amplitude was inversely proportional to the device response time. The results
of the study are in line with the laws of human learning and memory. For example, the
former reflects that human brain learning is proportional to time and intensity, and the
latter reflects individual differences in learning between different people.
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(c) Circuit schematic of the synapse. (d) Current variation of the device upon repeated application of
positive and negative pulses. (e) Current variation of the device during one cycle (amplitude: 3 V
and −8 V, width: 0.05 s, interval: 0.25 s, base voltage: −1 V, VDS = −5 V). (f) Learning-forgetting
curve of the MOF memristor-based device (amplitude: 5 V, pulse width: 0.5 s, interval: 0.5 s, base
voltage: −1 V, VDS = −5 V). Reprinted from [102] with permission from Wiley.
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Figure 43. (a) Current variation of the device when positive and negative pulses are repeatedly
applied. (b) Average of five values for the potentiation and the depression results measured in five
cells. (c) Schematic diagram of pulses applied to test STDP properties. (d) STDP characteristics of the
device. Reproduced from [103] with permission from Elsevier.
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Figure 44. (a) Information processing architecture in the human brain. (b) 2D MOF-based synaptic
device structure. (c) Current changes of the MOF synaptic array under different wavelengths of
irradiated light. (d) Current changes of MOF synapses under 420 nm wavelength light pulse (Vds

= 1 V and VG = 0 V). (e) Changes in synaptic currents under continuous stimulation with 420 nm
wavelength light pulses. Reprinted from [104] with permission from Wiley.

4.3. In-Memory Computing Chips

Brain-inspired computing is based on a large amount of data for network learning
and training, which places huge demands on memory and processors. To the traditional
computing architectures, it often takes several weeks or even months. The non-volatile
nature of memristors allows the device to fuse memory and computation in a single unit,
resulting in a significant time and energy saving, which is the basis for enabling in-memory
logic operations and neuromorphic computing. As the active layer of memristor, MOFs
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films have shown great application prospects in electrical (optical) synapses and in-memory
logic operations. Although MOFs-based memristors are less explored in the field of neural
networks, it has been verified that the hardware circuits based on other memristors are
used to pattern recognition [27,105], especially for digit recognition based on convolutional
neural networks. Figure 45a shows the algorithm flow chart of Fashion-MNIST (Mixed
National Institute of Standards and Technology database) recognition based on memristor.
During the neural network training process, the network weights are iteratively updated
according to the error calculated by the algorithm. The synaptic weight is the actual device
conductance value. The signal input and result output of system are the voltage pulse and
the current, respectively. Therefore, the conductance value and the number of pulses is
required to have excellent linearity, and it is easier to calculate that the number of pulses
required to update the weights, which improves the training efficiency and reduced the
power consumption. Finally, input a large number of pictures to test network performance,
such as recognition accuracy and loss function. The hardware circuit architecture and
Convolutional Neural Networks (CNN) algorithm flowchart are shown in Figure 45b. The
memristor array implements the matrix operations involved in the pooling and convolution
process, and the fully connected layer correlates the local characteristics in the hidden layer
to judge the output result by analyzing the current value of each neuron.
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5. Conclusions and Outlook

Over the past two decades, there have been tremendous advances in memristor
and material of MOFs. Memristors have the advantages of scalability, in-memory logic
computing, and compatibility with CMOS, leading to systematical researches for them in
circuit design, neuromorphic computing, and device design. Abundant organic ligands
and metal ions can create a large number of MOFs with specific structural and functional



Molecules 2022, 27, 8888 40 of 45

properties. Hence, the Memristor based on MOFs have the advantages of fast flipping,
size scalability, high on-off ratio, and low power consumption, and degradability. In this
review, we systematically summarize and discuss the progress of MOFs-based memristor
from aspects including fabrication process, resistive switching mechanism, and potential
applications in storage and neuromorphic computing.

At the material level, constructing high-density and uniform thin films and controlling
the electrical properties of MOFs by tuning the metal ions or guest species adsorbed in the
pore space remain great challenges. It is worth mentioning that recent studies have shown
that high electrical conductivity and mobility can be achieved by changing the structure of
MOFs, such as two-dimensional conjugated MOFs and MOF skeletons with permanent
pores, and the use of bimetallic MOFs improves the conductivity of thin films [108,109].
In addition, the compatibility of MOFs with other materials highlighted in the roadmap
is still an urgent problem to be solved in the application of MOF memristors. Although
the hot solvent method has excellent versatility, it is difficult to control the thickness and
orientation of film by spin coating, which often needs the support of film-forming agents.
This problem can be solved by film-forming synthesis methods, such as liquid phase epitaxy
and interface synthesis. Importantly, the electrochemical synthesis can also well realize
the adjustable morphology and thickness of the film. However, the above film-forming
synthesis methods often have complicated steps or harsh conditions, which means the
selection of synthesis method needs further trade-offs in the actual application scenarios.

At the device level, it is necessary to deeply understand the resistance-switching mech-
anism and device manufacturing technology to give full play to the device performance
in practical applications. For neuromorphic and memory computing, logical operations
can be performed by applying optical signals and electricity on the device, and synaptic
plasticity can be achieved by tuning metal ions of device. At present, the material design
and theoretical calculations of the device are still in the exploratory stage. It should be
clarified for the resistive switching mechanism of the resistive switching layer material to
improve the devices performance.

At the application level, MOFs have a unique combination of properties that enable
applications that cannot be achieved with traditional organic or inorganic materials alone.
In the future, MOFs-based memristors will develop towards more dimensions and higher
density integration. We also believe it will guide the industry to realize the off-site inte-
gration of the three functional modules of sensing, storage, and computing, ultimately
removing the physical barriers and breaking the architecture of von Neumann.

In addition, although MOF memristors are currently in the stage of simple performance
testing, they still have great potential to replace CMOS devices and make breakthroughs in
green devices, neural computing, and information security. For green recyclable devices,
although existing MOFs are classified as green materials and play a key role in low-
carbon environmental protection, there is still a need to create more degradable and
recyclable MOFs. For neuromorphic computing, it is necessary to further optimize the
device performance to achieve more synaptic plasticity, such as LTP, LTD, STDP, SRDP, etc.,
as well as the design of neural network architecture for the device adapters. To further
promote the development of IoT information security, it is necessary to design hardware
security primitive circuits by utilizing the inherent characteristics of devices.

Summarily, the potential of memristors exhibited by MOFs is of great scientific signif-
icance in the post-Moore era. As the roadmap is continuously updated, the community
focuses on key core issues and jointly promotes the development of MOFs-based memris-
tors. It is believed that there will be more applications of MOFs-based memristors in the
next decade, and devices may also develop from laboratory devices to industrial devices.
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Abbreviations

IC Integrated Circuits
CMOS Complementary Metal Oxide Semiconductor
RRAM Resistive Random Access Memory
HRS High Resistance State
LRS Low Resistance State
PCN Pocket-Channel Framework
ZIF Zeolitic Imidazolate Framework
BTC Benzene-1mine-3-tricarboxylic acid
PET Polyethylene Terephthalate
EGaIn eutectic gallium-indium
GaInSn Gallium-indium-tin
CP Conductive Path
TE Top Electrode
BE Bottom Electrode
PVPy Polyvinylpyrrolidone
PMMA Poly-(methyl methacrylate)
PVA Polyvinyl Alcohol
NAND Not AND
NOR Not OR
WORM Write-Once-Read-Many
SCLC Space Charge Limited Conduction
ECM Electrochemical Metallization
CB Conductive Bridge
I–V Current Voltage Characteristic
STDP Spike Timing Dependent Plasticity
SNN Spiking Neural Network
MNIST Mixed National Institute of Standards and Technology database
CNN Convolutional Neural Networks
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