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Abstract: Polymerase Chain Reaction (PCR) is one of the most common technologies used to produce
millions of copies of targeted nucleic acid in vitro and has become an indispensable technique in
molecular biology. However, it suffers from low efficiency and specificity problems, false positive
results, and so on. Although many conditions can be optimized to increase PCR yield, such as the
magnesium ion concentration, the DNA polymerases, the number of cycles, and so on, they are
not all-purpose and the optimization can be case dependent. Nano-sized materials offer a possible
solution to improve both the quality and productivity of PCR. In the last two decades, nanoparticles
(NPs) have attracted significant attention and gradually penetrated the field of life sciences because
of their unique chemical and physical properties, such as their large surface area and small size
effect, which have greatly promoted developments in life science and technology. Additionally, PCR
technology assisted by NPs (NanoPCR) such as gold NPs (Au NPs), quantum dots (QDs), and carbon
nanotubes (CNTs), etc., have been developed to significantly improve the specificity, efficiency, and
sensitivity of PCR and to accelerate the PCR reaction process. This review discusses the roles of
different types of NPs used to enhance PCR and summarizes their possible mechanisms.

Keywords: NanoPCR; nanomaterials; specificity; efficiency; mechanisms

1. Introduction

Polymerase chain reaction (PCR) technology, first proposed by Mullis in the United
States in 1983 and invented in 1985, is a molecular biology technique used to amplify specific
DNA fragments and is regarded as a unique DNA replication in vitro. The most prominent
feature of PCR is that it can significantly increase the trace amount of DNA. So far, it has
been widely used in many different fields, such as medical diagnosis [1], food safety [2],
archaeological research [3], basic bioresearch, etc. However, the development of PCR is
subject to certain limits owing to low specificity, efficiency, and sensitivity. Although some
important parameters in PCR have been optimized to improve its specificity and efficiency,
including polymerase concentration, annealing temperature, cycle number, template type,
primer design, and magnesium ion concentration, the effect is still not satisfactory [4].
Nanotechnology, therefore, has been applied to improve the performance of PCR. At
present, many nanomaterials have been successfully used to enhance the specificity and
efficiency of PCR, such as Au NPs [5], QDs [6], CNTs [7], graphene oxide (GO) and reduced
GO (rGO) [8], partial metal oxidation materials [9,10] (e.g., titanium dioxide, zinc oxide)
and other composite materials like macromolecule polymer doped with Au NPs [11],
amino-modified semiconductor magnetic NPs [12], and so on.
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Nanomaterials are composed of particles with at least one external dimension less
than 100 nm, and they have been widely used in electronics, aerospace, military, chemical,
biomedical, and healthcare products [13]. In PCR, nanomaterials are added to the reaction
system that mainly contains primers, enzymes, and templates, due to the characteristics
of nanomaterials and their role in PCR. Here, numerous NPs were divided into three
categories according to the effects of nanoparticles in PCR. The first type of nanomaterial,
such as Au NPs, GO, carbon nanopowder (CNP), etc., has good thermal conductivity,
which could speed up the process and shorten the reaction time of the original reaction
procedure, therefore enhancing the efficiency of PCR. The second one, which includes
CNTs, magnetic NPs, polymer-modified silica, QDs, etc., may interact with the surface of
nanomaterials via van der Waals forces among the reaction system components, or provide
many binding sites to fix polymerases, so that the added template and material form a
competitive relationship, and thus enhance the specificity of PCR. The third type includes
polymer-modified gold, GO, CNTs, ZnO with amino groups, etc., which have a positive
surface charge and attract negatively charged nucleotide chains (templates and primers)
containing phosphate groups, thereby enhancing the specificity of PCR. Of course, the
enhancement of each type of NP described here in PCR is not just a cause, it is the main
enhancement mechanism. Some NPs create catalytic activity or similar to ssDNA-binding
proteins (SSB), which have the characteristics of selective adsorption of ssDNA. This is
often caused by a variety of factors.

However, the mechanisms of nanoPCR are still unclear because of the complexity
of the PCR system and characteristics of NPs. The possible mechanisms are described as
follows: (1) surface interactions between nanomaterials and PCR components; (2) thermal
conversion rate of nanomaterials; (3) electrostatic interaction; (4) being analogous to ssDNA
binding proteins (SSB); and (5) catalytic activity. Undoubtedly, these mechanisms cannot
explain clearly the impact of all nanomaterials on PCR. Therefore, more undiscovered
mechanisms need to be thoroughly explored. Herein, this review aims to discuss the
applications of different nanomaterials in PCR and summarize the possible mechanisms
between various nanomaterials and the PCR components.

2. Utilizing Different Nanomaterials to Enhance PCR Effects
2.1. Metal Nanomaterials
2.1.1. Au NPs

Au NPs are the most well-studied nanoparticles, and their interesting chemical and
photophysical properties make them an integral part of nanoscience and ideal for biological
and other commercial laboratories, which contain non-toxic, good biocompatibility, and
unique chemical and optoelectronic properties. For example, Au NPs are characterized
by adjustable size and physical size, catalytic activity, high surface volume ratio, high
stability, easy synthesis and surface modification, and strong light absorption and scattering
properties [5,14]. Figure 1 shows transmission electron microscopy (TEM) images of Au
NPs in different morphologies [15,16].

Li et al. for the first time reported the optimization of Au NPs on PCR. The Au NPs
with a particle size of about 13 nm were proved to dramatically improve the efficiency
of PCR. Compared with the reagent without Au NPs, the amplification yield of PCR
reagent with Au NPs increased at least 104 to 106-fold with shortened PCR time in testing
different sizes of the DNA fragments [17]. Subsequently, Pan et al. studied the interaction
mechanism of Au NPs and DNA polymerase in the PCR system. It was found that Au NPs
could optimize the PCR amplification strategy and inhibit the nonspecific amplification of
PCR. The amplification limit of detection (LOD) increased approximately seven-fold [18].
In 2008, Binh et al. found that the effect of Au NPs was not to increase PCR specificity but
to favor smaller products over more oversized products, regardless of specificity. Such an
effect could be duplicated simply by reducing polymerase concentration but be reversed
by increasing polymerase concentration or adding BSA as a competitive displacer [19]. The
study of the interaction between Au NPs and DNA polymerase indicated that the addition
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of DNA polymerase could eliminate the inhibitory effects of the excess Au NPs, and in the
reverse, Au NPs could eliminate the inhibitory effects of the excess DNA polymerase [20].
Moreover, Au NPs have been proven to be able to simultaneously enhance both PCR
efficiency and specificity by improving the thermal conductivity of the PCR solution [21].
Afterwards, Lou et al. generally summarized the three effects of Au NPs on PCR: (1) Au
NPs adsorbed polymerase; (2) Au NPs decreased the melting temperatures (Tm) of both
complementary and mismatched primers and increased the Tm difference between them;
and (3) Au NPs facilitated the dissociation of the PCR products in the denaturing step [22].
Mandal et al. proposed that the enhancement of PCR yield by Au NPs with a particle size
of 11 nm could be attributed to the greater affinity and thermodynamic stability of Au NPs
for Taq DNA polymerase compared to the primer or DNA template [23].
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2.1.2. Ag NPs

At present, the use of metallic silver, silver nitrate, and silver sulfadiazine to treat
burns, wounds, and bacterial infections has significantly declined because of the emergence
of antibiotics. With the tremendous impetus of nanotechnology gains, nano-sized silver (Ag
NPs) shows dramatically diverse chemical, physical, and optical properties and has high
optical tunability, large absorption cross sections, and scattering properties [16]. Figure 2a,b
are the TEM images of triangular NPs and spherical Ag NPs, respectively.
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Wang et al. found that the presence of Ag NPs could significantly retain the specificity
of long PCR products after three rounds of repeated amplification [24]. Liu et al. studied
the effect of Ag NPs on DNA synthesis in PCR where Ag NPs over a certain size and
concentration significantly inhibited PCR amplification [25]. Recently, Kadu et al. reported
the effect of the shape of Ag NPs on photothermal properties and PCR efficiency. Triangular
Ag NPs were able to increase PCR efficiency [16].

2.2. Carbon-Based Nanomaterials
2.2.1. CNTs

CNTs are greatly advantageous because of high electron transport without electronic
scattering and electronic conductivity; thus, they provide high-performance sensing tran-
sistors. More specifically, CNTs possess a high aspect ratio (the ratio of lateral size to
thickness), large specific surface area (SWCNT > 1600 m2/g, MWCNT > 430 m2/g), as
well as good mechanical and electrical (~5000 s/cm) properties [26,27]. The SEM and TEM
images of SWCNTs and MWCNTs are shown in Figure 3.
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Cui et al. first reported the positive effect of CNTs on PCR amplification. The addition
of single-walled CNTs (SWCNTs) into the reaction liquid increased the amount of PCR
product at a SWCNT concentration of 3 µg µL−1, but reversed at SWCNT concentrations
higher than 3 µg µL−1 [7]. The beneficial effect of both SWCNTs and multiwalled CNTs
(MWCNTs) was also reported to enhance the specificity and total efficiency of long PCR
(14 kb). The hydroxylic and carboxylic CNTs had similar enhancing effects as well. More-
over, various functional groups and polymer-modified CNTs also played an even more
substantial role in enhancing PCR amplification [28]. The PEI-modified MWCNTs with
different surface charge polarities as a novel class of enhancers were successfully used to
improve the specificity and efficiency of PCR. Positively charged PEI-modified MWCNTs
(CNT/PEI) significantly enhanced the specificity and efficiency of PCR at an optimum con-
centration as low as 0.39 mg L−1, whereas neutral CNT/PEI modified with acetic anhydride
(CNT/PEI.Ac) had no such effect. Although the negatively charged CNT/PEI modified
with succinic anhydride (CNT/PEI.SAH) could enhance the PCR, the optimum concen-
tration required (630 mg L−1) was over three orders of magnitude higher than that of the
positively charged CNT/PEI [29]. On the other hand, the amine functionalized MWCNT
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(NH2-MWCNT) dispersion enhanced total PCR efficiency up to 70% after being sonicated,
centrifuged, and filtered, while NH2-MWCNTs inhibited the reaction significantly at similar
concentrations without being filtered [30]. The study of three kinds of CNTs containing
pristine, amine-functionalized, and carboxyl-functionalized SCNTs showed that both the
pristine and the amine-functionalized SCNTs could enhance the final amplification yields
of the samples. However, the carboxylated SCNTs displayed an inhibitory action in all
samples [31].

2.2.2. CNP

CNP has high specific surface area, strong adsorption, and high electrochemical capac-
ity. As seen in Figure 4a, CNP has two broad peaks at 2θ of 25◦ and 43.8◦, respectively. The
diffraction peaks correspond to the planes (002) and (101) of graphite, indicating either a
high degree of graphitization or a high degree of crystallinity, which can increase the ther-
mal conductivity of CNP nanofluids due to the amorphous particles scatter phonon. This is
probably the main reason why it enhances PCR. Figure 4b,c show the SEM photographs of
the morphology of CNP. Clearly, the CNP is irregular, and the particles tend to aggregate
with the diameter of CNP around 60 nm [32].
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Over ten years ago, carbon nanopowder was proven for the first time to have a
beneficial effect on enhancing the efficiency of PCR amplification in a repeated PCR and a
long PCR system. For the repeated PCR, the addition of a certain amount of CNP could
obtain the target products even in sixth-round amplification with high specificity dependent
on the concentration of CNP. The CNP significantly improved the amplification efficiency
for long PCR reactions [33].
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2.2.3. Graphene

Graphene, known as a 2D crystal of sp2-hybridized carbon atoms arranged in six-
membered rings, has an extensive theoretical specific area, unparalleled thermal and
electricity conductivity, and fascinating electronic properties such as an ambipolar electric
field effect along with ballistic conduction of charge carriers [34]. However, during the
preparation of GO, the oxygen-containing functional groups are usually introduced on
the surface of graphene, and these heteroatoms will combine with adjacent carbon atoms
through covalent bonds or weak van der Waals forces, resulting in a sharp decrease in
thermal conductivity due to high-density defects caused to graphene [35]. Therefore, the
thermal conductivity better enhances the properties of rGO than GO in PCR.

In the study of graphene-enhanced PCR, Jia et al. found that the specificity of the
PCR amplification could be improved by adding GO at concentrations from 12 mg·mL−1

to 60 mg·mL−1. However, GO did not affect the PCR when the GO concentration was
lower than 12 mg·mL−1, while it exhibited an inhibitory effect at concentrations higher
than 70 mg·mL−1. This study first demonstrated that rGO could significantly improve PCR
specificity. It was then concluded that rGO was superior to GO in enhancing specificity [36].
Wang et al. further demonstrated that 1 µg·mL−1 of GO effectively enhanced the specificity
of the error-prone multi-round PCR [8]. In addition to conventional graphene, Abdul et al.
explored the effect of graphene nanoflakes (GNFs) on PCR and found that 0.01% (w/w)
GNFs provided an unambiguous 10-fold enhancement in the PCR yield. In addition, the
thickness of the GNFs had a significant impact on the yield of PCR products. The 8 nm-thick
GNFs increased the yield higher than other sizes [37]. Recently, Zhong et al. discussed the
effects of GO through surface modification on PCR. The zwitterionic polymer-modified
GO was found to be superior to other GO derivatives, with different charges enhancing the
specificity of PCR [38].

2.3. Oxide Nanomaterials
2.3.1. TiO2

TiO2 has been known as one of the cheapest and most widely-available types of NPs
utilized for thermal conductivity enhancement [39]. Murshed et al. [40] demonstrated that
TiO2 NPs have wonderful physical and chemical stability. It has been found that their
particle size, shape, and volume fraction are the most critical factors that contribute to
enhanced thermal conductivity.

Both size and concentration of TiO2 NPs affects PCR. It was found that TiO2 NPs
inhibited DNA synthesis in vitro more severely than the TiO2 particles in microscale at
the equivalent concentration and the inhibition effect of TiO2 NPs was concentration-
dependent in the dark [9]. About a decade ago, Rak et al. observed that TiO2 NPs with
∼25 nm diameter caused significant enhancement of PCR efficiency for various types of
templates. The optimal concentration was determined to be 0.4 nM, resulting in up to a
seven-fold increase in the amount of PCR product. As much as a 50% reduction in overall
reaction time was also achieved by utilizing TiO2 NPs without compromising the PCR
yield [41]. Upon the addition of TiO2 NPs with a particle size of 7 nm to the ordinary
PCR, RT-qPCR, and RT-PCR (reverse transcription PCR), the effects of TiO2 NPs were
investigated. The results indicated that 0.2 nM TiO2 NPs could achieve target amplification
at a very low template concentration in an ordinary PCR system. Furthermore, relative to
the larger TiO2 particles (25 nm) used in a previous study, the smaller TiO2 particles (7 nm)
used in this study increased the yield of PCR by three-fold or more [42].

2.3.2. ZnO

ZnO has been widely studied because it is non-toxic and easy to synthesize. Up
to now, powdery ZnO in various morphologies, including nanowires, nanoflowers, and
spherical and hierarchical structures have been successfully prepared and used to study
their photocatalytic properties [43]. ZnO nanoflowers and their composites have been
effectively used for PCR [44]. The XRD patterns and SEM images of ZnO nanoflowers
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are shown in Figure 5. The diffraction peaks are exactly the same as the standard card in
the ZnO powder diffraction file (PDF) #36-1451. This clearly shows that the synthesized
ZnO nanoflowers are of high purity. The SEM images show that the synthesized ZnO
nanoflowers are self-assembling and clearly depict the nanopetal-like structure that emerges
from the center of the flower. The synthesized ZnO nanoflowers are clear, uncrowded, and
well dispersed, with an average diameter of about 1–2 µm [44].
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from Ref. [44], Copyright 2020, MDPI).

The tetrapod-shaped SiO2-coated ZnO nanostructure with amino groups on the surface
was first discovered to have a positive effect on PCR and could increase the yield of PCR
amplification [10]. The incorporation of the ZnO nanoflowers in PCR led to a drastic
improvement in the efficiency and yield of the ZnO nanoflower-assisted PCR, and reduced
the time to perform the PCR assay [44].

2.3.3. Fe3O4

Magnetic NPs like Fe3O4 are characteristic of good magnetization and super-para-
magnetism. Compared with other nanomaterials, the surface of magnetic NPs is more able
to be functionalized.

For instance, Fe3O4 nanomaterials have been found to be able to improve the sensitivity
of PCR with a detection limit reaching 4.26 mol·L−1. Kambli et al. compared the PCR
efficiency enhanced by three transition metal NPs in the form of stable colloidal suspensions
at varying concentrations. The AFM images of three nanoparticles are shown in Figure 6.
Compared to the citrate stabilized Ag NPs (25 nm, 45%) and Au NPs (15.19 nm, 134%), the
highest amplification efficiency of 190% was received using the ammonium salt of oleic
acid-coated Fe3O4 NPs with an average size of 33 nm at a concentration of 7.2 × 10−3 nM
in a conventional PCR system [45].
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Ozalp et al. synthesized magnetic core-silica shell NPs for easy one-step fixation of Taq
polymerase directly from crude extract formulations. The magnetic properties of the pellets
facilitate rapid purification to eliminate inhibitory elements present in the crude extract
during Taq polymerase isolation. They found that at room temperature, after one month,
the common Taq enzyme lost about 50% of the cationic activity of the amplification product,
while the Taq-silica hybrid retained its original activity for about five months. Additionally,
by recovering the Taq polymerase immobilized on the magnetic silica nanoparticles, re-
peated PCR was performed, and it was found that the immobilized enzymes still retained
their original activity after four cycles, although their activity decreased to 45% after seven
cycles [46]. Recently, Yajima et al. successfully developed photo-cross-linkable probe-
modified magnetic particles (PPMPs) for sequence-specific recovery of target nucleic acids
using optical cross-linkable artificial nucleic acid probes and magnetic particles. PPMPs
were prepared by adding biotin to the end of the photo-cross-linkable probe following
affinity binding with streptavidin-coated magnetic beads. Nucleic acid probes modified
with photo-cross-linked artificial nucleic acids can hybridize to the nucleic acid of interest in
a sequence-specific manner and then firmly capture the nucleic acid of interest by covalent
bonding mediated by UV irradiation. Then, the target nucleic acid is detected by trap-
ping the target-bound probe on the surface of the magnetic particles and subjecting these
collected magnetic particles to PCR so as to improve the sensitivity of the PCR detection
(Figure 7) [47].
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2.3.4. MgO

MgO nanomaterials have unique properties such as being highly stable with good
dispensability and less toxic effects. For example, Narang et al. introduced MgO NPs to a
PCR system and caused significant improvement in PCR efficiency [48].

2.3.5. SiO2

SiO2 nanomaterials with well-defined morphology and porosity were first prepared
and characterized by Stober. Carbonized polydopamine silica (C-PDA silica) were synthe-
sized and employed to increase PCR efficiency (Figure 8). As compared with the effects of
SiO2 NPs and PDA silica on PCR, C-PDA silica exhibited about 1.5 and 1.2 times higher
efficiency. As a result, C-PDA silica can not only reduce the PCR cycle but also increase the
final quantity of the PCR product [49].



Molecules 2022, 27, 8854 9 of 26Molecules 2021, 26, x FOR PEER REVIEW 10 of 30 
 

 

 

Figure 8. (a) Schematic illustration of the synthesis process of silica, PDA silica, and C-PDA silica 
and (b) their corresponding TEM images. All scale bars in (b−d) are 100 nm for the main panels and 
20 nm for the insets, respectively. (e) C-PDA silica was employed to increase the PCR efficiency. 
(Reproduced with permission from Ref. [49], Copyright 2015, American Chemical Society). 

2.4. Fluorescent Nanomaterials 
2.4.1. QDs 

QDs, as a new kind of fluorescent material, possess many excellent characteristics 
such as size-tunable emission, wide absorbance bands, narrow symmetric emission bands, 
high photostability, etc. 

In 2009, Wang et al. [6] first found that CdTe QDs could increase the specificity of the 
PCR at different annealing temperatures with DNA templates of different lengths. Also, 
CdTe QDs were reported to accelerate PCR speed [50]. Then a Pfu polymerase based 
multi-round PCR technique was developed through being assisted by CdTe QDs, and the 
specificity could be retained even in ninth-round amplification [51]. The stacking of the 
primers on graphene QDs(GQDs) could improve the sensitivity and specificity of PCR by 
improving the efficiency of base-pairing between the primer and the template. By increas-
ing polymerase activity, GQDs could improve the yield of PCR, where GQDs are tuned 
through chelating magnesium ions with their peripheral carboxylic groups [52]. 

2.4.2. Up-Conversion Nanomaterials 
Photon up-conversion is the phenomenon where high-energy photons are emitted 

upon the excitation of low-energy photons (Figure 9). Nucleic acid detection based on up-
conversion NPs (UCNPs) displays a high signal-to-noise ratio and no photobleaching and 
has been widely applied. For example, Wang et al. [53] demonstrated that the addition of 
UCNPs to the reaction mixtures at appropriate concentrations could improve PCR speci-
ficity. 

Figure 8. (a) Schematic illustration of the synthesis process of silica, PDA silica, and C-PDA silica
and (b) their corresponding TEM images. All scale bars in (b–d) are 100 nm for the main panels
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2.4. Fluorescent Nanomaterials
2.4.1. QDs

QDs, as a new kind of fluorescent material, possess many excellent characteristics
such as size-tunable emission, wide absorbance bands, narrow symmetric emission bands,
high photostability, etc.

In 2009, Wang et al. [6] first found that CdTe QDs could increase the specificity of the
PCR at different annealing temperatures with DNA templates of different lengths. Also,
CdTe QDs were reported to accelerate PCR speed [50]. Then a Pfu polymerase based
multi-round PCR technique was developed through being assisted by CdTe QDs, and the
specificity could be retained even in ninth-round amplification [51]. The stacking of the
primers on graphene QDs(GQDs) could improve the sensitivity and specificity of PCR
by improving the efficiency of base-pairing between the primer and the template. By
increasing polymerase activity, GQDs could improve the yield of PCR, where GQDs are
tuned through chelating magnesium ions with their peripheral carboxylic groups [52].

2.4.2. Up-Conversion Nanomaterials

Photon up-conversion is the phenomenon where high-energy photons are emitted
upon the excitation of low-energy photons (Figure 9). Nucleic acid detection based on
up-conversion NPs (UCNPs) displays a high signal-to-noise ratio and no photobleaching
and has been widely applied. For example, Wang et al. [53] demonstrated that the ad-
dition of UCNPs to the reaction mixtures at appropriate concentrations could improve
PCR specificity.
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2.5. Others
2.5.1. Hybrid Nanocomposites

In the past decade, the application of composite nanomaterials in PCR has emerged
to optimize the disadvantages of nanoparticles such as easy aggregation, poor adsorption
capacity, poor thermal conductivity, etc., through surface modification or compounding of
multiple NPs for the purpose of improving the characteristic properties of nanoparticles.

Although Au NPs have been used maturely in PCR, it has been found that surface-
modified Au NPs have also had a strong enhancement effect on PCR in recent years. In
addition, some Au modified complexes have further specific effects on PCR. Chen et al.
synthesized the dendrimer-entrapped Au NPs (Au DENPs) using amine-terminated G5
dendrimers as templates and different compositions as additives to investigate their effects
on the specificity and efficiency of PCR amplification. It was found that the optimum
concentration of Au DENPs could be reduced to as low as 0.37 nM, much lower than that
of NH2-G5 dendrimers without Au NPs entrapped [54]. One year later, using poly (diallyl
dimethylammonium) chloride (PDDA) as novel PCR enhancers, Yuan et al. verified the
improvement of three kinds of Au NPs modified with different surface charge polarities
in the efficiency and specificity of an error-prone two-round PCR system. The optimum
concentrations of positively charged PDDA-Au NPs were different and as low as 1.54 pM,
while the negatively charged Na3Ct-Au NPs were over three orders of magnitude higher
than the positive ones [11]. Additionally, polyethylene glycol (PEG)-modified polyethylen-
imine (PEI)-entrapped Au NPs (PEG-Au PENPs) showed potential capacity to enhance
the specificity and efficiency in both two-round PCR and GC-rich PCR. As the proportion
of gold content increased, the optimum concentration of the modified Au NPs decreased
(Figure 10) [55].

Some nanomaterials can be effectively applied to PCR, but there are always some
limitations. For example, despite the merits and capabilities of GO, a severe agglomeration
level leads to a limited surface area, which may impede PCR performance. The modification
of GO with Au NPs overcomes these challenges as hybrid nanomaterials maintain the
beneficial features of both precursor materials and provide advantages unique to the hybrid
material through the combination of functional components (Figure 11). Jeong et al. [56]
synthesized an Au NP and GO hybrid composite and applied it as a PCR enhancer.
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Figure 11. (a,b) TEM images of the GO and GO-Au composites, respectively. (c) XRD images of
the GO and GO-Au composites. (d) Raman spectra of the GO and GO-Au composites. (e) UV-
vis absorption spectra of the GO, Au NPs and GO-Au composites from a to c. (Reproduced with
permission from Ref. [57], Copyright 2012, Hindawi).

Dao Van et al. [58] successfully synthesized Fe3O4/SiO2 NPs consisting of a 10–15 nm
core and a 2–5 nm thick silica shell. The Fe3O4/SiO2 NPs were found to be more efficient
at purifying DNA from HBV and EBV than using commercial Fe3O4/SiO2 particles, as
indicated by (i) brighter PCR amplification bands for HBV and EBV viruses and (ii) higher
sensitivity for PCR-based EBV loading detection.

2.5.2. Other NPs

Metal-organic frameworks (MOFs) are special organic–inorganic hybrid porous solids
with extraordinarily high surface areas, tunable pore sizes, adjustable internal surface
properties, and an extraordinary degree of variable structures. These features endow
MOFs with potential gas or liquid adsorption/storage applications, such as drug delivery,
polymerization, catalysis, and biosensors. Recently, Sun et al. used UiO-66 and ZIF-8
to optimize the error-prone two-round PCR and found that both UiO-66 and ZIF-8 not
only enhanced the sensitivity and efficiency of the first-round PCR but also increased the
specificity and efficiency of the second-round PCR. Moreover, both MOFs could widen
the annealing temperature range of the second-round PCR [59]. Also, Rasheed et al.
developed a hexagonal boron nitride (hBN) NP-based PCR assay for the rapid detection of
Acanthamoeba to amplify DNA from low amoeba cell density. As low as 1 × 10−4 (wt%)
was determined as the optimum concentration of hBN NPs, which increased Acanthamoeba
DNA yield up to ~16%. Further, it was able to reduce PCR temperature, which led to a
~2.0-fold increase in Acanthamoeba DNA yield at an improved PCR specificity at 46.2 ◦C
low annealing temperature. hBN nanoparticles further reduced standard PCR step time by
10 min and cycles by 8 min, thus enhancing Acanthamoeba detection rapidly [60].

3. The Effects of NPs in Real-Time PCR

Real-time PCR is routinely used in molecular biology labs just like conventional PCR.
Its advantages over conventional PCR include the ability to visualize reactions that have
worked in real time and without the need of an agarose gel. It also allows truly quantitative
analysis. One of the most common uses of real-time PCR is to determine the copy number
of a DNA sequence of interest. Using absolute quantitation, the user is able to determine
the target copy numbers in reference to a standard curve of defined concentration in a far
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more accurate way than ever before. Here we discuss the effect of some NPs across the
real-time PCR amplification process [61].

Namadi et al. [62] did a very meaningful study in which they used gold NPs to bind
to targets to show overexpression of follistatin-related protein 1 (FSTL1) and FSTL3 in heart
failure (p < 0.05) by real-time PCR. The data showed that the elevated expression of FSTL1
and FSTL3 was a marker of heart failure and was detected within 30 min by synthetic Au
NPs, which was accurate and rapid.

Hu et al. [63] also investigated GO-based qRT-PCR detection methods, which con-
firmed that GO could reduce the occurrence of non-specific amplification by non-covalent
interaction with primers and ssDNA, significantly improving the sensitivity and specificity
of qRT-PCR detection. As shown in Figure 12, compared with conventional qRT-PCR,
the Ct value of the GO-based qRT-PCR significantly decreased (p < 0.05) (Figure 12a).
Furthermore, the results of agarose gel electrophoresis confirmed that the GO-based qRT-
PCR exhibited no non-specific amplification, while the conventional qRTPCR displayed
apparent non-specific band amplification (Figure 12b).
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At present, one of the most popular techniques in PCR and real-time PCR detec-
tion is the separation and purification of DNA by magnetic NPs to improve detection
sensitivity [64,65]. For example, Yang et al. developed a method combining nanoparticle-
based immunomagnetic separation (IMS) and real-time PCR for the rapid and quantita-
tive detection of Listeria monocytogenes. Carboxyl modified magnetic NPs were cova-
lently bound with rabbit anti-L. monocytogenes via the amine groups. L. monocytogenes
DNA ≥ 102 CFU/0.5 mL was detected in milk samples containing L. monocytogenes, rang-
ing from 103 to 107 L. The number of cells calculated based on the CT value is 1.5 to 7 times
that of the plate count. The results showed that both the use of NPs and the choice of anti-L.
monocytogenes in the IMNP-based IMS in combination with real-time PCR has improved
the sensitivity of L. monocytogenes detection from both nutrient broth and milk samples [66].
Bakthavathsalam et al. [67] developed a rapid and sensitive method for immunomagnetic
separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated
magnetic NPs were functionalized with carboxy groups to which anti-Salmonella antibodies
raised against heat-inactivated whole cells of Salmonella were covalently attached. The
immune-captured target cells were detected in beverages like milk and lemon juice by
multiplex PCR and real-time PCR with a detection limit of 104 cfu·mL−1 and 103 cfu·mL−1,
respectively. Zhong et al. [68] extracted DNA by magnetic particles to produce high-quality
DNA for real-time quantitative PCR using an optimized set of primers. The method was
highly sensitive, as it was capable of detecting as little as 100 cfu of P. aeruginosa. It was also
highly specific, as DNA extracted from other species of bacteria did not generate positive
signals. Yuan et al. similarly used magnetic beads to isolate DNA from affected periodontal
tissue and detect Porphyromonas gingivalis DNA by routine or quantitative real-time PCR,
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which has been shown to be specific, sensitive, and accurate [69]. Ernst et al. optimized
the method for extracting and purifying methicillin-resistant Staphylococcus aureus (MRSA)
DNA with magnetic NPs, and it could save approximately 20 min [70]. Wu et al. [71]
used protamine-coated magnetic NPs (PMNPs) to capture suspended viral particles, a
process that led to a selective concentration of viral particles, which could subsequently
be quantified for real-time PCR analysis. A sensitive real-time PCR detection method
was established.

Xu et al. [72] developed an ultrasensitive method involving (1) Au NPs encoded
with double-stranded DNA as the first signal amplification and goat anti-staphylococcal
enterotoxin B (SEB) polyclonal antibodies and (2) magnetic microparticles coated with anti-
SEB monoclonal antibodies to detect SEB. Both functionalized nanoparticles can capture
SEB in a sandwich system. The released DNA barcodes were then characterized through
SYBR Green real-time PCR and resulted in the second signal amplification (Figure 13).
Its detection limit could reach 0.269 pg mL−1, which was 1000-fold lower than that of
conventional enzyme-linked/immunosorbent assay.
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Figure 13. Schematic of SEB analysis based on the BCA. (A) Preparation of pAb–AuNP–DNA barcode
probes. (B) Principles of BCA combined with real-time PCR. (Reproduced with permission from
Ref. [72], Copyright 2019, Elsevier).

4. Mechanisms of Nanomaterials in PCR

Table 1 summarizes the enhancement effects and mechanisms of different nanomateri-
als one by one.
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Table 1. Reports of nanomaterials enhancing polymerase chain reaction.

Category Material Type of DNA Molecule Mechanism Effect References

Metal
nanomaterials

Au NPs

cDNA from bladder cancer
cell line and lung cancer
tissue, BNIP3 cDNA from
bladder cancer cells and
colorectal tissue

Thermal conductivity
Increase the yield by
104–106 times;
Shorten the reaction time

[17]

309 bp fragment from
pBR322 DNA Surface interactions

Increase the yield of PCR
product; Specificity;
Efficiency

[18]

283-bp λ-DNA /
Enhance sensitivity and
specificity in
multi-round PCR

[19]

309 bp λ-DNA and
genomic cDNA Surface interactions Specificity; Efficiency

(favor smaller products) [20]

pBR322 DNA template Thermal conductivity Specificity; Efficiency [21]

Human male genomic DNA Surface interactions;
Catalytic activity Specificity; Efficiency [22]

Housekeeping gene GAPDH
from the human DNA
template

/ Increase the yield of
PCR product [23]

Au DENPs 283-bp λ-DNA Electrostatic interactions Specificity; Efficiency [54]
PDDA-Au NPs 283-bp λ-DNA Electrostatic interactions Specificity; Efficiency [11]

PEG−Au PENPs 283-bp λ-DNA Electrostatic interactions;
Thermal conductivity Specificity; Efficiency [55]

Ag NPs

g-DNA,
λ-DNA (kb) Thermal conductivity

Increased PCR efficiency
with long DNA and
repeated amplification

[24]

714 bp GFP gene Surface interactions Inhibition [25]
750 bp mCherry
containing plasmid / Efficiency [16]

Carbon-based
nanomaterials

CNTs
410 bp DNA Surface interactions;

Catalytic activity
Increase the yield of
PCR product [7]

14.3 kb λ-DNA / Specificity; Efficiency [28]

CNT/PEI 283 bp λ-DNA Electrostatic interactions;
Thermal conductivity Specificity; Efficiency [29]

NH2-MWCNTs 94 mer random DNA
oligonucleotide library Surface interactions Specificity; Efficiency

(filtered NH2-MWCNT) [30]

SWCNTs,
NH2-SWCNTs 283 bp λ-DNA Electrostatic interactions Increase the yield of PCR

product [31]

CNP 540 bp g-DNA Surface interactions

Increased PCR specificity
and efficiency with long
DNA and repeated
amplification

[33]

Graphene
300 bp fragment from
pET-32a plasmid DNA

Surface interactions;
Electrostatic interactions;
Thermal conductivity

Specificity [36]

283 bp λ-DNA Surface interactions Specificity [8]
GNFs 1248 bp g-DNA Thermal conductivity Reduce cycles, Efficiency [37]
GO pET-32a plasmid Electrostatic interactions Specificity [73]

Oxide
nanomaterials

TiO2

650 bp DNA Surface interactions Inhibition [9]
Mouse and human genomic
DNA, plasmid DNA, and
mouse complementary DNA
[cDNA]

Thermal conductivity Efficiency [41]

cDNA or gDNA / Increase the yield of
PCR product [42]

Silica-coated and
amino-modified
ZnO

Plasmid DNA Electrostatic interactions Increase the yield of PCR
product [10]

ZnO 619 bp and 666 bp DNA / Specificity; Efficiency;
Reduce reaction time [74]

Fe3O4 800 bp prokaryotic DNA Surface interactions;
Thermal conductivity Efficiency [75]

MgO / / Efficiency [48]

SiO2

Genomic DNA of E. coli (eae1,
248 bp) and pEGFP-C1
plasmid (egfp, 800 bp)

Surface interactions Increase the final quantity
of PCR product [49]
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Table 1. Cont.

Category Material Type of DNA Molecule Mechanism Effect References

Fluorescent
nanomaterials

CdTe QDs

λ-DNA
Analogous to ssDNA
binding protein (SSB);
Surface interactions

Specificity [6]

1000 bp human genomic
DNA Surface interactions Reduce reaction time [50]

Human DNA, plasmid DNA
or marine fouling
organism DNA

Surface interactions Retained specificity in the
ninth-round amplification [51]

GQDs 80 bp fragment from a
GC-rich DNA Surface interactions

Specificity; Efficiency;
Increase the yield of PCR
product

[52]

UCNPs 120 bp 5S rRNA / Specificity [53]

Others

GO-Au
composites

Genomic DNA of Listeria
monocyte (200 bp) and
Scomber japonicas (800 bp)

Surface interactions
Specificity; Efficiency;
Broad annealing
temperatures

[56]

MOFs λ-DNA Surface interactions
Specificity; Efficiency;
Wide annealing
temperatures

[59]

4.1. Surface Interactions

For metal-nanomaterials, a possible mechanism was proposed that Au NPs might
modulate the activity of polymerase to improve PCR amplification [76], effectively re-
ducing polymerase concentration to suppress the amplification of longer products while
favoring amplification of shorter products through nonspecifically adsorbing polymerase
in the nanoparticle absorption spectrum and electrophoretic mobility in the presence of a
polymerase [19]. Lou et al. [22] reported that nanoPCR could be regulated by the surface
interactions between not only NPs and polymerases but also primers and products ab-
sorbed by metal-nanomaterials, as shown in Figure 14. Similar to Au NPs, the adsorption
of polymerase, primers, and templates by nano-silver was claimed to be the main reason
for the inhibition of DNA synthesis [25].
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Cui et al. [7] found that the DNA templates and Taq enzymes were attached to
the bundles of SWCNTs in PCR products for carbon-based nanomaterials. The possible
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mechanism could be the aggregation of reaction components caused by the van der Waals
attraction. MWCNTs with DNA and enzymes were pointed out to prevent their further
agglomeration through strong physical interactions [30]. Zhang et al. indicated that carbon-
based nanoparticles could directly bind with DNA molecules to improve the PCR efficiency
observed by atomic force microscopy [33]. The interaction between rGO and Pfu DNA
polymerase was proved to play a dominant role in improving the specificity of PCR [36].
In addition, Wang et al. monitored the interactions between GO and PCR components
using a capillary electrophoresis/laser-induced fluorescence polarization (CE-LIFP) assay
and found that the addition of GO promoted the formation of a matched primer–template
complex but suppressed the formation of a mismatched primer–template complex during
PCR, which revealed the essential role the interactions between the primers and GO played
in enhancing PCR specificity [8].

As for oxide nanomaterials, the primary reasons allowing Fe3O4 NPs to outperform
Au and Ag NPs seemed to be attributed to the effective adsorption of PCR components
onto the ammonium salt of oleic acid-coated magnetite nanofluids [45]. The effects of
C-PDA silica on PCR were observed by employing as-prepared silica and PDA silica so
as to investigate the interaction between the materials and PCR reagents. The substantial
negative charges of silica showed almost no interaction with primers nor polymerase. By
contrast, the PDA silica provided numerous binding sites to immobilize the primers and
polymerase on the surface to enhance the stability. Moreover, C-PDA silica allowed the
mild interaction with primers and polymerase but addressed the best PCR enhancement
(Figure 15) [49].
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The effect of the QDs was optimized to be the affinity between the DNA polymerase
and the QDs, as the DNA polymerase could be adsorbed onto the QDs, causing a reduction
in the effective concentration of the polymerase in the PCR system. Therefore, only the tar-
get PCR product, most efficiently annealed with primers, would be amplified preferentially
under these conditions. More QDs were added, and more polymerases were adsorbed.
With adequate QDs added to the PCR system, the polymerase concentration decreased
and was less than the optimal effective concentration for specific amplification [6]. The
study on the interactions of the primers and Mg2+ with GQDs in PCR found that the
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primer stacking on GQDs improved the sensitivity and specificity of PCR by improving
the efficiency of base-pairing between the primers and the templates. The PCR yield was
improved primarily by GQDs via increasing polymerase activity, where GQDs were tuned
through chelating Mg2+ with their peripheral carboxylic groups [52].

In addition, Au/GO hybrid composites were synthesized and used in PCR. It was
proven that the interaction among ssDNA, primer, polymerase, and graphene-based mate-
rials was mainly attributed to π-π stacking and electrostatic attraction, which improved
the stability of the PCR components, including DNA, polymerase, and primer, making
the Au/GO as an ideal PCR enhancer [56]. Recently, Sun et al. introduced MOFs like
UiO-66 and ZIF-8 into PCR and proposed that the main reason for MOFs increasing the
specificity and efficiency in two-round error PCR might be the interaction of DNA and Taq
polymerase with MOFs (Figure 16) [59].
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4.2. Thermal Conductivity

Yan et al. demonstrated that the thermal conductivity enhanced by Au NPs was the
primary mechanism for the increasing PCR efficiency and specificity [21]. Jia et al. also
pointed out that rGO had an unusually high thermal conductivity (5300 WmK−1 ) and
suggested that the rGO-assisted PCR system could rapidly reach thermal equilibrium
during the heating/cooling processes [36]. Like graphene, GNFs with enlarged surface
area increased the heat conductivity to produce high thermal conductivity for the final
purpose of enhancing PCR [37].

On the other hand, Abdul et al. [41] investigated the mechanism of PCR enhancement
by simulations using the Fluent K epsilon turbulent model, providing evidence of faster
heat transfer in the presence of TiO2 NPs [41]. In 2016, Kambli et al. compared the enhanced
PCR efficiency from three transition metal NPs in the form of stable colloidal suspensions
at varying concentrations and found that the enhancing rate of the ammonium salt of oleic
acid-coated magnetite NPs scored highly over that of Au and Ag NPs at a 10−2 times
less concentration owing to their cluster and particle alignment properties that enhanced
thermal conductance, though magnetite had the least thermal conductivity [45].

4.3. Electrostatic Interactions

Usually, there is an electrostatic interaction between the positive and negative charges
on their surface as the gold is modified on the polymer macromolecules. PCR components
played an essential role in improving the specificity and efficiency of PCR [11,55,56].
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Table 2 shows that PEG−Au PENPs are exposed to more terminal amino groups on the
surface as the gold loading content increases, providing more opportunities for reactions
between NPs and PCR components, resulting in a decrease in the optimal concentration
used in error-prone two-round PCR systems. However, due to the decrease in the number
of amine terminal groups, the PCR enhancement effect is weakened after surface acetylation
of PEG−Au PENPs. It can be inferred that the electrostatic interaction between positively
charged NPs and negatively charged PCR components has a great influence on improving
the specificity and efficiency of PCR.

Table 2. Physicochemical properties and optimum concentrations of the additives in the error-
prone two-round PCR. (Reproduced with permission from Ref. [55]., Copyright 2016, American
Chemical Society).

Additives ζ-potential
(mV)

Optinimum
Concentration

(mg/L)

Maxima
Efficiency a

Maximal
Specificity a

PEI 24.07 ± 1.45 0.47 1.5 1

{(Au0)100-PEI-
mPEG24} NPs

28.93 ± 0.85 0.38 2.2 1

{(Au0)200-PEI-
mPEG24} NPs

33.46 ± 1.28 0.34 3.6 1

{(Au0)300-PEI-
mPEG24} NPs

34.23 ± 1.09 0.38 1.9 1

{(Au0)200-
PEI·NHAc-

mPEG24} NPs
6.34 ± 1.13 60 1.4 1

a Depends on the performance of each additive with optimum concentration.

As reported, the required cycling time of the PCR was shortened dramatically owing
to the addition of MWCNTs, CNT/PEI, and PEI, suggesting that PCR improvement should
not solely depend on the rapid heat exchange in the presence of CNTs. Notably, the
interaction between the PCR components and the positively charged PEI or CNT/PEI
should play a crucial role in improving PCR specificity and efficiency [29]. Moreover,
three types of CNTs synthesized with different surface charges displayed different effects
on enhancing PCR. It was found that only CNTs functionalized with pristine and amine
groups could enhance PCR, while the carboxylated CNTs inhibited PCR in all samples,
which might be caused by the electrostatic repulsion between negative charges [31]. Jia
et al. demonstrated that the ultimate positively charged complex of rGO-Pfu would be
beneficial to attract the negative charged DNA templates and primers onto the rGO plate
and promote primer annealing and extension [36].

The conjugation of ZnO tetrapods with plasmid DNA was evaluated by agarose
gel electrophoresis based on the electrostatic interactions between the positively charged
amino groups on tetrapods and the negatively charged phosphate groups of plasmid DNA.
Unlike the covalent bonding, these electrostatic interactions were weak, and the conjugation
of ZnO tetrapods with DNA was reversible. The tetrapods could thus be used for the
purification of plasmid DNA in cell lysates [10].

4.4. Analogs to ssDNA Binding Protein (SSB)

Nanomaterials mimic the function of SSBs to selectively bind single-stranded DNA (ss-
DNA) rather than double-stranded DNA (dsDNA). For example, Wang et al. [6] attributed
the optimization effect of the QDs on the specificity of the PCR to the similar optimization
mechanism of the ssDNA-binding SSB, which selectively bound to the ssDNA rather than
dsDNA and then minimized the mispairing between the primers and the templates in the
PCR system. Two reasons were summarized as follows: First, the surface of the QDs used
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in this study was modified, with the carboxyl groups responsible for the negatively charged
surface of the QDs. The dsDNA with a higher surface charge density was more repulsive
than the ssDNA in the negative atmosphere. Thus, more negatively charged QDs bond
quickly to the anionic ssDNA strands rather than to the dsDNA, similar to the way that
SSB protein selectively binds to the ssDNA. Second, the dsDNA rigidity did not favor the
wrapping of the dsDNA around the QDs, while the ssDNA was a soft and flexible polymer
with a much greater degree of freedom to wrap around the QDs. Such selectivity greatly
minimized the mispairing between the primers and the templates during DNA replication,
similar to the SSB.

4.5. Catalytic Activity

Catalytic activity refers to the ability of nanomaterials to enable PCR to proceed even
when the environmental conditions are not the best fit.

The CNTs are well known to possess catalytic properties. Cui et al. [7] investigated
the effects of SWCNTs on PCR via the quantitative PCR product measurements and some
other techniques. Similar results in PCR reactions were obtained in the presence and the
absence of Mg2+ serving as electron donors/receptors. Au NPs were verified to exhibit
‘mimic enzyme’ catalytic activity under certain conditions as well [22].

5. Application and Prospect of NanoPCR

NanoPCR has the advantages of high sensitivity, specificity, and selectivity, and has
been widely used in bacteria, virus, tumor detection, vand new detection platforms. Table 3
shows the application of nanoPCR in different fields in the past decade.

Table 3. The applications of nanoPCR in different fields.

Category Type or Purpose of Detection NPs Effect References

Bacteria
detection

Strain Typing of
Salmonella typhi

Citrate stabilized Au NPs,
rhamnolipid stabilized Au and
Ag NPs, and magnetic iron
oxide NPs

Reduce non-specific amplification (Au and
Ag NPs); Increase PCR yield (Au NPs, Au
and Ag NPs); Inhibition (magnetic iron
oxide NPs)

[73]

Bacterial aerosols Ag NPs, TiO2 NPs and their
combination The detection limit down to 40 pg/µL [74]

Brain-eating amoebae GO, CuO and Al2O3 NPs Enhanced PCR efficiency [75]

Virus
detection

Porcine parvovirus Solid NPs
(1–100 nm diameter)

Enhanced PCR sensitivity
(100-fold more sensitive) [76]

Detection and differentiation of
wild-type pseudorabies virus
and gene-deleted vaccine strains

Solid Au NPs (1–100 nm) Enhanced PCR sensitivity
(100–1000-fold more sensitive) [77]

Porcine bocavirus Solid Au NPs (1–100 nm) form
colloidal nanofluids

Enhanced PCR sensitivity
(100-fold more sensitive); The detection
limit down to
6.70 × 101 copies

[78]

Porcine epidemic diarrhea virus Solid Au NPs(1–100 nm) form
colloidal nanofluids

Enhanced PCR sensitivity
(100-fold more sensitive); The detection
limit down to 2.7 × 10−6 ng/µL

[79]

Mink enteritis virus (MEV) No instructions The detection limit down to 8.75 × 101

copies recombinant plasmids per reaction
[80]

Concurrent infections of
pseudorabies virus and
porcine bocavirus

Solid Au NPs (1–100 nm) form
colloidal nanofluids

Enhanced PCR efficiency; The detection
limit of 6 copies for PRV and 95 copies
for PBoV

[81]

A diagnostic technique for
equine herpes virus-1 (EHV-1) Au NPs

Increase PCR yield; The detection limit
down to
102 DNA copies

[82]

Encephalomyocarditis virus Solid Au NPs(1–100 nm) form
colloidal nanofluids

Enhanced PCR sensitivity and
specificity;Detection limit down to
1.2 × 102 copies/µL

[83]

Porcine epidemic diarrhea virus
and porcine transmissible
gastroenteritis virus

Solid NPs
(1–100 nm diameter)

Enhanced PCR sensitivity
(10-fold more sensitive) [84]
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Table 3. Cont.

Category Type or Purpose of Detection NPs Effect References

Virus
detection

Bovine respiratory
syncytial virus Au NPs

Enhanced PCR sensitivity; Detection limit
down to 1.43 × 102 copies recombinant
plasmids per reaction

[85]

Bovine Rotavirus, Bovine
Parvovirus, and Bovine Viral
Diarrhea Virus

Au NPs Enhanced PCR sensitivity and specificity [86]

Quick Diagnosis of Canine
Vector-Borne Pathogens ZnO Nanoflower Reduce the reaction time; Enhanced PCR

sensitivity and specificity [44]

HPV-16 and HPV-18 DNA Solid Au NPs(1–100 nm) Enhanced PCR sensitivity
(10-fold more sensitive) and specificity [87]

Distinguishing canine
coronaviruses I and II

Solid Au NPs (1–100 nm) form
colloidal nanofluids

Enhanced PCR sensitivity
(100-fold more sensitive) and specificity [88]

Canine distemper virus (CDV),
canine parvovirus (CPV) and
canine coronavirus (CCV)

Solid Au NPs(1–100 nm) Enhanced PCR sensitivity and specificity [89]

Goose Parvovirus Au NPs Enhanced PCR sensitivity
(100-fold more sensitive) [90]

Feline calicivirus, feline
panleukopenia syndrome virus,
and feline herpesvirus type
I virus

Au NPs Enhanced PCR sensitivity
(10–100-fold more sensitive) and specificity [91]

Tumor
monitoring

Single-base mutations
to monitor tumor Au NPs Enhanced PCR sensitivity and specificity [92]

Detection of miRNAs
to screen ovarian cancer GO Enhanced PCR sensitivity and specificity [63]

No machine
PCR

Plasmonic photothermal gold
bipyramid banoreactors

Gold bipyramid nanoparticles
(Au BPs) Achieved ultrafast thermocycling [93]

To realize on-site and instant
analysis

GO, rGO, molybdenum
disulfide (MoS2), and tungsten
disulfide (WS2)

Achieved visual detection (MoS2 and WS2) [94]

point of care (POC) settings Core−shell magnetoplasmonic
nanoparticles (MPNs)

Detected SARS-CoV-2 RNA down to 3.2
copy/µL within 17 min [95]

Detection of health-related DNA
and proteins Au NPs High sensitivity, visual detection,

capability for on-site detection [14]

Real time label-free monitoring
of plasmonic Au NPs The detection limit down to 10,000 genome

copies/µL [96]

Diagnosis of Hepatitis C Virus

Streptavidin-coated magnetic
particles (1µm) and
anti-digoxigenin
antibody-coated polystyrene
particles (250–350 nm)

Visual detection; High sensitivity
and specificity [97]

Gabriel et al. [75] developed a nanoPCR assay for the rapid detection of brain-eating
amoeba using GO, CuO, and Al2O3 NPs. The results showed that the three NPs significantly
improved the PCR efficiency of detecting pathogenic free-living amoeba using genus-
specific probes. Moreover, the combinations of these NPs proved to further enhance PCR
efficiency. The addition of metal oxide NPs leads to excellent surface effect, while thermal
conductivity property of the NPs enhances PCR productivity. These findings suggest that
nanoPCR assay has tremendous potential in the clinical diagnosis of parasitic infections
as well as for studying epidemiology and pathology and environmental monitoring of
other microbes.

At present, nanoPCR has been widely used in diagnosing animal diseases and de-
tecting various viruses. For instance, Wang et al. [78] detected porcine bocavirus (PBoV)
based on the nanoPCR. The assay was 100-fold more sensitive than the conventional
PCR assay, with the detection limit of about 6.70 × 101 copies. Yuan et al. [79] used the
nanoPCR technique to detect the porcine epidemic diarrhea virus (PEDV) for the first time,
obtaining a 100-fold more sensitive assay than conventional RT-PCR. The limit of detection
was 2.7 × 10−6 ng/µL of PEDV RNA with no cross-reaction observed in the presence of
other viruses.
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For the early diagnosis and therapy of cancer, Hu et al. designed and developed a
GO-based qRT-PCR assay for the detection of miRNAs associated with ovarian cancer
(OC) (Figure 17). The detection of miRNAs associated with OC confirmed that the GO-
based qRT-PCR assay could differentiate benign ovarian tumors from OC (sensitivity, 0.91;
specificity, 1.00).

In recent years, with the outbreak of the COVID-19 epidemic, many researchers have
begun to study the quick and convenient methods of nucleic acid testing to control the
spread of the virus as quickly as possible. For example, Lee et al. [95] developed two new
points of care (POC) tests to enable the rapid diagnosis of infection. One of them is the
nanoPCR that takes advantages of core−shell magnetoplasmonic nanoparticles (MPNs):
(i) the Au shell significantly accelerates thermocycling via volumetric, plasmonic, light-to-
heat conversion, and (ii) a magnetic core enables sensitive in situ fluorescent detection via
magnetic clearing. When applied to COVID-19 diagnosis, nanoPCR detected SARS-CoV-2
RNA down to 3.2 copy/µL within 17 min. In particular, nanoPCR diagnostics accurately
identified COVID-19 cases in clinical samples (n = 150), validating its clinical applicability.
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PCR efficiency. The addition of metal oxide NPs leads to excellent surface effect, while 
thermal conductivity property of the NPs enhances PCR productivity. These findings sug-
gest that nanoPCR assay has tremendous potential in the clinical diagnosis of parasitic 
infections as well as for studying epidemiology and pathology and environmental moni-
toring of other microbes. 

At present, nanoPCR has been widely used in diagnosing animal diseases and de-
tecting various viruses. For instance, Wang et al. [78] detected porcine bocavirus (PBoV) 
based on the nanoPCR. The assay was 100-fold more sensitive than the conventional PCR 
assay, with the detection limit of about 6.70 × 101 copies. Yuan et al. [79] used the nanoPCR 
technique to detect the porcine epidemic diarrhea virus (PEDV) for the first time, obtain-
ing a 100-fold more sensitive assay than conventional RT-PCR. The limit of detection was 
2.7 × 10−6 ng/μL of PEDV RNA with no cross-reaction observed in the presence of other 
viruses. 

For the early diagnosis and therapy of cancer, Hu et al. designed and developed a 
GO-based qRT-PCR assay for the detection of miRNAs associated with ovarian cancer 
(OC) (Figure 17). The detection of miRNAs associated with OC confirmed that the GO-
based qRT-PCR assay could differentiate benign ovarian tumors from OC (sensitivity, 
0.91; specificity, 1.00). 

 
Figure 17. The process for the detection of miRNAs associated with OC in conventional qRT-PCR 
and GO-based qRT-PCR. (Reproduced with permission from Ref. [63], Copyright 2021, Elsevier). 

In recent years, with the outbreak of the COVID-19 epidemic, many researchers have 
begun to study the quick and convenient methods of nucleic acid testing to control the 
spread of the virus as quickly as possible. For example, Lee et al. [95] developed two new 
points of care (POC) tests to enable the rapid diagnosis of infection. One of them is the 

Figure 17. The process for the detection of miRNAs associated with OC in conventional qRT-PCR
and GO-based qRT-PCR. (Reproduced with permission from Ref. [63], Copyright 2021, Elsevier).

In short, nanoPCR technology has opened up a new way to study biomolecules
with crucial applications in practical research, especially in virus detection and new PCR
detection platform. In the future, nanoPCR will have good application prospects in the
field of biomedicine. However, due to the complexity of the PCR reaction system and
the characteristics of NPs, the mechanism of nanoPCR is still unclear and needs more
exploration. Therefore, it is of great significance to study the reaction mechanism of
nanoPCR, and the development of non-toxic and efficient nanomaterials is a significant
direction for future research.

6. Conclusions

Because of the unique physical and chemical properties, nanomaterials have been
steadily and reasonably used in PCR to improve efficiency and specificity. Compared
with traditional PCR technology, The nanomaterials with excellent surface properties,
thermal conductivity, and catalytic activity introduced into the PCR system can effectively
shorten the reaction time, increase the amplification efficiency and specificity, increase the
product yield, widen the annealing temperature range, and greatly improve the detection
sensitivity. According to the DNA templates, the nanomaterials modified with primers,
polymerases, and Mg2+ on the surface can improve the reaction efficiency significantly.
With the continuous development of nanomaterials and PCR, the mechanism study is
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becoming more and more precise, but further in-depth research is still needed to make the
mechanism clearer. In addition, the impact on PCR efficiency is often the joint result of
the simultaneous functioning of many different mechanisms, requiring full consideration
of all possible factors. Therefore, the nanoPCR technology has opened up a new way to
study biomolecules.
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