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Abstract: Infrared spectroscopy measurements were performed on Lysozyme aqueous solutions also
in the presence of PolyEthylene Glycol (PEG 400) as a function of an increasing temperature from
T = 27 ◦C to 90 ◦C, and, successively in sequence, by decreasing temperatures from T = 90 ◦C to
27 ◦C. Data were analyzed by evaluating the spectral difference with respect to the initial spectrum
collected at 27 ◦C. This procedure allows to quantitatively evaluate the thermal restraint related to the
thermal scan from T = 27 ◦C to 90 ◦C, as well as to introduce a spectral resilience concerning the entire
increasing and decreasing thermal paths which allow to highlight the bioprotectant effectiveness
of low molecular weight PEG. In particular, the main purpose of the present work is to highlight
the effects of a thermal treatment on a mixture of Lysozyme/water and of Lysozyme/water/PEG
400 during an increasing temperature scan, and then after a successive decreasing temperature scan,
in order to highlight the bioprotectant role of PEG 400. On that score, an evaluation of the spectral
distances of the registered spectra as a function of increasing and decreasing temperatures has been
performed and analyzed.

Keywords: Lysozyme; PEG 400; thermal restraint; resilience

1. Introduction

It is well known that PolyEthylene Glycols (PEGs) are formed by repeating the unit of
ethylene glycol, also called oxyethylene, whose chemical structure is H-(O-CH2-CH2)m-
OH, m being the polymerization degree. They include both hydrophobic ethylene units
(CH2-CH2) and hydrophilic oxygens. Due to the simplicity of their structure, this class of
polymers is considered to be a good model for studying more complex systems, such as
biostructures, proteins, and hydrophilic surfaces. For these reasons it has been investigated
both from the theoretical and experimental point of view [1–4].

In particular, PEGs are cryo-protective for cells by limiting the increase in volume
of water when it turns into ice; on the other hand, PEGs allow to lower the freezing
temperature and, above certain concentrations, it is difficult to freeze the water contained
in the capillaries. By way of example, for wood, PEG with Molecular weight Mw = 400,
i.e., PEG 400, has the merits of combining good wettability, a powerful cryo-protective
effect and good mechanical resistance to drying without the excessively shiny or sticky
appearance that can have the lower Mw PEGs [5–7].

Even today, PEGs remain the most widely used products for the conservation of
waterlogged organic materials such as wood, leather, and fibers. Their advantages are
multiple: simultaneously consolidating, surfactant and cryo-protective, good penetration,
ease of use, and safety for the operator. Their constraints and side effects—corrosive
environment for metals, hygroscopicity, especially for low Mw PEGs, environment favorable
to the development of microorganisms—are sufficiently well known and documented to
adapt treatments, working and storage environments, as well as for monitoring tools [8–11].
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In the present study we used PEG 400, which is a clear, simple, somewhat viscous,
colorless, and odorless liquid. PEG 400 is one of the shortest polymers and corresponds
to a chain length of 8 repetitive units. Its low toxicity and exceptional ability to solu-
bilize polar active pharmaceutical ingredients make it highly valued in pharmaceutical
applications [12–17]. PEG 400 is generally considered stable, non-reactive, soluble in all
proportions with water, but also soluble in acetone, alcohols, benzene, glycerin, glycols,
and aromatic hydrocarbons. This versatile excipient is used in topical, ophthalmic, oral,
and parenteral pharmaceutical formulations [18–22].

In the present study, PEG 400 was added to aqueous solutions of a protein, i.e.,
Lysozyme, in order to investigate its effectiveness as bioprotectant during an increasing
temperature ramp followed by a decreasing temperature ramp [23–27].

Lysozyme, discovered by Alexander Fleming in 1922, is a protein synthesized by white
blood cells participating in the defense of the body through its proteolytic activity (it is
a protease, protein degradation enzyme), which allows it to attack bacterial walls. In the
form of a globular protein of 129 amino acids, Lysozyme is found in a certain number of
secretions, in the secretions of granulocytes and monocytes, and in egg white [28–32].

The determination of the level of lysozyme in the blood, although very rarely practiced,
makes it possible to control the effectiveness of the treatment of certain leukaemias; similarly,
this measurement is useful in the diagnosis of certain kidney diseases or in monitoring
organ transplant rejection [33–37].

Figure 1 shows the molecular structures of the three solution components, i.e., H2O,
PEG 400 and Lysozyme; concerning the PEG 400 structure it is important to highlight the
hydrophilic character of PEG which interacts with water through its terminal groups, H
and OH, and through its internal Oxygens.
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Figure 1. Molecular structures of H2O, PEG 400, and Lysozyme.

The focus of our investigation is the characterization of the thermal response of these
systems, and, on this purpose, the Infrared (IR) Spectroscopy technique has been employed.
It useful to stress that molecular vibrations are what cause matter to absorb IR radiation,
as molecular vibrational energy levels are separated by energies that fall into the infrared
region of the electromagnetic spectrum. The infrared part of electromagnetic radiation is
usually divided into three areas: the near infrared (the most energetic) which extends from
14.000 to 4.000 cm−1 (0.7–2.5 µm wavelength); the mid-infrared, which ranges from 4.000 to
400 cm−1 (2.5–25 µm); and, finally, the far-infrared, which covers the spectral range from 400
to 10 cm−1 (25–1000 µm). Due to its highly selective character, this spectroscopic technique
is commonly used for the identification of compounds, but it also makes possible to obtain
important information on inter- and/or intra-molecular interactions, on the conformation
of molecules and on the organization of matter [38–42].

In order to analyze the thermal response of spectra obtained by means of IR technique
an approach based on the Spectral Distance (SD) evaluation has been employed to compare
spectra collected at different temperatures and hence to characterize sample changes with
temperature.

Then, starting from the obtained SD values, we introduce the concept of spectral
resilience for characterizing the ability of a material system to return to the initial state after
suffering a thermal stress [43–45].
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2. Results and Discussion

The investigation of the variations of the investigated spectra, by changing of temper-
ature, has been performed by means of the Spectral Distance (SD) that is expressed by the
following formula:

SD =
√

I(ω, Ti)− I(ω, T) · ∆ω (1)

where I(ω, T) is the IR absorbance at frequency ω and at temperature T; Ti is the initial
or reference temperature; in our case, it is equal to 27 ◦C; and, finally, ∆ω represents the
instrumental frequency resolution. Such an approach allows comparison of the profile of
each spectrum for both the investigated systems, at different temperature values, with the
reference spectra, taken at 27 ◦C [46,47].

Figure 2 reports the IR spectrum of PEG400 with band assignation; in particular,
the peak at ∼2869 cm−1 is attributed to -CH stretching, ∼1456 cm−1 and ∼1353 cm−1 is
attributed to C-H bending, and ∼1061 cm−1 is attributed to C-O stretching [48,49].
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Figure 2. IR spectrum of PEG400 with band assignation; in particular, the peak at ∼2869 cm−1

is attributed to -CH stretching, ∼1456 cm−1 and ∼1353 cm−1 is attributed to C-H bending, and
∼1061 cm−1 is attributed to C-O stretching.

Figure 3 shows the IR spectrum of PEG 400 with the assignation of Amide I and Amide
II, at 1638 cm−1, and 1529 cm−1, respectively [50–52].
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Figure 4a shows the FTIR spectra, in the 400 < ∆ω < 4000 cm−1 spectral range, of the
aqueous solution of Lysozyme (binary system) at T = 27 ◦C, at T = 90 ◦C, i.e., at the lowest
and highest values of the increasing temperature ramp, and again at T = 27 ◦C after that
the system was brought to a temperature value of 90 ◦C; Figure 4b reports the same FTIR
spectra for the aqueous solution of Lysozyme in presence of PEG 400 (ternary system).
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Figure 4. FTIR spectra of aqueous solution of Lysozyme (a) and FTIR spectra of aqueous solution
of Lysozyme in presence of PEG400 (b) in the 400 < ∆ω < 4000 cm−1 spectral range at T = 27 ◦C,
T = 90 ◦C and again at T = 27 ◦C, i.e., after that both the systems were brought to a temperature of
90 ◦C.

As it can be seen, starting from the spectra collected at the lowest temperature value,
i.e., T = 27 ◦C, after having heated both the binary and the ternary systems up to 90 ◦C,
turning back to the temperature value of 27 ◦C, the spectra are different from the spectra
initially acquired at 27 ◦C. On the other hand, the addition of PEG 400 to the aqueous
solution of Lysozyme reduces the SD variations as a function of temperature.

It is useful to stress that Raman scattering on Lysozyme/water/bioprotectant systems
have evidenced a similar behavior of the Amide I center frequencies [53].

In order to extract quantitative information on the system thermal response, we have
evaluated the SD values for both the investigated systems taking into account the spectra
collected within the increasing temperature ramp. The obtained SD values as a function of
temperature fulfil an increasing sigmoid curve whose behavior is properly fitted by the
following formula:

SD(T) = A
(

1 − 1
1 + eB(T−T0)

)
(2)

where A represents the sigmoid amplitude, that is connected to the value of thermal
restraint [41,50]; in particular, the thermal restraint value is the inverse of the sigmoid am-
plitude; B is the sigmoid steepness while T0 is the relaxational temperature corresponding
to the abscissa of the sigmoid inflection point [54,55].

Figure 5a reports the values of SD for the increasing temperature ramp, i.e., from
27 ◦C to 90 ◦C, for the binary system while Figure 5b reports the values of SD for the
increasing temperature ramp for the ternary system; both the data are represented with
their error bars.

What emerges from this analysis is that for the binary system, that value of amplitude
A is 0.975 and the value of temperature T0 is 55.32 ◦C. For the ternary system, the value of
amplitude A is 0.697 and the value of temperature T0 is 58.55 ◦C. Table 1 summarizes the
values of A, B, and T0 for the two investigated systems.
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Figure 5. SD values, with error bars, as a function of temperature from 27 ◦C to 90 ◦C for (a) the
binary system, i.e., Lysozyme/water, and (b) for the ternary system, i.e., Lysozyme/water/PEG 400.
The obtained SD values as a function of temperature fulfil an increasing sigmoid behavior and have
been fitted by means of Equation (2) which furnishes three parameter values, A, B and T0.

Table 1. Values of Amplitude (A), Steepness (B) and Temperature (T0) extracted from Equation (2)
for the two investigated systems.

Amplitude Steepness Temperature (◦C)

Lysozyme/H2O 0.975 −0.01283 55.32

Lysozyme/H2O/PEG 400 0.697 −0.01577 58.55

The obtained result shows that the addition of a small percentage of PEG 400 to
Lysozyme gives rise to smaller changes in the features of the registered spectra, suggesting
that the aqueous solution of Lysozyme in the presence of PEG 400 are more resistant to the
temperature changes.

Previous experiments performed by Raman scattering on Lysozyme/water/bioprotectant
systems have evidenced a similar behavior for the protein Amide I center frequencies.

In order to characterize the thermal effects of our systems we have performed mea-
surements not only following an increasing temperature ramp, but also during a further
decreasing temperature ramp. On that score we introduce a new quantity that we call
spectral thermal resilience, which is connected to the capability to recover the original spec-
tral features after a thermal stress cycle. Therefore, the SD values for the two investigated
systems have been calculated both for the increasing and the decreasing temperature ramps.

Figure 6 reports the behavior of the calculated SD values during the full temperature
cycle. The blue full circles represent the SD values obtained for the Lysozyme aqueous
solution while the magenta full circles represent the SD values of Lysozyme aqueous
solution in the presence of PEG 400. The label from 1 to 13 in the y-axes represents the
sequence of the performed measurements from 27 ◦C to 90 ◦C, and then from 90 ◦C to
27 ◦C.

By indicating with SDmax the maximum value of SD and with SD f inal the final value
of SD, we can define a spectral thermal resilience parameter by means of the following
formula:

SR =
SDmax − SD f inal

SDmax
(3)

For our systems, the value of the spectral thermal resilience is 0.19 for the aqueous
solution of Lysozyme while it is 0.61 for the Lysozyme aqueous solution in presence of PEG
400. Such a result confirms what it emerges from the thermal restraint parameter i.e., that
the addition of PEG 400 to aqueous solution of Lysozyme increases the system capability to
afford temperature stress, as well as indicates a higher capability to recover the original
properties [56–60].
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3. Experimental Setup and Sample Preparation

Lysozyme, PEG with Mw of 400 corresponding to values of the polymerization degree
m = 8, and distilled water were purchased from Aldrich-Chemie. FT-IR data were collected
both increasing and decreasing temperature in the 20 ◦C ÷ 90 ◦C range.

The investigated concentration values are expressed in percentage by weight; for the
binary system, 70% of Lysozyme and 30% of water, while for the ternary system, 70% of
Lysozyme and 30% of (50% water + 50% PEG 400).

To collect the IR spectra a FTIR-Vertex 70 V (Bruker Optics, Germany) spectrometer
by Bruker Optics using a Platinum diamond ATR has been employed. Previously, to
interpretate the spectra, some data preprocessing has been applied by means of Bruker
OPUS/Mentor software (Bruker Optics, Germany) and MATLAB environment. More
precisely, in order to reduce the variations between spectra due to baseline shift, a baseline
treatment has been performed; to decrease the instrumental noise, a smoothing treatment
has been applied; and, finally, in order to correct the path length variation and to decrease
the variations among each measurement, a normalization of spectra has been taken into
account. To confirm the caliber and accuracy of spectral data, a performance qualification
(PQ) test using the fully automated validation program of OPUS 7.5 software (furnished
by Bruker Optics) was carried out. The ATR diamond crystal’s surface was in direct
contact with the deparaffinized breast tissue slices (2 mm × 2 mm), and the mid-IR range of
4000 cm−1 to 400 cm−1 was transmitted to and from the ATR accessory. To acquire a suitable
signal-to-noise ratio, spectra were created at a spatial resolution of 0.4 cm−1, and an average
of 48 scans was collected [61–63]. Each sample’s background spectrum was collected before
it was scanned, and the software used this spectrum to routinely remove ambient effects.
More precisely, we have performed 48 scans for each of the 13 measurements by means
of the Vertex 70v Bruker IR spectrometer; thanks to the temperature sensor set in the
instrument and by means of OPUS software we have been able to change the values of
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temperature from 27 ◦C to 90 ◦C and from 90 ◦C to 27 ◦C. In particular, at first, we increase
the temperature from the first spectrum at 27 ◦C, then the second at 30 ◦C, the third at
50 ◦C, the forth at 65 ◦C, the fifth at 75 ◦C, the sixth at 80 ◦C and the seventh at 90 ◦C, then,
we decrease the values temperature, obtaining the eighth at 80 ◦C, the nineth at 75 ◦C, the
tenth at 65 ◦C, the eleventh at 65 ◦C, the twelfth at 50 ◦C and the thirteenth, the last, at
27 ◦C.

4. Conclusions

IR absorption data collected on Lysozyme aqueous solutions also in the presence of
PEG 400 as a function of temperature have been analyzed by evaluating the SD.

Concerning the increasing temperature ramp, to extract quantitative information on
the system thermal response, the SD values as a function of temperature have been fitted
by means of sigmoid curve which allowed to extract the sigmoid amplitude, which is
connected to the value of thermal restraint, the sigmoid steepness, and T0 the relaxational
temperature. Such an analysis shows that for the binary system, that value of amplitude
is higher, whereas the value of temperature is lower for the binary system in respect to
the ternary system. The obtained result shows that the addition of PEG 400 to Lysozyme,
gives rise to smaller changes in the features of the registered spectra suggesting that
the aqueous solution of Lysozyme in the presence of PEG 400 are more resistant to the
temperature changes. The obtained results are in line with previous experiments performed
by Raman scattering on Lysozyme/water/bioprotectant systems that have evidenced a
similar sigmoid behavior for the protein Amide I center frequencies.

Furthermore, we have introduced a spectral thermal resilience parameter which has
been connected to the capability to recover the original spectral features after a thermal
stress cycle. The value obtained for the spectral thermal resilience parameter indicates that
the addition of PEG 400 to aqueous solution of Lysozyme increases the system capability to
afford temperature stress, as well as indicating a higher capability to recover the original
properties.
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