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Abstract: Human life expectancy has markedly increased over the past hundred years. Consequently,
the percentage of elderly people is increasing. Aging and sarcopenic changes in skeletal muscles not
only reduce locomotor activities in elderly people but also increase the chance of trauma, such as bone
fractures, and the incidence of other diseases, such as metabolic syndrome, due to reduced physical
activity. Exercise therapy is currently the only treatment and prevention approach for skeletal muscle
aging. In this review, we aimed to summarize the strategies for modeling skeletal muscle senescence
in cell cultures and rodents and provide future perspectives based on zebrafish models. In cell
cultures, in addition to myoblast proliferation and myotube differentiation, senescence induction
into differentiated myotubes is also promising. In rodents, several models have been reported that
reflect the skeletal muscle aging phenotype or parts of it, including the accelerated aging models.
Although there are fewer models of skeletal muscle aging in zebrafish than in mice, various models
have been reported in recent years with the development of CRISPR/Cas9 technology, and further
advancements in the field using zebrafish models are expected in the future.

Keywords: sarcopenia; drug screening; animal models; skeletal muscle enlargement

1. Introduction

In recent years, the average global life expectancy has been greater than 70 years. In
fact, many developed countries have an average life expectancy of 80 years. For example,
the average life expectancy at birth is 78.5, 81.4, 81.7, 82.5, 83.1, 82.2, and 84.3 years
in the US, UK, Germany, France, Italy, Canada, and Japan, respectively (World Health
Organization, 2020). To lead a prosperous and independent life and enjoy sports and
travel after retirement, activities of daily living (ADL) and daily self-care activities, such as
mobility and eating, must be maintained. With aging, our ADLs trend downward, which
serves as one of the reasons for the decline in muscle mass. The skeletal muscle, the largest
organ in the human body, plays an indispensable role in maintaining health as it functions
as a metabolic organ and is responsible for movement and physical activity. According
to epidemiological studies, people who maintain skeletal muscle mass are less likely to
become sick and tend to live longer [1,2]. Therefore, the maintenance of skeletal muscles is
key to a super-aging society.

Elderly people are at an increased risk for the following two skeletal muscle diseases:
disuse muscular atrophy and sarcopenia. Disuse muscle atrophy is caused by prolonged
rest due to severe injury, surgery, or hospitalization [3]. In atrophic muscles, the amount
of DNA does not change; however, the amount of RNA is markedly reduced, suggesting
that the amount of protein is decreased in atrophied muscles [4]. One of the decreases in
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RNA synthesis is caused by the degradation of signaling molecules in the IGF-1-mediated
protein synthesis pathway [5]. Another muscle-related disease in the elderly population,
sarcopenia, is defined as a loss of muscle mass [6]; however, recent definitions of sarcopenia
include loss of muscle strength and muscle function [7–13]. Sarcopenia contributes to
frailty, resulting in reduced ADL and quality of life [7,14]. Sarcopenia is classified as
either primary or secondary. Primary sarcopenia is caused by muscle mass loss due to
aging, while secondary sarcopenia is caused by muscle mass loss due to activity, disease,
and nutrition [7]. Strictly speaking, disuse muscular atrophy differs from sarcopenia
as the number of cells does not decrease, despite the simultaneous existence of the two
diseases at times. Primary and/or secondary sarcopenia causes a decline in skeletal
muscle performance by decreasing the number of muscle fibers and atrophy of each
muscle fiber. The occurrence of falls increases by approximately three-fold in patients
with sarcopenia compared with that in the same-aged population without sarcopenia [15].
Fall-induced bone fractures cause damage to skeletal muscles and cause patients to be
bedridden, consequently resulting in a loss of exercise opportunities. Owing to the reduced
regeneration capacity of elderly people, a single fall can accelerate sarcopenia, causing
them to be bedridden. Disuse muscular atrophy often begins during hospitalization and
lasts until bone fracture recovery is achieved. Disuse muscular atrophy might also be
accompanied by primary sarcopenia.

Resistance training, such as squats and push-ups, is effective at preventing sarcopenia
progression. However, elderly people are at risk of falling during this training. Further,
the performance of a workout is difficult when bedridden. Thus, pharmacological or
nutritional approaches for prevention and further recovery from sarcopenia are attractive
strategies for elderly people with training difficulties.

In this review, we aimed to summarize and analyze the existing models of cell cultures,
rodents, and zebrafish for skeletal muscle senescence.

2. Cell Culture Models for Skeletal Muscle Atrophy

Aging at the cellular level is due to mitochondrial dysfunction, the accumulation of
oxidative stress, telomere shortening, and stable cell cycle arrest induced in response to
intrinsic and extrinsic stimuli such as UV radiation [16,17]. Cell cycle arrest in senescent
cells is unique in that it occurs in the G1 and G2 phases, in contrast to that in quiescence,
which occurs in the G0 phase [18]. Unlike normal cells, senescent cells exhibit phenotypic
changes that include a gradual growth arrest unresponsive to mitogenic stimuli [19,20]. This
cyclic arrest is thought to be executed by the activation of p53/p21cip1 and p16INK4a/Rb,
particularly in early senescence, and p53/p21cip1 and p16 INK4a/Rb activation in later
stages [21,22].

For drug discovery, cell cultures are the most powerful tool, as they enable the obser-
vation of body dynamics that cannot otherwise be observed from outside the human body.
By using cell cultures, many parameters can be easily measured with various quantitative
techniques. Further, the physicochemical environment, such as pH, temperature, osmotic
pressure, and dissolved gas concentration, can be controlled, and the physiological envi-
ronment, such as hormone and nutrient concentrations and transgenes, can be modified.
To reduce the use of animals due to ethical reasons, cell culture experiments are currently
recommended. Cell culture studies related to skeletal muscle cell senescence can be classi-
fied as follows: the proliferation of myoblasts, differentiation from myoblasts to myotubes,
functional parameters of differentiated myotubes, and cell senescence induction (Figure 1).
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Figure 1. Cell-based evaluation for skeletal muscle cell senescence. Created using BioRender.com
(accessed on 10 September 2022).

2.1. Myoblast Proliferation

The proliferation of myoblasts is expected to mimic the increase in skeletal muscle
amount related to tissue regeneration, wound healing, and the recovery of muscle atrophy
and sarcopenia [23]. Myoblast proliferation has been evaluated in many studies using
relatively simple methods. For example, beta-hydroxy beta-methylbutyric acid, a well-
known dietary supplement that enhances skeletal muscle performance with resistance
training, was first demonstrated to induce myoblast proliferation using this strategy [24].

2.2. Myotube Differentiation

Myotube differentiation, which implies an increase in skeletal muscle amount and
muscle regeneration in vivo, can be evaluated using several myoblast cell lines. For exam-
ple, C2C12 mouse myoblasts and L6 rat myoblasts are well-established cell lines that can
easily differentiate into myotubes [25,26]. Human skeletal muscle cells (SkMC) isolated
from the skeletal muscle of a single adult donor have also been used in studies. Note
that, unlike C2C12 and L6, these cells have a mitotic frequency and are not immortalized
cells. SkMC may be affected by donor age and gender, and comparative parameters, such
as responsiveness to dexamethasone-induced myotubular atrophy [27], may be difficult
among different SkMC lines or with C2C12 cells. In addition, targeted differentiation of
pluripotent stem cells into myotubes forms three-dimensional muscle constructs and is
expected to go beyond conventional cell models [28].

In general, cultured myotube differentiation is quantified by immunohistological
staining of proteins specific to differentiated skeletal muscle cells, such as myosin heavy
chain (Mhc) protein, with multinucleate large cell shape. In addition, qPCR analysis of
genes involved in skeletal muscle differentiation is an easy and reasonable approach to
confirm myotube differentiation [29,30].

2.3. Functional Parameters of Differentiated Myotubes

Intracellular Ca2+ and glucose uptake are well-known biochemical parameters of
differentiated myotubes. Intracellular Ca2+ plays an important role in the contraction
of skeletal fibers involved in myosin-actin cross-bridging, fiber type shifting, etc. [31].
During normal contractions, action potentials generated by motor neurons stimulate the
sarcoplasmic reticulum (SR) to release Ca2+ from the SR into the cytosol. Thereafter,
Ca2+ binds to troponin C, which activates a series of contractile proteins and induces
skeletal muscle contraction [32,33]. To measure intracellular Ca2+ levels in myoblasts and
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differentiated myotubes, many researchers have used Ca2+ indicator fluorescent dyes, such
as Fura-2 [34], and fluorescent proteins, such as GCaMP [35].

Glucose uptake was used to assess the function of differentiated myotubes in vitro.
Sarcopenia is prone to occur in patients with diabetes and worsens due to high blood sugar
levels [36]. Improving glucose uptake in peripheral tissues, including skeletal muscle, is
a promising approach to improving or preventing sarcopenia and diabetes. To measure
glucose uptake in myoblasts and differentiated myotubes, fluorescent glucose analogs,
such as 2-NBDG, are usually used [37]. In addition to Ca2+ and glucose uptake, several
metabolic molecules, such as GL3P and UDP-GlcNAc [38], are also reported to be indicators
of differentiated myotubes.

2.4. Cell Senescence Induction

The induction of cell senescence has become an attractive strategy for studying skeletal
muscle senescence. D-Galactose (D-gal), dexamethasone (DEX), and TNF-α are usually
used to induce cell senescence in myoblasts and differentiated myotubes. D-gal treatment
increases oxidative stress and activates apoptotic pathways, which are common in conven-
tional cell senescence [39]. For example, D-gal inhibits the proliferation of C2C12 cells and
increases the expression levels of p53, which induces apoptosis, and p16, which induces
cell cycle arrest [40]. In contrast, DEX induces atrogin-1, a muscle-specific F-box protein
that activates the ubiquitin-proteasome pathway during muscle atrophy [41]. DEX also
promotes protein degradation in L6 and C2C12 cells [42] as a mimic of protein degradation
in disused muscle atrophy. Similar to DEX, TNF-α synthesizes and accumulates intracellu-
lar ceramide to inhibit myogenic differentiation [43] and promotes protein degradation in
L6 and C2C12 cells [44].

Senescence-associated beta-galactosidase (SA-β-gal) activity is a major biomarker for
cell senescence in almost all cell types. The activity of SA-β-gal can be easily measured and
SA-β-gal can be stained using X-gal protocols [45]. Cultured human myoblasts with less
ability to differentiate into myotubes exhibit strong SA-βgal activity [46], indicating that
SA-βgal is an ideal biomarker for skeletal muscle senescence. Jadhav et al. also reported
that the antidiabetic drug, metformin, suppresses ceramide-induced cell senescence in
C2C12 myoblasts [47].

2.5. Limitations of Cell-Based Testing

Although the above cell culture models are quite attractive and promising for drug
screening in skeletal muscle cell senescence, they are associated with several limitations
owing to their artificial environments compared to animal models and clinical situations.
In vivo, cells and the extracellular matrix (ECM) interact with each other, thereby affecting
cell behavior, including proliferation, adhesion, migration, and differentiation [48]. Growth
and development contribute to cell-ECM interactions not only in general tissues but also in
normal muscles [49]. Further, cultured cells produce many reactive oxygen species (ROS)
and use ROS-dependent signaling pathways, which would be non-functional in vivo [50].
Of note, the use of immortalized cell lines, such as C2C12, should be considered a different
situation compared to in vivo conditions.

3. Rodent Models for Skeletal Muscle Senescence

As described above, several types of cell models are used to evaluate skeletal muscle
cell senescence, despite the limitations associated with in vitro modeling. Thus, animal
models, mainly rodents, are necessary to evaluate test compounds in skeletal muscle
senescence as part of preclinical testing.

Approximately 90% of the rodent and human genomes have comparatively syntenic and
orthologous genes, including myogenic regulatory factors (MRFs), with 78.5% amino acid
identity [51,52]. Accordingly, rodents have been one of the most prevalent model animals
for a long time. In the mouse embryo, myogenesis begins with myogenic factor 5 (Myf5)
expression, which is followed by myogenin (Myog) and other MRF expression [53], similar
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to the process in humans. Although rodents might be suitable animal models for human
skeletal muscle physiology, a difference exists in myofibril composition between rodents and
humans. For example, in mice, fast muscles are widely located in the body, and slow muscles
have a higher percentage in the lower limbs. In humans, although the proportions vary at
different sites, slow and fast muscles are distributed in a mosaic manner [54]. Major rodent
and zebrafish models used to evaluate skeletal muscle senescence are listed in Table 1.

Table 1. Rodent and zebrafish models for skeletal muscle senescence.

Type Model Phenotypes/Detection in
Skeletal Muscle Reference

Aged model Natural aging C57BL mouse (>18 m)
Zebrafish (>25 m)

Sarcopenic changes
Decline in physical activity

[55]
[56]

Accelerated aging SAMP8 mouse Sarcopenic changes [57]

Gene knockout SOD1−/− mouse

Loss of muscle
Degeneration of neuromuscular

junctions
Increase in muscle mitochondrial

ROS

[58]

LmnaL530P/L530P

mouse
Lmna−/− zebrafish

Reduction of muscle fiber widths
Degeneration of skeletal muscle

[59,60]
[61]

Bub1bH/H mouse Muscle atrophy [62]

Bub1b+/GTTA mouse
Reduction of muscle fiber widths
Early decline in physical activity [63]

p53+/m mouse
p53−/− zebrafish

Loss of muscle
Muscle atrophy

Reduction of activity

[64]
[65]

Bmal−/− mouse
Loss of muscle

Reduction of muscle fiber widths [66]

Gene knockin RPS9 D95N mouse Early decline in physical activity [67]

Chemical induced Dexamethasone Mouse zebrafish
Loss of muscle

Upregulation of atrogin-1, Murf-1
Reduction of muscle fiber widths

[68,69]
[70]

D-galactose Mouse Reduction of muscle fiber widths
Upregulation of atrogin-1, Murf-1 [71,72]

Alcohol zebrafish Reduction of muscle fiber widths [73]

Hindlimb unloading Mouse
Loss of muscle

Reduction of muscle fiber widths
Upregulation of atrogin-1, Murf-1

[74,75]

Denervation Mouse

Loss of muscle
Reduction of muscle fiber widths
Increase in muscle mitochondrial

ROS

[76,77]

3.1. Aged Models

Aging is the main risk factor for muscle atrophy and sarcopenia, and several aged
rodent models have been developed using wild type and mutant strains [78]. In addition to
natural aging, dietary induction has also been employed [79–81]; a high-fat diet is known
to accelerate aging for the evaluation of anti-sarcopenic natural products [82,83].

Accelerated aging models, such as Senescence-Accelerated Mouse (SAM) mice, enable
the understanding of the mechanisms of aging and skeletal muscle senescence in a relatively
short experimental period. Particularly among SAM strains, senescence-prone (SAMP)
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mice, especially SAMP8, show features of muscle aging (reduced muscle mass, reduced
tetanic contraction and relaxation rates, and atrophy of type II muscle fibers) earlier than
normal mice and have more pronounced muscle aging than other SAMPs [84]. However,
SAMP1, SAMP6, and SAMP10 are also used to study muscle aging, as they show fair
characteristics of muscle aging [78].

There are several genetically engineered aging mice that depict senescence acceler-
ation; for example, LmnaL530P/L530P [60], Bub1bH/H [62], Bub1b+/GTTA [63], p53+/m [64],
Bmal1−/− [66], and RPS9 D95N [67]. As a representative example, we describe the
LmnaL530P/L530P mouse. Lmna is a gene encoding lamin A, a component protein of in-
termediate diameter filaments that make up the nuclear lamina, and mutations in the
Lmna gene are one of the causes of Hutchinson-Gilford disease. LmnaL530P/L530P mice
show degeneration of the cardiac and skeletal muscles, with myoblasts differentiating
into adipocytes [60]. This is thought to be due to a defect in the nuclear membrane that
prevents the maintenance of the chromatin structure, resulting in dedifferentiation and
subsequent redifferentiation to other cell types. Since the muscles of elderly humans show
fat accumulation and a similar phenotype, this mouse is considered an ideal model of
skeletal muscle aging [85].

3.2. Sarcopenia Model

The most commonly used genetically engineered models of sarcopenia are Sod and
Il-10−/− mice. Mutations in copper–zinc superoxide dismutase (CuZnSOD [SOD1]) are a
cause of amyotrophic lateral sclerosis (ALS) [86,87], and Sod1G93A mice develop ALS [88].
In contrast, SOD1−/− mice exhibit characteristics of accelerated aging as follows: increased
p16 and p21 expression (mRNA and protein) [89] and consequent neuromuscular junction
disruption, impaired motor nerve transmission, and accelerated muscle atrophy [90]. For
this reason, SOD1−/− mice have been used in various studies of muscle atrophy and
sarcopenia [91,92]. Il-10−/− mice are used as models of skeletal muscle aging, especially
sarcopenia, because they develop age-related loss of skeletal muscle strength. Il-10 induces
a switch from the M1 to the M2 phenotype of macrophages that migrate to damaged skeletal
muscle; M2 macrophages are required for normal muscle growth and regeneration [93].
Il-10 has also been shown to improve insulin signaling and glucose metabolism in the
skeletal muscle [94]; the rate of ATP synthesis and high-energy phosphate concentration
levels are reduced in the skeletal muscle of Il-10−/− mice [95].

3.3. Hindlimb Unloading Model

Hindlimb unloading, a technique that stimulates weightlessness and induces skeletal
muscle atrophy, was developed in the mid-1970s [96]. Although hindlimb unloading was
developed to study the body's response to the space environment [97], with drug screening
for bone loss under microgravity as the main focus [98,99], some similarities exist between
hindlimb unloading and age-induced skeletal muscle atrophy. For example, animals that
received hindlimb suspensions had decreased muscle weight and a smaller fiber diameter
with increased apoptosis of muscular cells via the upregulation of atrogin-1 [74], which
is a common mechanism for age-related loss of skeletal muscle [100]. Yoshihara et al.
demonstrated that astaxanthin supplementation ameliorated muscle atrophy induced by
hindlimb unloading by inhibiting myonuclear apoptosis [101]. In addition, Ferrando et al.
revealed that allopurinol prevents muscle mass loss by suppressing the expression of
ubiquitin ligase [102].

3.4. Denervation Model

In the clinic, muscle atrophy is known to be caused by motor nerve damages. In
rodents, the sciatic or tibial nerve in one leg is removed to induce denervation [103,104];
muscle atrophy is mainly caused by fast-twitch muscle fibers [105]. Notably, this model
increases mitochondrial ROS production in skeletal muscle cells [76], thereby targeting the
improvement of age-related loss of muscle mass and function [106,107]. However, aging
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might cause mitochondrial abnormalities and increased ROS production [108] (i.e., not a
therapeutic target); thus, further research is necessary to address this issue.

Shen et al. revealed that isoquercitrin alleviates atrophy and mitophagy in the soleus
muscle by suppressing oxidative stress and inflammatory responses. In fact, after den-
ervation, vacuolar degeneration and autophagy were observed in the treatment group
compared to the control group and were found to be accompanied by high expression of the
autophagy-related proteins, ATG7, BNIP3, PINK1, and LC3B [77]. Hiramoto et al. reported
that supplementation with alkylresorcinols caused the recovery of fatty acid metabolism,
which occurs during muscle atrophy using this model [109].

3.5. D-Galactose Model

D-gal induces chronic inflammation and oxidative stress, leading to accelerated aging
in rodents , which is similar to the results obtained in cell culture studies [110]. D-gal
administration causes a significant decrease in the gastrocnemius muscle mass/body
weight ratio and a decrease in the cross-sectional area of the skeletal muscle [71]. As
this model is relatively easy to use, several studies have employed this model for drug
testing. For example, dihydromyricetin (DHM) was found to alleviate the reduction in
gastrocnemius weight/body weight, the cross-sectional area of skeletal muscle fibers, and
fiber diameter, which deteriorated due to D-gal [72]. DHM can be expected to promote
longevity by downregulating the pERK and pAKT pathways in Drosophila [111]. Thus,
DHM may be beneficial for the treatment of skeletal muscle atrophy and its prevention
during the aging process. In addition, by using a D-gal-induced sarcopenia rat model,
Li et al. revealed that bovine milk fat globule epidermal growth factor VIII inhibits cell
apoptosis in the gastrocnemius muscle to prevent muscle mass loss [112].

3.6. Dexamethasone Model

Many patients receive long-term treatment with glucocorticoids, which can induce
muscle atrophy as a serious side effect [113]. DEX, a glucocorticoid medication, is known to
induce proteolysis in skeletal muscles, resulting in muscle atrophy in rodents [68,114] and
zebrafish [70]. Two E3 ubiquitin ligases, Atrogin-1, and MuRf-1, are upregulated in DEX-
treated rodents [69,115], similar to the culture cell model [116]. These ubiquitin ligases promote
ubiquitin-mediated protein degradation in skeletal muscle, which accelerates sarcopenia and
is a potential target for preventing sarcopenia [117]. The increase in myostatin expression is
also important in DEX-induced skeletal muscle atrophy [118]. Many drug testing studies have
been performed with this model. For example, Otsuka et al. demonstrated that quercetin
glycosides reduced muscle atrophy in the mouse gastrocnemius muscle by downregulating
atrogin-1, MuRF-1, and myostatin, which are associated with muscle atrophy [119].

4. Zebrafish Models for Skeletal Muscle Senescence

Rodent organs are believed to mimic human organs, as they possess a high degree
of genetic homology with human genes. Therefore, rodents are typically used as animal
models for drug testing. However, remarkable time, labor, space, and money are required
for studies with rodents. In recent years, from the viewpoint of animal welfare, there has
been an ongoing trend to reduce the number of mammals used in experiments. An ideal
alternative to rodents, the zebrafish has emerged as an animal model for several types
of human diseases, including skeletal muscle atrophy [120,121], aging [122], and sarcope-
nia [123,124], owing to several advantages (Figure 2). The skeletal muscle constitutes a
large part of the zebrafish trunk and has a high degree of similarity to human muscle, both
molecularly and histologically. The skeletal muscle also consists of slow muscles located
directly below the body surface and fast muscles around the vertebrae [125]. Zebrafish have
a set of orthologs for human MRFs that are involved in skeletal muscle myogenesis [126].
Myod and myf5 are expressed in the early phase of skeletal muscle development, followed
by myogenic factor 6 (myf6). Interestingly, myod, myf5, and myf6 expression depend on
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the site of the muscle tissue [127], implying that even skeletal muscle tissue might have
subclassifications in zebrafish.

Figure 2. Comparison between rodents and zebrafish for skeletal muscle senescence. The size of each
circle visualizes its advantage as a model animal.

To induce muscle atrophy or administer drugs to rodents, intravascular or oral gavage,
which requires certain techniques, must be employed. However, zebrafish can absorb chemicals
from their skin and gills by simply adding them to general fish water (exposure test). Protocols
have also been established for oral and intraperitoneal administration in zebrafish [128–130].

4.1. Aged Model

Aging is the main driver of skeletal muscle atrophy and sarcopenia in fish species, like
in rodents [123]. However, the lifespan of mice and zebrafish is almost identical (2–3 years
in laboratory conditions) [131]. As a result, there is little advantage to using wild-type
zebrafish as a model of skeletal muscle aging. Owing to the ease of mutagenesis in zebrafish,
various strains have been developed in recent years using genetic manipulation (using
tol2 transposase), knockdown (using antisense oligonucleotides), and knockout (using
CRISPR/Cas9) techniques. For example, Kishi et al. performed an SA-β-gal activity-based
mutant screen and identified 11 zebrafish mutants with high SA-β-gal activity. Of these,
heterozygous mutations in telomeric repeat binding factor 2 (terf2) or spinster homolog 1
(spns1) were found to result in a shorter lifespan [132]. Further, the spns1 mutation led to
an increase in lipofuscin in the skeletal muscle in the adult stage, indicating that the mutant
can be used as a model for skeletal muscle aging. Previously, Da Rosa et al. reported that
growth hormone (GH) overexpression accelerates spinal curvature in adult zebrafish by
reducing myog and myod expression in surrounding muscles [133]. Their findings highlight
the possibility of accelerated skeletal muscle aging in this transgenic fish. To our knowledge,
there are no reports of the use of these aged models in studies on skeletal muscle aging;
however, various studies are expected in the near future.

As described above, compared to rodent models, the use of zebrafish models certainly
shortens the duration of experiments and reduces the burden of animal husbandry, though
it is still labor-intensive for research on aging. Since the CRISPR/Cas9 genome editing
technology was reported in 2013 [134] and used in zebrafish [135], several disease models
have been reported to have been built using CRISPR-mediated targeted mutagenesis
(knockout). For example, the lmna gene, whose mutation is known to accelerate aging
in rodents [60], is also present in zebrafish. According to a recently published report, the
deletion of five base pairs (5bp∆) in the second exon of the lmna gene by CRISPR/Cas9
genome editing resulted in skeletal muscle damage and impaired swimming [61]. The
authors used this as a model of laminopathy, such as Emery–Dreifuss muscular dystrophy;
however, it also has potential as a model of skeletal muscle senescence.

4.2. Dexamethasone Model

DEX has been used to induce skeletal muscle atrophy in zebrafish [70], like in ro-
dents and cultured cells. Zebrafish can absorb small molecules through their skin and
gills, which enables the administration of DEX by immersion in general fish water for



Molecules 2022, 27, 8625 9 of 15

the induction of muscle atrophy. Although limited studies have been conducted using
DEX-induced zebrafish models (less than 10 papers in Web of Science), some promising
studies have been reported. For example, Ryu et al. revealed that dietary supplementation
with maca (Lepidium meyenii) induced preventive effects in DEX-induced muscular atro-
phy in zebrafish, with an increase in the distance traveled and speed of chasing food in
the aquarium [70]. Similar to how it occurs in rodents, the mechanism of DEX-induced
muscular atrophy in zebrafish is also thought to involve an increase in proteolysis due
to the overexpression of atrogin-1 and murf1 ubiquitin ligase (as a part of aging-induced
muscular atrophy); however, this notion has yet to be proven.

4.3. Chronic Alcohol Model

Prolonged and high-dose alcohol consumption induces muscle atrophy in mammals.
The mechanism by which alcohol induces skeletal muscle atrophy is not fully understood;
however, alcohol is known to increase the expression of ubiquitin ligase, which contributes
to muscle atrophy in elderly people [117,136]. Similar to that in mammals, chronic ethanol
exposure (0.5% in the general fish water for 8 weeks) can induce muscular atrophy in
zebrafish [73]. Although this model has not been used for drug testing, it could serve as a
useful screen for muscle atrophy in response to alcoholism in the future.

5. Zebrafish Models—Future Perspective

Previous research findings on skeletal muscle senescence have been largely based on
cell cultures and rodent models. During the past decade, zebrafish have attracted attention
as a model vertebrate for human diseases, although the contribution of zebrafish models
to the study of skeletal muscle senescence has been relatively small. However, with the
aforementioned rise of CRISPR/Cas9 technology, the number of possible models of skeletal
muscle senescence has been increasing in recent years. For example, in addition to the
lmna crispant described above [61], tp53 crispants have overall reduced activity and shorter
migration distances [65]; Tp53 is well known for its tumor suppressor activity. Therefore,
senescence is reported to be accelerated in Tp53−/m mice [64], and the knockout of tp53 in
zebrafish is predicted to partially affect the skeletal muscle aging pathway. A model of aging
due to metabolic abnormalities, such as the muscle atrophy zebrafish model of insulin receptor
deficiency, which has already been reported in rodents, may also promote such research [137].
In addition, as the subset of muscle- or aging-related genes, including atrogin-1 [138] and
murf1 [139], are common to humans and zebrafish, various zebrafish models are expected to
emerge in the near future to stimulate research on skeletal muscle aging.

The use of zebrafish models will enable the discovery of new target genes involved
in skeletal muscle senescence. For example, the knockout of foxm1, a master regulator
of aging-associated cell senescence that is involved in cell cycle regulation, was found to
increase myofiber death and clearance [140]. It is expected that the screening of compounds
that reduce skeletal muscle senescence and the search for therapeutic target genes using
zebrafish models will become mainstream in the near future.
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