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Abstract: Accurate conformational energetics of molecules are of great significance to understand
maby chemical properties. They are also fundamental for high-quality parameterization of force fields.
Traditionally, accurate conformational profiles are obtained with density functional theory (DFT)
methods. However, obtaining a reliable energy profile can be time-consuming when the molecular
sizes are relatively large or when there are many molecules of interest. Furthermore, incorporation
of data-driven deep learning methods into force field development has great requirements for high-
quality geometry and energy data. To this end, we compared several possible alternatives to the
traditional DFT methods for conformational scans, including the semi-empirical method GFN2-xTB
and the neural network potential ANI-2x. It was found that a sequential protocol of geometry
optimization with the semi-empirical method and single-point energy calculation with high-level
DFT methods can provide satisfactory conformational energy profiles hundreds of times faster in
terms of optimization.

Keywords: conformational energy profile; computational efficiency; semi-empirical method; neural
network potential; AMOEBA force field

1. Introduction

Conformational energy was first developed to describe the ring strain energy of hy-
drocarbon rings, and has been generalized to include energy coming from bond distortions,
angle strain, torsional strain, etc., enabling it to describe overall deviations of molecular
geometry from the ideal [1,2]. If limited to systems of biological interest, e.g., ligand-
receptor binding, the conformational energy is mostly attributed to the torsional strain
from bond rotations. Attaining accurate conformational energetics of molecules is of great
significance to calculate and understand many important molecular properties, such as
molecular dipole moment, binding affinity, etc. [3,4]. Traditionally, quantum mechanical
(QM) methods are applied to obtain the conformational energy landscape of a molecule,
but expensive computational cost makes direct usage only suitable for small systems.

Molecular mechanics (MM) can be applied to large biologically interesting systems by
using classical potential energy functions instead of solving the Schrödinger equation [5–7].
The core of MM methods is utilizing a set of equations and parameters, also known as
force fields (FFs), to model molecular interactions and potential energy surfaces. Typically,
the parameters of FFs are derived by fitting to experimental and/or QM data, based on
predefined rules of transferability [8–13]. This process needs a medium to large amount
of QM calculations to obtain the conformational energetics of small model compounds.
Nevertheless, some parameters, e.g., torsion parameters, are sensitive to the local chemical
environment and, hence, are not as transferable [14,15]. As a consequence, to attain simu-
lations of quality, researchers have to parameterize novel molecules individually with ab
initio QM data, which is time-consuming, but can be made more efficient with automation
tools [16–19], such as Poltype [18,19] for the atomic multipole optimized energetics for
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biomolecular simulation (AMOEBA) force field [20], the force field builder in the com-
mercial Schrödinger software suite [21] for the optimized potentials for liquid simulations
(OPLS) force field [22,23], and so on. With so much QM data to compute, researchers
tend to use “poor” transferability rules for torsion to allow less QM. Thus, it becomes
valuable to find more efficient alternatives to increase the scalability of computing QM for
conformational energy surfaces.

As the data-driven deep learning methods are being incorporated more with FF
development and molecular simulations [24–30], there appears to be a huge demand for
giant ab initio QM datasets for training [24,31–34]. Neural network potentials (NNPs)
could learn the conformational energy landscape accurately, but require vast amounts of
data to achieve the desired performance. To deal with expensive dataset generation, for
example, the ANI potential utilizes active-learning to intelligently let the model choose
what data it wants for improvements. The dataset contains millions of DFT energy points
that have been reduced, and ANI potential’s performance was further refined [25,35]. The
difficulty of generating such a large dataset impedes the evaluation and application of
deep learning models. Researchers are unable to generate their own data set to tailor deep
learning models based on their individual needs, such as specific levels of accuracy of QM
energy, hybrid models of NNP and FF, etc.

To the best of our knowledge, there are few published articles on the comparison of
alternatives to speed up conformational scans without significant loss of accuracy. There
has been some work on using NNPs to accelerate conformational scans and refine the
torsion parameters for the GAFF2 FF [27]. However, one might not want to use the data
generated by another NNP to train their own NNPs. Furthermore, we anticipated that
semi-empirical methods [36,37] could be another alternative with accuracy in between DFT
and MM methods. Thereby, in this work, we benchmarked the quality of the geometry
and energy obtained with AMOEBA, an FF method, GFN2-xTB, a semi-empirical method,
ANI-2x, an NNP method, and ωB97XD [38,39], a DFT method in ab initio conformational
energy scan settings with a fragment dataset compiled by us, with both good drug-likeness
and chemistry coverage considered.

2. Results and Discussion
2.1. Our Dataset Has a Broad Coverage of Chemical Space

The dataset contains a total of 233 fragments with a broad range of sizes (Figure 1A),
with the number of total atoms varying from ∼5 to ∼40 covering chemical environments
of different functional groups. We also analyzed the composing elements of the center
atoms (i.e., atoms b,c in torsion a-b-c-d) and the neighbors (i.e., atoms a,d). Here, we only
considered the elements of biochemical interests, namely C, N, O, P, S, F, Cl, Br, I, and H,
of which only the first five are not monovalent; therefore, only they can serve as center
atoms in a torsion bond. Our dataset covers the majority of the chemistry defined by this
rule (Figure 1B), except those that are unstable or that are rarely found in biology-related
compounds, e.g., P-P, P-S, N-P, O-O, N-O, etc. The N-O bond is actually very common, such
as in nitro groups, but it appears as terminal bond that cannot serve as a center bond (bond
b,c in torsion a-b-c-d). Our dataset actually includes nitro groups, as shown in Figure 1C.
This figure shows the number of occurrences of the elements of neighbor atoms grouped
by the element of the center atom, which illustrates the diversity of the local environments
of the torsion bonds. Nitro groups are represented in the point under the center atom N at
neighboring atom O. The vacancies with no point suggest bonding environments rarely
found in biological systems that were excluded from our dataset, such as hetero atoms
neighbored by halogens, etc. The structures of typical fragments randomly sampled from
our dataset are presented in Figure 2.
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Figure 1. The torsion chemistry coverage of the dataset compiled in this work. (A) The histogram of
the number of atoms of the fragments in the dataset. (B) The chemistry coverage measured by the
elements of center atoms. (C) The chemistry coverage measured by the elements of neighbor atoms.
The categories without a point mean that no such data exists in the dataset.

Figure 2. Typical fragments randomly selected from the dataset. The torsion bond and the center
atoms are highlighted in red.

2.2. Cheaper Optimization Methods Can Also Provide Acceptable Geometry

We then benchmarked the three methods on this dataset with the scenario of con-
formational energy scans, assuming that the DFT results are the ground truth. First, we
assessed the geometry obtained from the constrained optimization with AMOEBA, ANI,
xtb, and ωB97XD/6-311G. Unlike DFT methods that remove the corresponding degrees
of freedom for the constraints, MM methods usually restrain the degrees of freedom by
adding extra harmonic potentials. Therefore, the constrained torsion dihedrals remain al-
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most the same as the targets after ωB97XD optimization, but could change slightly after the
AMOEBA, ANI, and xtb optimizations (Figure 3A). The reason is that the energy increase
due to the unsatisfied restraints could be compensated for by the other interactions in the
molecule. However, acceptable results where the overall deviation is within 1 degree can
be achieved by setting sufficient force constants that control the steepness of the added
potential wells on the constrained dihedrals. The optimized geometries were subsequently
compared with the ωB97XD-optimized one (Figure 3B) by all-atom RMSD. The majority of
structures showed an RMSD of less than 0.2 Å, with a few extreme RMSDs of up to ∼1 Å .
In particular, xtb yielded the best agreement with ωB97XD results, suggested by the lowest
mean RMSD (the bar inside the violin), although the torsion angle deviation was not as
good as other methods. Generally speaking, all of the three MM methods seemed able to
provide acceptable geometry for conformational scans.

Additionally, it should be noted that ANI-2x can only be applied to molecules contain-
ing C, H, O, N, S, F, and Cl elements, leading to its incapability of handling many small
molecules, e.g., fragments with P, Br, and I in our dataset. We also found that ANI often
fails the optimization due to convergence issues. Perhaps the reason for this is due to the
optimization engine—atomic simulation environment (ASE)—that ANI employed. This
further hinders researchers from utilizing ANI for generating accurate QM datasets. In
contrast, the xTB method is capable of handling molecules across the periodic table with
up to thousands of atoms [37]. Researchers need not bother with the chemistry coverage
and scalability issues.
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Figure 3. The analysis of the geometry obtained from the constrained optimizations. (A) The
deviations of the torsion dihedral angles from the target set in the constraints. (B) The RMSD of the
geometry obtained from the indicated optimization methods compared to the ωB97XD-optimized
one. The bars in the violins represent the mean values.

2.3. DFT Method Is Still Necessary to Obtain Satisfactory Torsion Energy Profile

We further compared the deviation of the energies obtained through the various combi-
nations of geometry optimization methods and single-point energy methods to the energies
from DFT for both, i.e., ωB97XD/6-311G optimization followed by ωB97XD/6-311+G*
single-point energy, shortened as ωB97XD-ωB97XD. This notation, opt-sp, is also used in
the legend of Figure 4. As seen, the energies from xtb-xtb and ANI-ANI were in poor agree-
ment with those from ωB97XD-ωB97XD, as suggested by the overall root mean squared
error (RMSE) of∼1 kcal/mol (Figure 4A) and the 95% percentile of >2 kcal/mol (Figure 4B).
The ANI-2x paper actually reported similar numbers for the comparison between ANI-ANI
and DFT-DFT [25]. The overall RMSE of ANI-ωB97XD was similar to ANI-ANI but its
95% percentile, ∼1 kcal/mol, was better than ANI-ANI, suggesting that the unsatisfactory
RMSE might be attributed to the existence of the outliers (Figure 4B). Nevertheless, what
excited us most is that xtb-ωB97XD demonstrates an excellent alignment to the reference,
ωB97XD-ωB97XD, as indicated by the overall RMSE of 0.41 kcal/mol and the 95% per-
centile of 0.62 kcal/mol. The AMOEBA-ωB97XD was also included here as the baseline
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FF method. These results aligned well with the geometry deviation mentioned before
(Figure 3), which gave us an idea of how much difference the subtle deviation in geometry
could make to the torsion energy profile.

In MD simulations of ambient conditions, molecular structures fluctuate around the
equilibrium conformation. Thus, it is more relevant and important to model the energy
profile accurately close to the equilibrium geometry. To this end, we included RMSEs for
subsets of data points with different cutoffs on DFT energies (Figure 4A). As expected, all
methods performed better with decreasing of DFT energy, i.e., coming closer and closer to
the equilibrium. Even for xtb-ωB97XD, the RMSE for the subset with lower DFT energy
was slightly smaller than the overall RMSE. The RMSE on data points with DFT energy
no greater than 2 kcal/mol is lower than 0.30 kcal/mol. In addition, we also included
the Boltzmann-weighted overall RMSEs at temperatures of 300 K and 1000 K (Figure 4A)
and the histograms of Boltzmann-weighted absolute deviations at 1000 K (Figure 4C).
The Boltzmann-weighted RMSE and 95% percentile xtb-ωB97XD are 0.27 kcal/mol and
0.39 kcal/mol, respectively. These results were consistent with that the xTB methods were
parameterized to provide good geometries [37].
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Figure 4. The comparison of energies obtained from various combination of optimization and
single-point energy methods. (A) The root mean squared error of the indicated methods to DFT
methods, ωB97XD-ωB97XD. This refers to ωB97XD/6-311G optimization followed by ωB97XD/6-
311+G* single-point energy. The same notation convention applies to others in the legends. (B) The
histograms of absolute errors for the indicated methods. (C) The histograms of Boltzmann-weighted
absolute errors at 1000 K for the indicated methods. The orange vertical lines represent the 95%
percentiles. The y axes were transformed to log scale to highlight outliers.



Molecules 2022, 27, 8567 6 of 12

2.4. Inexpensive Computational Cost Highlights the Advantage of the Semi-Empirical Method xtb

When it comes to large scale conformational energy scans, time efficiency becomes
non-trivial and as important as the accuracy of energy landscapes. Based on what was
discussed above, it is tempting to replace the DFT optimization with xtb but for now, the
DFT method should be kept for the single-point energy calculations to ensure satisfactory
energy profiles. We found that the CPU times consumed for the DFT optimization of each
torsion point were mainly distributed under 100 s per iteration (Figure 5A) and under
2000 s per molecule (Figure 5B). However, for the semi-empirical method xtb, the CPU
time costs were mostly less than 1 s per iteration and less than 20 s per molecule. We next
calculated the ratio and found that for most of fragments in our dataset, xtb optimization is
faster than DFT by a median factor of∼72 with the majority lying within a factor of 10–1000
(Figure 5C). We also determined the elapsed times for optimization with ANI (Figure S1),
which mainly lie in the range of 3.5–6.0 s per molecule. ANI was slightly faster than xtb.
Since ANI does not provide an official timer, it was difficult to time each iteration.
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Figure 5. The computational cost comparison between xtb and ωB97XD optimization. (A,B) The
scatter plot of the CPU times elapsed per iteration (A) and per molecule (B) for ωB97XD optimization
versus xtb optimization. (C) The histogram of the ratio of CPU times for ωB97XD optimization to xtb
optimization. The orange vertical line represents the median.

2.5. Case Discussion

Along with the overall comparison, herein, we show some of the poor cases we
visually inspected. Often, the fragments containing sulfur atoms could be challenges for
the methods benchmarked in this work. Figure 6A demonstrates a fragment where ANI
and xtb could provide good geometry, but not good energy. Figure 6B shows an example
where ANI was outperformed by xtb since ANI could not generate even a reasonable
geometry, as indicated by the up and down of the ANI-ωB97XD curve, but the ANI-ANI
curve suggests that ANI energy could somehow compensate for the bad geometry. In
Figure 6C,D, we present two examples where xtb-ωB97XD exhibited relatively bad RMSEs
(1.17 and 0.59 kcal/mol, respectively), but still was able to keep the overall shape of the
torsion energy surfaces. Usually, the performance of NNPs is highly dependent on the
training data. Since the dataset of ANI-2x was not publicized, we could not do much
analysis. However, according to the description of the dataset creation in the ANI-2x paper,
the molecules containing sulfur atoms were generated by simply substituting oxygen
atoms. We assume that some functional groups containing sulfur atoms were probably not
covered, such as sulfonic groups. This could be the reason why ANI-2x behaved poorly on
these molecules.

We also found that fragments containing more than one phosphoric acid groups were
non-trivial with respect to optimization. On one hand, the P-O-P bond in the triphosphoric
acid was flattened during optimization at the level of ωB97XD/6-311G (Figure 7A). One
the other hand, a non-negligible number of points failed to converge at that level of theory
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with Psi4. Finally, we managed to optimize with Gaussian09 at the level of PBE/6-311G
to obtain geometry of reasonable quality. However, the torsion profiles obtained by xtb
diverged from those from DFT (Figure 7B). This problem might arise from the strong
interactions between the phosphoric acid groups, making it hard to reach the minima
without a polarizable continuum model in vacuum.
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Figure 6. Four tricky cases containing sulfur atoms. (A) A fragment where ANI and xtb could provide
good geometry, but not good energy. (B) An example where ANI was outperformed by xtb since ANI
could not generate reasonable geometry. (C,D) Two examples where xtb-ωB97XD exhibited relatively
bad RMSEs, but still was able to keep the overall shape of the torsion energy surfaces. The scanned
torsion bonds are highlighted in cyan. The same notation as in Figure 4 is used in the legends.
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3. Materials and Methods
3.1. Dataset

We compiled the dataset used in this work by emphasizing both drug-likeness and
chemistry coverage. We started with ∼30 drug molecules randomly selected from the
DrugBank database [40], which were cut into fragments with Poltype 2. The fragmenter in
Poltype 2 ensures that the electron density of the fragment close to the innermost rotatable
bond is similar to the electron density of the parent molecule for the same bond, which
reduces the DFT computation cost without sacrificing the accuracy of torsion energy scans
of that bond. These drug molecules provided us ∼100 unique fragments, of which each has
one or more torsions that were scanned. We further expanded our dataset by the addition of
∼100 small organic molecules retrieved from PubChem [41] based on the torsion chemistry
uncovered by the drug fragments. Our final dataset was composed of 233 fragments with
344 torsions, which covers 124 unique torsions defined by the elements of the four atoms of
the torsion angle a-b-c-d. The dataset can be found in Table S1.

3.2. Computational Details

In this work, we focused on the comparison between DFT, semi-empirical, and NNP
methods. To this end, we chose a representative method for each of the three categories,
namely, GFN2-xTB, ωB97XD, and ANI-2x. GFN2-xTB was published in 2019 as a vari-
ant to the tight-binding DFTB3 [42,43] scheme, which includes anisotropic second-order
density fluctuation effects via short-range damped interactions of cumulative atomic mul-
tipole moments. GFN2-xTB was designed to account for properties around the energetic
minimum, e.g., geometries. There have been several studies [36,44] demonstrating that
the theoretically sophisticated GFN2-xTB performs better than or comparable with other
semi-empirical methods such as AM1 [45], PM3 [46], DFTB3, etc. The ωB97XD functional
showed overall better performance than most of the 200 density functionals, including
PBE0-D3(BJ) [47,48], PBE-D3(BJ) [48,49], and M06-2X [50], according to the benchmark
study published by Head-Gordon and coworkers in 2017 [38]. There have been other
publications benchmarking [51] or discussing [52] the performance of ωB97XD. Overall,
ωB97XD was considered to offer a good balance between computational cost and accu-
racy. ANI-2x is the most current version of ANI potentials, with the best performance and
broadest chemistry coverage (including seven elements: C, H, O, N, S, F, and Cl).

The overall workflow is as follows. (i) Minimize the input structure at the MP2 [53]/6-
31G* [54–59] level of theory to obtain a good initial geometry for the subsequent confor-
mational energy scan. (ii) With all the other torsion dihedrals fixed, rotate the scanned
torsion bond to generate structures along the dihedral angle at uniform intervals. The
increment of the degree is dependent on the number of cosine terms used in torsion fitting
(i.e., three terms in this work) and the number of other torsions around the scanned torsion,
due to needing more points sampled than number of parameters being fit for AMOEBA.
(iii) Minimize the structures with constraints on all torsions using AMOEBA, and then
use the indicated optimization methods, i.e., xtb, ANI, or ωB97XD/6-311G [60–63]. The
force constants for xtb were set as 5 kcal/mol/deg2. The convergence criteria for Psi4 are
default, at {Delta E: 1.00× 10−4 au, MAX Force: 2.50× 10−3 au, RMS Force: 1.70× 10−3 au,
MAX Disp: 1.00× 10−2 au, RMS Disp: 6.70× 10−3 au}. The convergence criteria for xtb
are default, at “normal”, {Econv: 5× 10−6 au, Gconv: 1× 10−3 au/α }. (iv) Calculate the
single-point energies with the indicated methods, including xtb, ANI, and ωB97XD/6-
311+G* [55,63–66].

GFN2-xTB was readily exploited with xtb software. All DFT calculations involved in
this work were performed with Psi4 [67], except for those explicitly mentioned as using
Gaussian09 [68]. ANI-2x was accessed by the TorchANI [69] Python module. For simplicity,
xtb and ANI will be used to refer to GFN2-xTB and ANI-2x through the article, respectively.
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3.3. Metrics

We mainly used RMSE and absolute error (AE) to analyze the results obtained from
different methods. In typical torsion parameterization scenarios, the Boltzmann-weighted
error is widely adopted as well, which emphasizes the energy deviation close to the
equilibrium structures, since this conformational space is of great significance in equilibrium
MD simulations. The AE and RMSE are given by

AE(i) = |Ei − EDFT
i | (1)

RMSE =

√√√√ N

∑
i=0

1
N

AE(i)2 (2)

The Boltzmann-weighted versions, denoted as a superscript of B, are given by

AEB(i) =
N exp(− EDFT

i
kBT )

∑N
i=0 exp(− EDFT

i
kBT )

|Ei − EDFT
i | (3)

RMSEB =

√√√√√ N

∑
i=0

exp(− EDFT
i

kBT )

∑N
i=0 exp(− EDFT

i
kBT )

AE(i)2 (4)

4. Conclusions

Based on what was reported in this work, we would like to recommend the sequential
protocol of optimization with GFN2-xTB and single-point energy at ωB97XD/6-311+G* as
a promising alternative for large-scale conformational scans. With running time reduced by
factors of hundreds, this protocol can provide geometry in excellent agreement with that
obtained by ωB97XD/6-311G, and accurate DFT single-point energy. Other combinations
of comparable semi-empirical methods and DFT methods may be able to provide similar
results, but relevant benchmark studies are necessary to draw a general conclusion. It
should also be noted that researchers need pay attention to the chemistry of their dataset,
since certain functional groups can be tricky for all methods. We hope that this work can
benefit researchers in need of large-scale conformational energy scans.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238567/s1, Figure S1: The distribution of the elapsed
times of optimization with ANI-2x and ASE Python module; Table S1: The SMILES of the fragments
composing the dataset in this work.
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