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Abstract: Tobacco seeds are a valuable food oil resource, and tobacco seed oil is rich in nutrients,
especially polyunsaturated fatty acids. The aim of this work was to perform a comprehensive study on
the chemical constituents, and the antioxidant, anti-inflammatory, and whitening activities of tobacco
seed oils (NC89 and BS4). A GC/MS analysis revealed that NC89 and BS4 had 11 and 6 volatile
compounds, respectively. The PUFA contents in NC89 and BS4 were 74.98% and 72.84%, respectively.
These two tobacco seed oils also presented good radical scavenging capacities with the neutralization
of ABTS, OH−, and superoxide (O2

−) radicals in a concentration-dependent manner. Meanwhile,
NC89 and BS4 inhibited reactive oxygen species (ROS) accumulation and cell apoptosis, enhanced
SOD and CAT activities, and increased the GSH content in H2O2-induced HepG2 cells. In addition,
NC89 and BS4 exhibited significant anti-inflammatory activities by inhibiting the expressions of NO,
TNF-α, IL-1β, and IL-6 in LPS-induced RAW.264.7 cells through the regulation of the MAPK signaling
pathway. Moreover, NC89 and BS4 expressed whitening activities by inhibiting tyrosinase activity
and intracellular melanin production. Therefore, tobacco seed oils could be used as an important oil
resource for the development of high value-added products.

Keywords: tobacco seed oils; fatty acids; antioxidant capacity; cytoprotective effect; tyrosinase

1. Introduction

Tobacco plant (Nicotiana tabacum L.) is an important commercial crop that is widely
cultivated around the world [1,2]. Its leaves are generally processed into various tobacco
products including cigars, bidis, snuffs, hookah, and gutka. However, tobacco seeds are
wasted byproducts of commercial leaf production. Recently, tobacco seeds have been
developed as biodiesel, animal feed, paint, soap, and seed oil [3]. A study showed that
tobacco seeds have oil contents of about 30–40%, which is higher than that of some other
oil crops, including soybean, cotton, and olive [4]. Tobacco seed oil contains a variety of
beneficial substances, such as triacylglycerols, phospholipids, tocopherols, sterols, and
unsaturated fatty acids [5]. In addition, the major unsaturated fatty acids in tobacco seed
oils are linoleic acid, oleic acid, palmitic acid, and stearic acid [6]. Unsaturated fatty acids
have the potential for treating cardiovascular and cerebrovascular diseases [7]. Thus, there
is an urgent need to perform a further study on the chemical composition and biological
activity of tobacco seed oils for commercial application.

Reactive oxygen species (ROS) are important signaling molecules in the regulation of
cell survival and cell death. However, if excessive ROS can’t be scavenged in a timely man-
ner, oxidative stress can occur, which can cause irreversible oxidative damage to the lipids,
proteins, and DNA. Oxidative stress is closely related to inflammatory response, which can
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induce a series of chronic diseases. It has been reported that inflammatory cytokines will in-
fluence melanocytes’ immune and metabolic functions, contributing to melanin deposition
in the skin [8]. Hyperpigmentation in the skin, the suppression of oxidative stress, and in-
flammatory response is a potential strategy for inhibiting the deposition of skin melanin [9].
In addition, a study has reported that some plant oil extracts (olive oil, olive pomace oil,
sunflower seed oil, etc.) exhibited significant antioxidant and anti-inflammatory effects [10].
However, the studies about the antioxidant and anti-inflammatory abilities of tobacco seed
oils are limited. Therefore, it is important to explore the antioxidant and anti-inflammatory
abilities of tobacco seed oils for skin whitening via reducing melanin accumulation.

In China, Yunnan province is the most important region for tobacco cultivation. To-
bacco seed is a byproduct of tobacco leaf production and is traditionally processed as an
edible oil by the local people. Although the tobacco seeds are very small in size, their
biomass per plant is very large. For tobacco cultivation, the NC89 and BS4 tobacco species
have a higher planting density than other species, thereby leading to a large amount of
NC89 and BS4 tobacco seeds. However, the chemical composition and biological activities
of the oils from the NC89 and BS4 tobacco seeds have not been studied. In order to increase
their economic value, the chemical composition, and the antioxidant, anti-inflammatory,
and whitening activities of tobacco seed oils (NC89 and BS4) were explored in this work.
The fatty acid composition and chemical constituents were analyzed by gas chromatog-
raphy coupled with FID or MS detectors. The antioxidant activities of the NC89 and BS4
oils were determined by scavenging ABTS, OH−, and O2

− radical assays and inhibiting
the ROS production in H2O2-stimulated HepG2 cells. The anti-inflammatory effects were
determined by measuring the expressions of NO, TNF-α, IL-1β, and IL-6 against LPS-
induced RAW264.7 cells. Moreover, the whitening activity was measured by inhibiting the
tyrosinase activity and cellular melanin production in B16 melanoma cells. Thus, this study
could provide information about tobacco seed oil for further development and utilization.

2. Results and Discussion
2.1. Identification of Chemical Constituents by GC-MS

The information on the chemical composition of tobacco seed oils is limited. The
volatile constituents of the NC89 and BS4 tobacco seed oils were analyzed by GC-MS
(Figure 1). As shown in Table 1, a total of 10 volatile compounds were characterized by GC-
MS in the NC89 tobacco seed oil, including one aromatic hydrocarbon (6), one hydrocarbon
halides (2), two aldehydes (1, 3, and 8), and four alcohols (4, 5, 7, and 9). In the BS4 tobacco
seed oil (Table 2), four compounds were detected and identified by the GC-MS.
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Table 1. Volatile constituents of NC89 tobacco seed oil.

Peak tR
(min) CAS Molecular

Formula
Molecular
Weight Compounds

1 2.355 32749-94-3 C7H14O 114.19 2,3-Dimethylpentanal
2 2.655 107-84-6 C5H11Cl 106.59 Chloroisopentane
3 2.870 58735-67-4 C8H16O 128.212 2-Ethyl-hexanal
4 5.040 123-51-3 C5H12O 88.15 3-Methyl-1-butanol
5 5.165 15250-22-3 C10H22O 158.2811 2,7-Dimethyl-1-octanol
6 5.985 108-88-3 C7H8 92.14 Toluene
7 6.155 71-41-0 C5H12O 88.15 1-Pentanol
8 7.420 66-25-1 C6H12O 100.16 Hexanal
9 12.62 111-27-3 C6H14O 102.17 Hexyl alcohol

Table 2. Volatile constituents of BS4 tobacco seed oil.

Peak tR
(min) CAS Molecular

Formula
Molecular
Weight Compounds

1 2.340 16630-91-4 C8H16O 128.212 2-methyl heptanal
2 2.845 3010-96-6 C8H16O2 144.2114 2,2,4,4-Tetramethyl 1,3-cyclobutanediol
3 3.910 543-75-9 C4H6O2 86.0892 2,3-dihydro-1,4-Dioxin
4 14.350 110-43-0 C7H14O 114.19 2-Heptanone

2.2. Composition of Fatty Acid Profiles

The results in Table 3 showed that NC89 and BS4 tobacco seeds are rich in fatty acids,
with a content of about 40%. The oil content in these seeds is higher than that of the
oils from rape seeds, sunflower seeds, Ricinus communis seeds, and soybeans. A total of
18 different fatty acids were found in these two tobacco seeds oils, in which linoleic acid,
oleic acid, and palmitic acid were the major fatty acids, and the contents of these acids in
the BS4 were higher than those in the NC89 by the ratios at 71.55%, 14.04%, and 8.83%,
respectively. A study has shown that polyunsaturated fatty acids (PUFAs) have important
health and nutritional benefits, such as the prevention of cardiovascular disease [11]. Our
results revealed that NC89 and BS4 tobacco seed oils are rich in PUFAs, with 74.98% content
for the NC89 and 72.84% for the BS4, respectively. These ratios are much higher than the
values reported for other important food oils such as olive oils (25%) [12], soybean oils
(50.59%) [13], and sesame oils (46%) [14]. The higher unsaturated fatty acid content of
tobacco seed oil means that it has higher nutritional value. Tobacco seed oil is widely
available in China and has a high economic value, but there are few studies, and this study
provides a theoretical basis for the development of tobacco seed oil products.

Table 3. Composition and relative contents of tobacco seed oil fatty acids (%).

Fatty Acids NC89 BS4

butyric acid 0.32 0.14
myristic acid 0.03 0.03
palmitic acid 8.18 8.83
palmitoleic acid 0.10 0.12
heptadecanoic acid 0.13 0.12
10-heptadecenoic acid 0.06 0.06
stearic acid 3.21 3.30
oleic acid 12.45 14.04
linolelaidic 0.42 0.39
linoleic acid 73.53 71.55
α-linoleic acid 0.93 0.82
arachidic acid 0.21 0.21
eicosenoic acid 0.13 0.13
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Table 3. Cont.

Fatty Acids NC89 BS4

11,14-eicosadienoic acid 0.10 0.08
heneicosanoic acid 0.02 0.01
behenic acid 0.08 0.10
carnaubic acid 0.08 0.05
tetracosenic acid 0.05 0.03

SFA 12.24 12.79
MUFA 12.78 14.37
PUFA 74.98 72.84

SFA: saturated fatty acids. MUFA: monounsaturated fatty acids. PUFA: polyunsaturated fatty acids.

2.3. Ability of Tobacco Seed Oil on Scavenging Free Radicals

It is reported that excessive production of free radicals is an important inducer of
oxidative stress damage, which is related to the occurrence of some chronic diseases
including cancers, and cardiovascular and age-related degenerative diseases [15]. Thereby,
how to effectively scavenge free radicals (ABTS, OH−, and O2

−) is an important indicator
for evaluating the antioxidant ability. As shown in Figure 2, the NC89 and BS4 scavenged
the ABTS (Figure 2A), OH− (Figure 2B), and O2

− (Figure 2C) radicals in a dose-depended
manner. Additionally, the NC89 exhibited better antioxidative ability than the BS4 at
low concentrations, which may be related to the higher contents of PUFA in the NC89
tobacco seed oil. These results indicate that tobacco seed oils may have a good antioxidative
ability. In addition, sunflower oil also exhibited antioxidant activity, in agreement with our
results [16].
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Figure 2. The antioxidant activity of NC89 and BS4 tobacco seed oils. (A). ABTS radical scavenging
ability, (B). OH- radical scavenging activity, (C). super-oxide anion radical scavenging activity. Values
are presented as the mean ± SD (n = 3). The different samll letters above bars present significance of
difference (p < 0.05).
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2.4. Inhibitory Effect of Tobacco Seed Oil on Intracellular ROS Generation

The MTT assay results showed that NC89 and BS4 were not toxic to HepG2 cells at
a dose of 100 µg/mL. It has been reported that ROS can perform redox signaling on cell
signal transduction and oxidative stress, maintaining the human body’s redox equilibrium
balance [17]. However, excessive ROS production destroys this balance and leads to
abnormal physiological functions and diseases [17]. An H2O2-induced oxidative stress
model in vitro is generally used to explore the antioxidative effect [18]. With the stimulation
of H2O2, the cells produce and secrete excessive ROS to destroy the cell antioxidant defense
systems [19]. Therefore, an H2O2-induced oxidative stress model of HepG2 cells was used
in this study to further evaluate the inhibitory effects of these two tobacco seed oils on
ROS production.

As shown in Figure 3, compared to the control group, the content of H2O2 was
significantly increased in the H2O2-induced HepG2 cells (p < 0.05). Fortunately, the NC89
and BS4 oils remarkedly reduced the ROS accumulation in the H2O2-induced HepG2
cells (p < 0.01). Specifically, it was worth noting that the NC89 had a better capacity
of scavenging ROS than the positive control Vc; this may have benefitted from its high
contents of PUFA. Our results were supported by another study that showed that the
essential oil of Paederia scandens, with a high level of PUFA, exhibited antioxidant activity
by reducing ROS and MDA levels [20].
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Figure 3. NC89 and BS4 tobacco seeds oil mitigated reactive oxygen species’ (ROS) accumulation
in HepG2 cells induced by H2O2. (A): Flow cytometry analysis; (B): the intracellular ROS content.
Values are presented as the mean ± SD (n = 3). # p < 0.05 vs. Control group; * p < 0.05, ** p < 0.01 vs.
M group.

2.5. Cytoprotective Activity against H2O2-Induced Cell Apoptosis

Apoptosis is an important procedure for the stable maintenance of the intracellular
environment that is regulated by genes [21], while abnormal cell apoptosis induced by
oxidative stress and inflammation can cause many diseases, such as cardiovascular dis-
ease, neurodegenerative diseases, and atherosclerosis [21]. The cytoprotective activities of
tobacco seed oil is shown in Figure 4. In comparison with the control group, the H2O2 treat-
ment significantly increased the apoptosis rate of the HepG2 cells (p < 0.05). Notably, the
apoptosis rate was significantly decreased after the NC89 and BS4 oil treatments compared
to the model group (p < 0.01). The present results were similar to the finding of nigella sativa
seed oil, which also can inhibit the production of apoptosis [22].

2.6. Antioxidant Ability of Tobacco Seed Oil on H2O2-Induced HepG2 Cells

SOD and CAT are important endogenous antioxidant enzymes that contribute to the
antioxidant defense system in cells to ameliorate the oxidative stress induced by H2O2 [23].
As the most powerful antioxidant in the body, GSH play a vital role in scavenging free
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radicals to maintain the intracellular balance of oxidation and reduction. The results of the
CAT and SOD activities and the GSH levels are shown in Figure 5. Compared with the
control group, the CAT and SOD activities, and the GSH levels were dramatically reduced
by the H2O2 (p < 0.01), but significantly increased by the NC89 and BS4 pretreatment
in comparison to the model group (p < 0.05) in a concentration-dependent manner. The
present results reveal that the NC89 and BS4 tobacco seed oils suppressed the oxidative
stress by enhancing the intracellular antioxidant defense systems and reducing the ROS ac-
cumulation. A previous study indicated that Artemisia scoparia essential oil also increased
the activity of antioxidant enzymes, which was consistent with our results [24].
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2.7. Anti-Inflammatory Effect of Tobacco Seed Oil

The MTT assay result indicated that NC89 and BS4 were not toxic to RAW 264.7 cells
at concentrations less than or equal to 100 µg/mL. In general, inflammation is a disease-
fighting response in the body, but a persistent inflammatory response will cause cell
damage and even cell apoptosis [25]. It is reported that an overproduction of NO is able
to induce an inflammatory response, in which process the inflammatory cytokines’ tumor
necrosis factor-α (TNF-α), interleukine-1β (IL-1β), and interleukine-6 (IL-6) are secreted to
exacerbate the inflammatory response [26]. An LPS-induced RAW264.7 cell inflammatory
model is widely used to evaluate the anti-inflammatory effect in many studies [27]. As
shown in Figure 6, NO content (Figure 6A) and the levels of TNF-α (Figure 6B), IL-1β
(Figure 6C), and IL-6 (Figure 6D) were dramatically increased by the H2O2 compared with
the control group (p < 0.01), but significantly reduced by the NC89 and BS4 (p < 0.01) in a
dose-dependent manner. It is known that oxidative stress and inflammatory response are
mutually reinforcing, and the occurrence and development of many diseases are related
to the combined action of oxidative stress and inflammation [26]. These results showed
that NC89 and BS4 tobacco seed oils had anti-inflammatory capacities, which were in
accordance with the antioxidative results and further supported the results that tobacco
seed oils could alleviate cell apoptosis. The present findings were similar to the results of
Zingiber montanum oil, which also inhibited NO production in LPS-treated RAW264.7 cells,
and thus exhibited anti-inflammatory activity [28].
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2.8. The Inhibitory Effect of Tobacco Seed Oil on the MAPK Pathway

The MAPK signaling pathway plays a crucial role in regulating pro-inflammatory
cytokines and mediators, which is consistent with ERK, JNK and P38 proteins [29]. Truong
previously reported that Zingiber montanum oil inhibited the MAPK signaling pathway in
LPS-treated RAW 264.7 cells, in agreement with our results [28]. In order to investigate the
possible mechanism of tobacco seed oils in LPS-induced RAW264.7 cells, the production of
the MAPK pathway-related proteins, including ERK, p-ERK, JNK, p-JNK, P38, and p-p38,
were determined by Western blotting analysis. As shown in Figure 7, H2O2 markedly
enhanced the phosphorylation of the ERK (p < 0.05), JNK (p < 0.05), and P38 (p < 0.05)
proteins in contrast to the control group. Conversely, the treatment with the NC89 and BS4
tobacco seed oils dramatically reduced the relative ratio of p-ERK/ERK (p < 0.01, p < 0.01),
p-JNK/JNK (p > 0.05, p < 0.01), and P-p38/P38 (p < 0.01, p < 0.01) in the LPS-induced
RAW264.7 cells. These results precisely demonstrate the reason that tobacco seed oil could
effectively inhibit the expression of inflammatory cytokines. Additionally, the MAPK
pathway is also strongly associated with oxidative stress, and many studies have reported
that oxidative stress can be effectively suppressed via inhibiting the activation of the MAPK
pathway [30]. Convincingly, our results further support this view.
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2.9. Whitening Effect of Tobacco Seed Oils on Inhibition Rate of Tyrosinase Activity

Tyrosinase is widely distributed in nature and takes part in the first two steps of
melanin biosynthesis [31]. Nonetheless, the abnormal accumulation of melanin can trigger
skin diseases such as melanoma [32]. Vc is a vital reducing agent that can avoid reactions
from dopamine to levodopa by regulating the chemical reduction of dopamine [33] and
could suppress melanin production via inhibiting tyrosinase activity [34]. Moreover, a study
has shown that saponified evening primrose oil effectively inhibited tyrosinase activity,
which is consistent with our result [35]. The whitening effect of NC89 and BS4 was studied
by a tyrosinase inhibition experiment. As shown in Figure 8, the inhibitory effects of the
NC89 and BS4 on tyrosinase activity increased gradually with time, but their inhibitory
effects were obviously inferior to that of Vc. When the concentration was 8 mg/mL, for
the NC89, the inhibition of the tyrosinase activity rate was the highest (24.21 ± 2.2%)
and tended to be stable for 15 min. At the concentration of 10 mg/mL, the inhibition of
tyrosinase activity by the NC89 reached the maximum (28.97 ± 4.7%) at 20 min. For the
BS4, the inhibition of tyrosinase activity also showed an upward trend with the increase
in time at the concentrations of 8 mg/mL and 10 mg/mL; the inhibition rate of tyrosinase
also showed an upward trend with the increase in time. However, when its concentration
was 4 mg/mL, the inhibition rate of the tyrosinase reached a maximum (26.12 ± 10.1%) at
5 min and was not significantly different from that of the high-concentration tobacco seed
oil. The overall results showed that both tobacco seed oils had strong tyrosinase inhibitory
activities, and the BS4 oil was slightly better than the NC89 oil.
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Figure 8. Inhibitory effect of NC89 and BS4 seed oils with different concentrations on tyrosinase
in different times. Mushroom tyrosinase was treated with NC89 (A), BS4 (B), Vitamin C (C), and
tyrosinase activity was measured. Values are presented as the mean ± SD (n = 3).

2.10. Effect of Tobacco Seed Oil on the Proliferation in B16 Cells

As shown in Table 4, arbutin, NC89, and BS4 ranging from 4.2 mg/mL to11.1 mg/mL
had no cytotoxicity against the B16 cells in the 24 h and 48 h assessments. However, after
72 h of proliferation, the NC89 and BS4 showed cytotoxicity against the B16 cells when the
concentrations of NC89 and BS4 were greater than or equal to 8.3 mg/mL.
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Table 4. Effect of tobacco seed oil on the proliferation in B16 cells.

Sample Concentration
Viability (%)

24 h 48 h 72 h

NC89 4.2 mg/mL 110.18 ± 1.72 * 104.14 ± 4.06 114.95 ± 4.96
BS4 4.2 mg/mL 105.43 ± 6.96 * 112.24 ± 3.5 108.8 ± 4.78
Arbutin 31 µg/mL 124.20 ± 3.84 96.9 ± 2.41 90.38 ± 3.93
NC89 5 mg/mL 105.43 ± 2.66 * 102.91 ± 1.83 106.25 ± 2.77
BS4 5 mg/mL 107.93 ± 3.86 106.02 ± 2.02 108.38 ± 3.44
Arbutin 62.5 µg/mL 113.15 ± 6.23 93.54 ± 3.27 88.98 ± 7.35
NC89 6 mg/mL 108.58 ± 5.06 * 102.2 ± 2.48 110.08 ± 2.88
BS4 6 mg/mL 117.07 ± 6.7 113.22 ± 1.83 95.15 ± 3.98
Arbutin 125 µg/mL 124.77 ± 3.71 92.8 ± 1.22 92.31 ± 1.26
NC89 8.3 mg/mL 119.00 ± 2.32 103.34 ± 1.81 94.12 ± 1.95
BS4 8.3 mg/mL 125.07 ± 3.57 106.59 ± 2.51 84.43 ± 2.83 *
Arbutin 250 µg/mL 112.22 ± 6.27 92.41 ± 0.51 93.11 ± 2.32
NC89 11.1 mg/mL 126.32 ± 3.65 90.15 ± 1.52 89.73 ± 2.63
BS4 11.1 mg/mL 127.25 ± 1.71 91.78 ± 2.25 81.1 ± 3.08 *
Arbutin 500 µg/mL 107.36 ± 3.23 90.38 ± 1.37 93.12 ± 2.16

Values are presented as the mean ± SD (n = 3). * p < 0.05 vs. arbutin group.

2.11. Inhibitory Effect of Tobacco Seed Oil on Tyrosinase in B16 Cells

As shown in Table 5, the promotion effect of the NC89 at a concentration of 4.2 mg/mL
on the tyrosinase in the B16 cells persisted until 72 h, showing a weak inhibitory effect. With
the increase in concentration to 11.1 mg/mL, the NC89 could inhibit the tyrosinase activity
in the B16 cells. Similarly, the BS4 (4.2 mg/mL) also promoted tyrosinase production in the
B16 cells at 72 h. At 24 h, the BS4 inhibited tyrosinase activity until the concentration was
greater than or equal to 6 mg/mL. From 48 h to 72 h, BS4 at a concentration of 4.2 mg/mL
inhibited the tyrosinase activity in the B16 cells. With the increases in concentration and
time, the inhibitory effects of NC89, BS4, and arbutin on tyrosinase activities increased
gradually. The inhibitory effects of NC89 and BS4 (11.1 mg/mL) and arbutin (500 µg/mL)
on tyrosinase activities in the B16 cells reached the maximum and the inhibitory rates were
12.91 ± 2.63%, 12.58 ± 1.71%, and 38.1 ± 2.33%, respectively. A previous study showed
volatile oil from ginger exhibits a potent inhibitory effect on intracellular tyrosinase activity,
which is consistent with our result [36].

Table 5. Inhibitory effect of tobacco seed oil on tyrosinase in B16 cells.

Sample Concentration
Inhibition Ratio (%)

24 h 48 h 72 h

NC89 4.2 mg/mL −5.58 ± 4.46 −1.79 ± 2.05 0.47 ± 1.26
BS4 4.2 mg/mL −5.58 ± 2.41 −4.77 ± 2.67 −1.04 ± 2.58
Arbutin 31 µg/mL −5.63 ± 2.39 3.19 ± 1.12 9.41 ± 3.19
NC89 5 mg/mL −3.7 ± 4.28 −0.05 ± 1.91 2.32 ± 1.8
BS4 5 mg/mL −1.82 ± 4.19 0.42 ± 2.92 1.48 ± 1.54
Arbutin 62.5 µg/mL 0.58 ± 1.86 6.75 ± 2.02 15.27 ± 3.22
NC89 6 mg/mL −1.5 ± 1.98 1.19 ± 2.28 4.17 ± 1.81
BS4 6 mg/mL 1.94 ± 2.41 3.25 ± 3.35 4.34 ± 1.46
Arbutin 125 µg/mL 1.82 ± 1.66 12.53 ± 2.81 22.88 ± 2.49
NC89 8.3 mg/mL −1.19 ± 3.69 6.25 ± 3.14 8.88 ± 3.21
BS4 8.3 mg/mL 5.39 ± 2.26 6.65 ± 3.06 7.87 ± 1.84
Arbutin 250 µg/mL 9.27 ± 2.81 24.09 ± 3.5 28.26 ± 2.8
NC89 11.1 mg/mL 4.76 ± 3.65 10.13 ± 2.28 12.91 ± 2.63
BS4 11.1 mg/mL 7.89 ± 1.88 10.63 ± 1.57 12.58 ± 1.71
Arbutin 500 µg/mL 15.17 ± 1.25 33.87 ± 1.06 38.1 ± 2.33

Values are presented as the mean ± SD (n = 3).
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2.12. Inhibitory Effect of Tobacco Seed Oil on Melanin Production in B16 Cells

Table 6 displays the melanin production in B16 cells at different concentrations of NC89,
BS4, and arbutin at 24 h, 48 h, and 72 h. The NC89 inhibited melanin production in the B16
cells when the concentration was greater than or equal to 11.1 mg/mL at 24 h. The BS4 had
an inhibitory effect on melanin production in the B16 cells at 24 h when the concentration
was greater than or equal to 6 mg/mL. Meanwhile, the inhibitory effects of NC89, BS4, and
arbutin on melanin production were positively correlated with the concentration. When
the concentrations of NC89 and BS4 were 11.1 mg/mL, their inhibitory effect on melanin
formation reached the maximum at 72 h. The inhibition rates of NC89, BS4, and arbutin
were 9.78 ± 1.12%, 9.14 ± 2.19%, and 42.82 ± 2.53, respectively. The results in this study
show that tobacco seed oil can suppress the production of melanin, showing the potential
whitening ability of plant oil. Our finding was also supported by another study, where
saponified evening primrose oil effectively reduced melanogenesis in B16 melanoma cells
and decreased pigmentation in UV-exposed skin [35].

Table 6. Inhibitory effect of tobacco seed oil on melanin production in B16 cells.

Sample Concentration
Inhibition Ratio (%)

24 h 48 h 72 h

NC89 4.2 mg/mL −8.3 ± 2.13 1.91 ± 1.45 2.14 ± 1.82
BS4 4.2 mg/mL −3.15 ± 0.84 1.5 ± 2.83 1.43 ± 2.76
Arbutin 31 µg/mL 5.85 ± 1.08 5.64 ± 1.94 3.23 ± 1.67
NC89 5 mg/mL −5.55 ± 3.4 4.12 ± 1.22 3.69 ± 2.28
BS4 5 mg/mL −1.95 ± 1.7 3.76 ± 2.85 3.93 ± 0.82
Arbutin 62.5 µg/mL 6.95 ± 1.59 14.36 ± 2.6 10.05 ± 2.91
NC89 6 mg/mL −3.67 ± 2.04 4.93 ± 1.88 6.33 ± 3.6
BS4 6 mg/mL 1.88 ± 1.31 5.52 ± 3.32 4.78 ± 3.06
Arbutin 125 µg/mL 14.59 ± 1.44 26.81 ± 1.61 24.99 ± 1.24
NC89 8.3 mg/mL −0.72 ± 1.14 5.8 ± 1.08 7.05 ± 3.41
BS4 8.3 mg/mL 3.25 ± 1.08 5.21 ± 1.08 5.88 ± 1.38
Arbutin 250 µg/mL 23.25 ± 0.43 35.09 ± 1.23 37.43 ± 1.85
NC89 11.1 mg/mL 6.31 ± 1.86 6.42 ± 2.33 9.78 ± 1.12
BS4 11.1 mg/mL 5.63 ± 1.06 7.81 ± 2.99 9.14 ± 2.19
Arbutin 500 µg/mL 35.49 ± 1.25 39.71 ± 1.66 42.82 ± 2.53

Values are presented as the mean ± SD (n = 3).

As a known metabolic enzyme of melanin, tyrosinase can control the activity of
melanocytes and determine the rate of melanin synthesis. Therefore, inhibiting tyrosinase
activity is an effective way to reduce the synthesis and deposition of melanin. It has been
demonstrated that oxidative stress can accelerate the deposition of melanin via promoting
the oxidation of dopamine, and an inflammatory response can also affect the synthesis of
melanin [9]. In this study, tobacco seed oils exhibited a whitening ability by inhibiting the
tyrosinase activity to reduce the melanin deposition, which may be closely related to their
antioxidative and anti-inflammatory effects.

3. Material and Methods
3.1. Chemical and Reagents

Arbutin (purity > 98%), dimethyl sulfoxide (DMSO), VC (purity > 99%), 20,70-
dichlorofluorescin diacetate (DCFH-DA), and methylthiazol-2-yl-2,5-diphenyl tetra-
zolium bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). B16
and HepG2 cells were obtained from the Kunming Cell Bank. Phosphate-buffered saline
(PBS), fetal bovine serum (FBS), Dulbecco’s modified Eagle’s medium (DMEM), and
penicillin/streptomycin were obtained from Servicebio (Wuhan, China). 1,3,5-tri(2-
pyridyl)-2,4,6-triazine (TPTZ), 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS), 2-diphenyl-1-pi-crylhydrazyl radical (DPPH), Folin–Ciocalteu reagent, Trolox,
and levodopa were purchased from Sigma-Aldrich (Shanghai, China). Nitric oxide (NO),
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catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH), Annexin
V−Fluorescein Isothiocyanate (FITC)/Propidium Iodide (PI) cell apoptosis detection
kits, and a BCA protein assay kit were purchased from the Beyotime company (Beijing,
China). ELISA kits for interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) were
purchased from MultiSciences (Lianke) Biotech Co. (Hangzhou, China). Tyrosinase and
an intracellular tyrosine kinase activity detection kit were obtained from Sigma-Aldrich.

3.2. Preparation of Tobacco Seed Oil

Tobacco seeds of the NC89 and BS4 species were collected from the seed breeding base
of Yuxi Zhongyan Tobacco Seed Co., Ltd., in 2019. The cold-processed method was used to
extract the tobacco seed oil. In brief, at room temperature, the tobacco seed oil was directly
pressed using a small oil press machine and then centrifuged at 1000× g for 10 min. The oil
was carefully collected for further research.

3.3. Chemical Composition of Tobacco Seed Oil Using GC/MS Analysis

The volatile components in the tobacco seed oil were extracted by the headspace
solid-phase microextraction (HS-SPME) method [37]. Then, the chemical compositions
of the NC89 and BS4 tobacco seed oils were analyzed by GC-MS equipment (GC-2010
Plus, Shimadzu, Kyoto, Japan). Briefly, 3 mL of tobacco seed oil was added to a 20 mL
screw-capped amber glass vial and immediately sealed. The extraction was performed by
SPME fiber composed of 50/30 µm DVB/CAR/PDMS at 40 ◦C for 20 min. The extract was
inserted in the GC injection port immediately for desorption (3 min, 240 ◦C). High-purity
helium (>99.999%) was used as the carrier gas, and the column was an HP-5 quartz capillary
column (30 m × 0.32 mm, 0.25 µm). The condition was as follows: 0–40 min (40–80 ◦C),
40–47.5 min (80–250 ◦C), and 47.5–57.5 min (250 ◦C). The mass data was obtained at a scan
range of 35–500 m/z in an electron ionization mode at 70 eV. The identification of volatile
compounds was performed by comparison with the reported data in the NIST 2014 library.

3.4. Determination of Fatty Acid Composition in Tobacco Seed Oil

The fatty acid composition was analyzed according to a previously reported method [38].
First, the fatty acids of the tobacco seed oil were transformed into fatty acid methyl esters,
which were further analyzed using GC equipment, coupled with an autoinjector (Santa Clara,
CA, USA, Agilent, 7890A) and a flame ionization detector (FID). The chromatography column
was BD-23 (0.25 µm, 60 m × 0.25 mm, USA, Agilent). The oven condition was as follows:
0–3 min (100 ◦C), 3–6.5 min (100–170 ◦C), 6.5–16.5 min (170 ◦C), 16.5–19.5 (170–200 ◦C),
19.5–24.5 (200 ◦C), 24.5–39.5 (200–230 ◦C), and 39.5–44.5 (230 ◦C). The flow rate of the high-
purity helium was 2.0 mL/min, with a split ratio of 1:29.5. The injector temperature was set at
270 ◦C, and the detector temperature was set at 280 ◦C, respectively. The identification was
performed by comparison with the standard compounds. The quantification was carried out,
and the data was expressed as mg/g oil.

3.5. Antioxidant Activity Assessment
3.5.1. Scavenging Effect on ABTS Radicals

The ABTS scavenging effect was carried out using an improved method [18]. Briefly,
ABTS+ (7 mM) was added to a phosphoric acid buffer (2.5 mM) for 16 h at room temperature
in the dark to obtain the ABTS solution. The ABTS solution was diluted with methanol to
adjust its absorbance to 0.70 ± 0.02 at 734 nm. The tobacco seed oil (45, 90, 135, 180, 225,
and 270 µg/mL) were mixed with the ABTS solution (total system, 300 µL) for a 30 min
incubation in the dark at 37 ◦C. Distilled water was used as a control. The absorbance
was recorded at 734 nm. The ABTS radical scavenging activity was calculated using the
following formula:

[(Acontrol − Asample/Acontrol] × 100% (1)
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3.5.2. Scavenging Effects on OH- Radicals

The scavenging effect on the OH- free radicals was estimated according to a reported
method [39]. The stock solutions for the Fenton’s reaction were prepared at the following
ratio: 0.02 M FeSO4 to 0.01 M salicylic acid to 0.02 M H2O2 = 1:2:1. The H2O2 was replaced
with distilled water as a control. The tobacco seed oil in different concentrations (45, 90,
135, 180, 225, and 270 µg/mL) was mixed with Fenton’s reaction solution (total volume,
300 µL) for a 30 min reaction. The absorbance was determined at 536 nm. The OH− radical
scavenging activity was calculated using the following formula:

[Acontrol − (Asample − Asample control)]/Acontrol × 100% (2)

3.5.3. Scavenging Effects on O2
− Radicals

The scavenging effect on the O2
− free radicals was estimated according to a reported

method [40]. The reagents (A) and (B) were prepared at the following ratios: 5 mM
pyrogallic acid to Tris-HCl buffer (1:7), and 5 mM pyrogallic acid to 10 nM HCl buffer (1:7),
respectively. The samples (45, 90, 135, 180 and 225 µg/mL) were mixed with a reaction
solution (total volumes, 300 µL) to test the O2

- radical scavenging ability of the tobacco
seed oil. The reagents (A) and (B), respectively, were added to the sample and control
groups. The oil was replaced with distilled water as a control by adding the reagent (A). The
absorbance was measured at 325 nm after 5 min of reaction. The O2

− radical scavenging
activity was calculated using Formula (2).

3.6. Cytoprotective Effect on H2O2-Induced HepG2 Cells
3.6.1. HepG2 Cell Culture and Cell Viability Assay

HepG2 cells were cultured in DMEM medium with 10% FBS in a cell incubator with
5% CO2 at 37 ◦C [41]. The cells’ viability after the treatment with the NC89 and BS4 tobacco
seed oils (12.5, 25, 50, 100, and 200 µg/mL) was assessed using an MTT (methylthiazol-2-
yl-2,5-diphenyl tetrazolium bromide) assay. In brief, the HepG2 cells (1.0 × 105 cells/well)
were seeded in 96-well plates for 24 h. The incubation of the tobacco seed oils at different
concentrations with the HepG2 cells were maintained for 20 h. Afterward, 0.5 mg/mL MTT
solution was added. After 4 h incubation, the MTT solution was discarded, and 200 µL
DMSO was added to each well in order to solubilize the purple formazan crystals. The
absorbance was recorded at 490 nm.

3.6.2. Inhibitory Effects on the ROS Generation

HepG2 cells were seeded in a 12-well plate (1× 105 cells/well) in an incubator at 37 ◦C
with 5% CO2 for 12 h. The cells were pretreated with tobacco seed oils at a concentration
of 100 µg/mL for 24 h. Then, the cells were induced for another 24 h with 1 mM H2O2.
After washing with PBS, the cells were mixed with 1 mL DCFH-DA solution (10 µM) for
a 30 min incubation. After washing twice with pre-cooled PBS, the fluorescence intensity
was measured using flow cytometry.

3.6.3. Inhibitory Effects on Cell Apoptosis

The cell apoptosis of the HepG2 cells was measured using an Annexin V-FITC/PI
apoptosis kit. HepG2 cells at a density of 1 × 105 cells per well were seeded in 6-well plates
and treated with tobacco seed oil (100 µg/mL) for 24 h. Then, the cells were treated with
1 mM H2O2 for another 6 h. Finally, the cell apoptosis was determined by Annexin V/FITC
and PI staining using a flow cytometer.

3.6.4. Analysis of Intracellular SOD, CAT Activities and GSH Content

To analyze the influence of tobacco seed oil on intracellular enzyme activities, the
HepG2 cells after the tobacco seed oil treatment were collected and homogenized in a
phosphate buffer. The intracellular CAT and SOD activities and the GSH content were
determined using commercial kits according to the instruments.
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3.7. Anti-Inflammatory Activity of Tobacco Seed Oil
3.7.1. Determination of NO, IL-1β, IL-6, and TNF-α Levels in RAW264.7 Cells

The cell culture of RAW264.7 cells and the cell viability assay were performed as
described in Section 3.6.1. Both the NC89 and BS4 tobacco seed oils had no cytotoxicity
against RAW264.7 cells at 100 µg/mL. Then, the RAW264.7 cells (1 × 105 cells/well) were
seeded in 24-well plates for 24 h, and then cultured in a medium containing tobacco seed
oil at a concentration of 100 µg/mL for 4 h. Except for the control group, the cells in
the tobacco seed oils groups were treated with lipopolysaccharide (LPS, 1.0 µg/mL) for
20 h [42]. After centrifugation at 1500× g for 10 min, the cell medium was collected. The
productions of NO, TNF-α, IL-1β, and IL-6 were evaluated using commercial assay kits
(MultiSciences Biotech, Hangzhou, China).

3.7.2. Determination of MAPK Signaling Pathway Proteins

The proteins in the MAPK signaling pathway were measured by Western blotting
analysis [43]. Briefly, a lysis buffer containing 1% protease inhibitor and 10% phosphatase
inhibitor was used to extract the cell proteins. The protein concentration was determined by
a BCA protein assay kit. The proteins were isolated on SDS-PAGE gels and transferred to
polypropylene fluoride (PVDF) membranes. After incubation with primary antibodies, the
bound proteins were incubated with the corresponding secondary antibodies. Finally, the
quantification of ERK, p-ERK, JNK, p-JNK, P38, and p-p38 proteins in the MAPK pathway
was determined by an enhanced chemiluminescent detection reagent.

3.8. Whitening Effect of Tobacco Seed Oils
3.8.1. Inhibitory Effect on Tyrosinase Activity

The NC89 and BS4 tobacco seed oils were prepared using butylene glycol-PBS solution
with concentrations of 2.0, 4.0, 6.0, 8.0, and 10.0 mg/mL according to the method described
in a previous study [44]. Vc (12.5, 25, 50, 100, and 200 µg/mL) was used as a positive
control. Then, 40 µL of sample solution, 40 µL of substrate solution, and 100 µL of PBS was
mixed for a 10 min incubation. After that, 20 µL of tyrosinase was added. After 5.0, 10.0,
15.0, 20.0, 25.0, and 30.0 min of reaction, the absorbance values were measured. The groups
were as follows: (1) sample group: sample + substrate + PBS + tyrosinase; (2) control group:
sample + PBS + tyrosinase; (3) blank group: substrate + PBS + tyrosinase; (4) control group:
PBS + tyrosinase. The inhibitory effect on the tyrosinase activity was calculated as follow:

[(Ablank − Acontrol) − (Asample − Asample control]/(Ablank − Acontrol) × 100% (3)

3.8.2. The Cytotoxicity of Tobacco Seed Oils on B16 Melanoma Cells

The cell culture and cell viability assay of the B16 cells were performed as described in
Section 3.6.1. The B16 melanoma cells were inoculated in 96-well plates at 1 × 105 cells/mL
and cultured in DMEM containing 10% FBS and 1% dual antibiotics in a cell incubator
with 5% CO2. The medium was discarded after 24 h. The cells were then treated with the
tobacco seed oils (4.2, 5, 6, 8.3, and 11.1 mg/mL) and arbutin (31, 62.5, 125, 250, 250, and
500 µg/mL), respectively. In the control group, the cells were treated with equal volumes
of the medium. After incubation for 24, 48, and 72 h, respectively, the MTT solution was
added to treat the cells for 4 h. Then, DMSO was added to each well, and they were shaken
for 10 min. The absorbance was measured at 490 nm.

3.8.3. Inhibitory Effect on Tyrosinase Level in B16 Melanoma Cells

B16 melanoma cells (1 × 105 cells/mL) were inoculated in 96-well plates. The medium
was discarded after 24 h [45]. Arbutin was used as a positive control. The cells were
then treated with a medium containing tobacco seed oil or arbutin. After 24, 48, and 72 h
incubation, respectively, the medium was discarded. The cells were washed three times
with PBS, added to 150 µL of 10 % TritonX-100 solution, and then placed in refrigeration at
−80 ◦C for 1 h. After thawing at room temperature, the cells were incubated at 37 ◦C and
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reacted with 40 µL of 2 mM levodopa solution for 1 h. Finally, the absorbance value was
measured at 475 nm.

3.8.4. Inhibitory Effects on Melanin Synthesis

B16 melanoma cells were inoculated into 12-well plates at 1 × 105 cells/mL [46]. The
cell culture of the B16 cells were performed as described in Section 3.8.2. After the treatment
with the tobacco seed oil or arbutin, the cells were collected. Then, 1 mL of 1 M NaOH
solution (containing 10% DMSO) was added in a water bath for 2 h at 80 ◦C. After the cells
were completely dissolved and broken down, the supernatant (200 µL) was transferred to a
96-well plate for 5 min, and the absorbance values were detected at 405 nm.

3.9. Statistical Analysis

The study data were expressed as the means ± standard deviation (SD). The quantifica-
tion was carried out using image analysis software (ImageJ, 1.46a; NIH, Bethesda, MD, USA).
The significant differences were analyzed by one-way ANOVA and Tukey’s test using Origin
8.5 software. A p-value less than 0.05 (p < 0.05) was considered statistically significant.

4. Conclusions

The NC89 and BS4 tobacco seed oils have a high fatty acid content, especially PU-
FAs. Linoleic acid was the most abundant PUFA in both the NC89 and BS4 oils. The
NC89 and BS4 had strong scavenging capacities for ABTS, OH-, and O2

− radicals and
significantly inhibited ROS production in H2O2-induced in HepG2 cells. The possible
cytoprotective effects of NC89 and BS4 tobacco seed oils might be closely related to the
regulation of antioxidative enzyme activities and cell apoptosis. In addition, they had
significant anti-inflammatory activities by inhibiting the production of pro-inflammatory
cytokines, including TNF-α, IL-1β, and IL-6, via the MAPK signaling pathway. In addition,
NC89 and BS4 showed a whitening activity by inhibiting tyrosinase activity and cellular
melanin production. In conclusion, the research on the nutritional properties and health
benefits of tobacco seed oils provides the knowledge that tobacco seed oils can be used as a
valuable oil resource in food and cosmetic applications.
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