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Abstract: Benzoxazole and naphthoxazole fused systems are found in many biologically active
molecules. Novel benzoxazole and naphthoxazole analogs functionalized by the 2,4-dihydroxyphenyl
moiety were designed, obtained and evaluated as a broad spectrum of biological potency compounds.
Sulfinylbis[(2,4-dihydroxyphenyl)methanethione] or its analogs and 2-aminophenols or 1-amino-
2-naphthol were used as starting reagents. 4-(Naphtho[1,2-d][1,3]oxazol-2-yl)benzene-1,3-diol was
identified as the most promising compound of the nanomolar activity against AChE (IC50 = 58 nM)
of the mixed-type inhibition and of the moderate activity against BChE (IC50 = 981 nM). The higher
antiproliferative potency against a panel of human cancer cell lines for naphtho[1,2-d][1,3]oxazoles
than for benzoxazoles was found. The activity of the analog with chlorine atom was in the range
of 2.18–2.89 µM (IC50) against all studied cells and it is similar to that of cisplatin studied compara-
tively. Moreover, this compound was not toxic at this concentration to human normal breast cells
and keratinocytes. For some compounds it also has proved antioxidant properties at the level of
IC50 = 0.214 µM, for the most active compound. The lipophilicity of all compounds, expressed as log
p values, is within the range recommended for potential drugs. The biological activity profile of the
considered analogs and their lipophilic level justify the search for agents used in AD or in anticancer
therapy in this group of compounds.

Keywords: benzoxazole; naphthoxazole; acetylcholinesterase; butyrylcholinesterase; antiproliferative
activity; antioxidant

1. Introduction

Benzoxazole and naphthoxazole are major skeletons of a number of synthetic biolog-
ically active heterocyclic compounds, as well as natural products [1]. In recent years, a
number of their derivatives, characterized by remarkable biological potency, have been
designed and obtained. Benzoxazoles exhibit antioxidant [2], antifungal [3], antibacte-
rial [4], antiviral [5], anti-inflammatory and antiproliferative [6], as well as anticancer
activities [6,7].

Derivatives of 2-(2-hydroxyphenyl)-bis(benzoxazole) UK-1 (I) and AJI9561 (II) (Fig-
ure 1), being natural products isolated from the strain of Streptomyces, are known as
anticancer agents [8,9]. UK-1 exhibits a significant cytotoxic activity against HeLa, P338,
B16; the other, AJI9561 against Jurkat and P388 cancer cells. Many analogs of UK-1 were
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designed and obtained as potential anticancer agents [10]. Lower activity was found for
simplified 2-(2-hydroxyphenyl)benzoxazole III (Figure 1) and its analogs. They showed
cytotoxic properties against the breast cancer cells MCF-7 and the lung cancer cell line A549
at the level of 5–20 µM [8,11]. The other derivatives, 2-amino-aryl-7-aryl-benzoxazoles,
exhibit prominent cytotoxic effects towards the human A549 lung cancer cells (EC50 of
0.4 µM) [12].
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In recent years, many hybrids containing a benzoxazole unit with a cytotoxic effect
against various human cancer cell lines have been described, and the attempts have been
made to define the mechanisms of their action [13,14]. The cytotoxic properties of benzox-
azoles against the cancer cells are the results of the inhibition of human topoisomerase
II [15], Aurora B kinase [16], other protein kinases [17], cyclooxygenase-2 (COX-2) [18], or
the induction of caspase-3 dependent apoptosis [19].

Some benzoxazoles have been described as acetylcholinesterase (AChE) and butyryl-
cholinesterase (BChE) inhibitors [19–22]. Recently, new glycosyl derivatives of benzoxazole
were described as AChE inhibitors [23]. The most active compounds had IC50 values
against AChE and BChE at low µM levels [20]. AChE and BChE are enzymes belonging to
the group of serine hydrolases. They exhibit peptidase activity which is extremely impor-
tant in the pathogenesis of Alzheimer’s disease (AD). As a result of the loss of cholinergic
neurons, the concentration of AChE in the brain of AD patients decreases significantly,
while the activity of BChE increases sharply. The therapy of AD involves the use of AChE
inhibitors which prevent the hydrolysis of acetylcholine (ACh), maintaining the supply
of this vital neurotransmitter in brain tissues to improve and stabilize the symptoms of
dementia [24–27].

In addition, the involvement of AChE in non-neuronal functions, such as the regulation
of cell proliferation, differentiation, and apoptosis, suggests that it might play an important
role in the formation of a cancer and serve as a potential therapeutic target in cancer therapy.
A potential example of a mechanism relevant to both cancer and neurodegeneration is the
non-enzymatic binding of AChE acting at an allosteric site on the nicotinic alpha-7 receptor.
Furthermore, the AChE might play a key role in cancer cell migration through a pathway
common to both neurodegeneration and carcinogenesis [28,29].

Naphthoxazoles exhibit antioxidant [30] and antimicrobial as well as anti-HIV activities [31].
They interact with the DNA by the intercalative mode [30] or induce oxygenase-1 expres-
sion [31].

2-Aminophenol is a typical substrate used to prepare a variety of 2-substituted ben-
zoxazoles [12,14,22]. The condensation reactions with aldehydes, carboxylic acids or their
derivatives (esters or chlorides) are conducted in the catalytic presence of strong acids,
heteropolyacids [2], or on microwave radiation [32]. Evindar and Batey elaborated a gen-
eral method for the formation of benzoxazoles via the copper-catalyzed cyclization of
ortho-haloanilides [33]. Others have used pyrolysis of o-hydroxybenzanilides [10,11].
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Prompted by the described findings, new benzoxazoles and naphthoxazoles with
two hydroxyl groups on the 2-aryl ring were designed and prepared. Our studies with
sulfinylbis[(2,4-dihydroxyphenyl)methanethione] (STB) [34] showed its high cyclizing
potential. Therefore, we attempted to use STB with 2-aminophenols and other similar
reagents in the cyclization reaction.

The described compounds were designed and evaluated as dual properties—
cholinesterases inhibitors and antiproliferative agents. Cholinesterase-inhibitory activ-
ity is found in different classes of anticancer agents and this effect is confirmed by the
results of our research [29,35,36].

Variously substituted benzimidazoles and 1,3,4-thiadiazoles with 2,4-dihydroxyphenyl
substituent exhibit a significant antiproliferative effect against various human cancer cell
lines [36,37]. The most attractive compound is characterized by low toxicity against normal
cells and by a prominent neuroprotective effect [38]. Benzimidazoles and 1,3,4-thiadiazoles
were also found to be strong AChE inhibitors [39,40]. Some benzimidazoleresorcinol con-
jugates inhibited in vitro self-induced Aβ (1–42) aggregation, and showed antioxidant
properties. The molecular modelling studies exhibited, among others, that the hydroxyl
groups and the heterocyclic ring participate in the crucial interactions (hydrogen bonds
and π-π stacking) with AChE [41]. Therefore, it seems justified to assess the activity of com-
pounds which, instead of the –NH– group, contain an isosteric oxygen atom. Furthermore,
oxidative stress contributes to demyelination and axonal damage in neurodegenerative
diseases. Thus, it was justified to create resorcinol conjugates as ChEs inhibitors with the
additional antioxidant properties [2].

This paper focuses on the synthesis and biological evaluation of new benzoxazoles
and naphthoxazoles with the 2,4-dihydroxyphenyl substituent at C-2 of the heterocyclic
ring. The compounds were additionally modified at C-6 of the benzoxazole ring, as well as
on the resorcinol moiety. The cholinesterases inhibition potential, cytotoxicity against the
human cancer cell lines as well normal cells, and antioxidant properties, were determined.

2. Results
2.1. Chemistry

The target compounds were prepared using a one-step procedure. 2-Aminophenols
and sulfinylbis[(2,4-dihydroxyphenyl)methanethione] (STB) or its analogs modified by
–Me, –Et, –Cl or –OH were used in the reaction for the preparation of compounds 1–7
(Figure 2) [34]. The reaction was conducted through a 2-hydroxythiobenzanilide which
cyclized to the benzoxazole ring. For energy reasons, the –OH group of amine do not split-
off in the form of an anion, and the reaction with STB leads to the condensed benzoxazole
system (Figure 2). 2-Substituted benzanilides are used commonly in the synthesis of
benzoxazoles [10,11]. The course of the reaction confirmed the presence of the molecular
ion peaks M+ in the EI-MS spectra of the compounds and the disappearance of one hydroxyl
group of the substrate in the 1H NMR spectra. The protons of the unsubstituted benzoxazole
system were registered in the area of 7.90–7.74 ppm. The benzoxazole ring substituted in
the C-6 position (2–7) is disclosed in the form of three groups of typical multiplets: two
doublets with a coupling constant J = 8.6 Hz and 2.2 Hz, which should be assigned to
H-C(4) and H-C(7), respectively and as doublet-doublets of J = 8.6 and 2.2 Hz H-C(5). The
chemical shift of these bands is quite diverse and depends on the electron properties of the
substituents. Please see also provided supplementary materials.

1-Amino-2-naphthol hydrochloride was used in the synthesis of naphtho[1,2-d][1,3]
oxazoles (8–10) (Figure 3). The analytical data confirmed the assumed structures formation.
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2.2. Biological Evaluation

The compounds were evaluated by an in vitro assay as the AChE and BChE inhibitors.
The studies were carried out using the modified Ellman’s method [42]. Donepezil was used
as the reference drug (Table 1). The studied analogs show a better inhibitory activity against
AChE than against BChE, with the exception of compound 6. The strongest inhibition
against AChE was observed for compound 8 (IC50 = 0.058 µM), which is the simplest form
of the newly-synthesized naphthoxazoles. The results show that replacing the hydrogen
attached at position 5 of the resorcinol ring with the ethyl group (9) or Cl atom (10) causes
a significant decrease in activity, IC50 = 0.516 and 0.694 µM, respectively. The most active
compound 8 is also characterized by the highest selectivity for AChE in relation to BChE.
The highest potency against BChE for compound 6 was observed.

To confirm the mechanism of AChE inhibition, the most active compound 8 was tested
in kinetic studies using UV-visible spectroscopy, which is a fast, inexpensive and sensitive
method. The experiment resulted in the Lineweaver–Burk plot [43]. The data and the
graphical analysis are shown in Table 2 and Figure 4.
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Table 1. In vitro inhibitory concentration of the new compounds and against AChE and BChE
(IC50, µM), selectivity, and the radical scavenging effect IC50 (DPPH).

Compound AChE 1

IC50 [µM]
BChE 2

IC50 [µM]
Selectivity for

AChE 3
IC50 (DPPH) 4

[µM]

3 0.113 ± 0.011 * 1.132 ± 0.016 * 10.017 0.286 ± 0.122 **
6 0.831 ± 0.014 0.328 ± 0.027 0.394 0.861 ± 0.071
7 0.183 ± 0.031 0.667 ± 0.004 3.644 0.887 ± 0.064
8 0.058 ± 0.010 0.981 ± 0.015 18.166 0.452 ± 0.031
9 0.516 ± 0.009 1.017 ± 0.032 1.971 0.214 ± 0.024

10 0.694 ± 0.011 0.887 ± 0.041 1.278 0.633 ± 0.146
donepezil 0.017 ± 0.002 1.159 ± 0.016 68.176 -
quercetin - - - 0.032 ± 0.001

1 IC50—50% inhibitory concentration (means ± SEM of three independent experiments) of AChE (* p < 0.01;
Kruskal–Wallis test). 2 IC50—50% inhibitory concentration (means ± SEM of three independent experiments) of
BChE (* p < 0.01; Kruskal–Wallis test). 3—selectivity for AChE = IC50 (BChE)/IC50 (AChE). 4 IC50—50% inhibitory
concentration (means ± SD of three experiments) (** p < 0.05; one-way ANOVA test).

Table 2. The KM and Vmax values at different compound 8 concentrations in relation to AChE.

Concentration [nM] KM
[nM]

Vmax
[A/min]

75 0.254 0.021
50 0.212 0.023
25 0.117 0.031
0 0.072 0.033
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The examination revealed that Vmax decreased with increasing KM and increasing
concentrations of the inhibitor 8, which indicated that this compound is a mixed-type
inhibitor against AChE [44].

To evaluate the antioxidant potential of compounds as radical scavengers versus
the stable free radicals, 2,2-diphenylpicrylhydrazyl (DPPH) was applied. Antioxidant
properties were expressed as the IC50 value—the concentration of compound required for
scavenging 50% of DPPH radicals [45]. The investigated analogs being considered have
varying antioxidant potentials in the IC50 range of 0.214–0.887 µM. However, the activity is
significantly weaker compared to the reference compound quercitine. Compounds 3 and 9
showed the highest scavenging activity.

The compounds were also evaluated for their antiproliferative potencies against hu-
man cancer cell lines as the potential anticancer agents. All compounds were tested on
the HCV29T line (bladder cancer) as the screening line, followed by those the most ac-
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tive (IC50 < 10 µM) on T47D (breast cancer), and A549 (non-small cell lung carcinoma),
SW707 (rectal adenocarcinoma). The results are presented in Table 3 and expressed as IC50
(µM). In that score, the highest potency was shown by the analogs from the naphtho[1,2-
d][1,3]oxazole group 8–10, particularly by derivative 10 with a chlorine atom on the ben-
zenediol moiety. Its activity is in the range of 2.18–2.89 µM (IC50) against all studied cells,
which is similar to that of cisplatin studied comparatively.

Table 3. Antiproliferative activity of compounds 1–10 against human cancer cell lines.

Compound Cell Line/IC50
1/[µM]

HCV 29T A549 T47D SW 707

1 33.93 ± 4.77 - 2 - 2 - 2

2 8.34 ± 1.53 6.81 ± 2.23 5.28 ± 0.16 4.38 ± 1.57
3 6.43 ± 1.12 4.28 ± 0.55 3.37 ± 1.52 5.47 ± 2.16
4 4.64 ± 0.93 3.71 ± 0.40 3.20 ± 0.84 3.36 ± 0.84
5 3.54 ± 1.05 3.08 ± 0.26 4.11 ± 1.27 2.13 ± 0.49
6 7.54 ± 3.15 10.48 ± 5.61 6.61 ± 2.48 6.04 ± 0.89
7 23.33 ± 4.07 - 2 - 2 - 2

8 2.50 ± 1.88 4.17 ± 0.19 2.86 ± 0.18 3.35 ± 0.16
9 3.72 ± 0.36 4.94 ± 0.69 7.28 ± 2.50 8.58 ± 3.40

10 2.24 ± 0.83 2.71 ± 0.12 2.18 ± 1.05 2.89 ± 0.34
cisplatin 2.40 ± 0.32 3.07 ± 0.45 4.01 ± 1.58 3.65 ± 0.76

1 IC50—compound concentration that inhibits proliferation rate of tumour cells by 50%, compared to untreated
control cells. Values are the means ± SD of nine independent experiments. 2—studies not carried out.

The structure–activity relationship concerning antiproliferative activity shows that
the parent compound 1 possesses the lowest antiproliferative potency. The presence of
the substituents at 6-position of the benzoxazole ring, as well as the lipophilic groups
on the benzenediol moiety, enhance the biological effect of the compounds. The addi-
tional –OH group in the benzenediol ring affects potency adversely (compound 7). In
the group of analogs with the ester substituent (compounds 3–7), the ethyl derivative is
characterized by the highest efficiency and the compound with the third hydroxyl group
by the weakest one (7). Replacement of the benzoxazole ring with naphthoxazole exerts a
positive effect on the antiproliferative potency of the compounds, particularly against the
HCV29T cells. The presence of chlorine in the benzene diol ring is the most advantageous
for antiproliferative activity.

In view of the observed antiproliferative activity, the influence of the tested compounds
on the normal human cells—normal mammary gland epiterial cells of the MCF10A line
and the normal keratenocytes HaCaT line—was examined (Figure 5). The cells were treated
with compounds 3, 8 and 10 in the concentration range from 0.1 µM to 25 µM for 72 h, after
which the cell viability was tested by analysis of the level of released lactate dehydrogenase
(LDH method).

It was observed that compound 3 was not toxic to the normal breast cells and the ker-
atinocytres in the concentrations 0.1–10 µM. Moreover, in MCF10A cells in concentrations
5 and 10 µM, as well as in HaCaT cells in concentrations 2.5, 5 and 10 µM, a statistically
significant reduction in the lactate dehydrogenase levels was observed. Compound 8
was toxic to the keratinocytes. A statistically significant increase of LDH was observed
in the whole tested range of concentrations. On the other hand, the compound had no
influence on mammary cells viability in concentrations 0.1–5 µM. Compound 10 at the
tested concentration to 25 µM was not toxic to the MCF10A breast cells and the HaCaT
keratinocytes. Moreover, a statistically significant reduction in the level of lactate dehydro-
genase in mammary cells in concentrations 0.1–5 µM could indicate its protective effect on
these cells.
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Figure 5. Influence of compounds 3, 8 and 10 on viability of normal mammary gland MCF10A
cells and normal keracinocytes HaCaT cells. Levels of lactic dehydrogenase (LDH) released from
cells in the absence (control) and in the presence of tested compounds (0.1–25 µM) were quanti-
fied after 72-h treatment. Data represents mean normalized optical densities ± SEM of 4–6 trials,
*** at least p < 0.001, ** p < 0.01, * p < 0.05 vs. control, one-way ANOVA test, post hoc Tukey.

The lipophilicity parameter was estimated for the tested compounds as it is an impor-
tant feature that influences the pharmacokinetic properties of bioactive compounds [46,47].
Lipophilicity also determines some biological activities, such as the antiproliferative or
fungistatic activity [48]. For lipophilicity determination, reversed-phase column chro-
matography was used, with the octadecyl C-18 stationary phase and MeOH as the organic
modifier in the isocratic conditions. The obtained log kw parameters by extrapolation to
pure water as the mobile phase are presented in Table 4 [49].

The log p values were also calculated using three different algorithms (Table 4). The
results show that the weakest antiproliferative activity against cancer cells is shown by the
compounds with the lowest and low lipophilicity. On the other hand, the compounds with
high lipophilicity are characterized by the strongest antiproliferative activity. Analyzing
the values of log P parameters in relation to pharmacokinetics, the compounds have
this parameter in the range recommended for potential drugs favourable for the ADME
processes after oral administration. The Clog p values of the tested compounds are less
than 5, according to the Lipinski recommendations, and the Mlog p values are in the range
from −2.0 to 4, taking into account the Oprea rules [51].
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Table 4. Lipophilicity parameters of compounds: log kw(RP−18) and -S values (Equation (1)) obtained
by the RP-18 HPLC chromatography (pH = 7.4) and computational methods.

Compound -S log kw r2 n Mlog P log P 1 Clog P

1 4.358 3.273 0.994 7 1.778 2.26 2.1600
2 4.64 3.301 0.998 7 1.522 2.27 2.15
3 5.325 2.92 0.999 7 1.337 2.34 1.98
4 5.002 3.411 0.988 7 1.586 2.74 2.46
5 5.855 3.774 0.996 6 1.829 3.32 2.88
6 5.477 4.223 0.987 6 1.586 2.86 2.54
7 4.811 2.800 0.990 6 0.577 0.77 1.59
8 4.263 3.936 0.988 7 2.641 3.43 3.15
9 5.395 4.901 0.996 6 3.111 4.41 4.06

10 4.996 4.518 0.994 6 3.146 3.95 3.71
1 log P—log p values calculated according to Crippen’s fragmentation [50].

3. Discussion

The obtained results confirm the broad spectrum of biological activity of the com-
pounds, taking into account both the literature reports on the biological activity of benzo
(naphtho)xazoles [2,20,22] and the results obtained by our team so far—resorcinol-azole
conjugates [41,42,48].

The AChE and BChE inhibitory potential of the considered compounds is higher [22]
or similar [2] to that reported for other benzoxazole-based compounds. The investigated
compounds (except one) show stronger inhibition against AChE than BChE. This is a
general trend observed for the azole-resorcinol conjugates studied by us [39–41]. In the
group of compounds with a CH3O(CO)– substituent in the heterocyclic system, the highest
activity is demonstrated by the compounds with the lowest lipophilicity, that is, those with
an unsubstituted resorcinol system or with an additional –OH group. It should be noted
that compounds 6 and 10 with the lowest activity possess Cl atom in position 5 of the
resorcinol ring, which may be the basis for the conclusion that this is a conformationally
unfavourable arrangement of atom distribution.

The effectiveness of ChE inhibitors in the prevention of neurodegenerative diseases,
including AD, is due to the ACh stimulation of muscarinic M1 receptors, which by activat-
ing the protein kinase C, increases the α-secretase activity and thus prevents the formation
of senile plaques [35]. In the late stages of the Alzheimer’s disease, BChE plays a more
important role in comparison to AChE [52]. The high potency against BChE compared to
AChE was found only for compound 6.

The investigated compounds, similarly to other heterocyclic derivatives with resor-
cinol ring, exhibit antioxidant properties [39]. Among the most active derivatives are
compounds with good activity against AChE. Research indicates that oxidative stress (OS)
impacts on the development of neurodegenerative diseases, and that there is a relationship
between a β-induced oxidative imbalance and elevated levels of byproducts of lipid perox-
idation, protein oxidation and DNA/RNA oxidation [53]. Moreover, this contributes to
demyelination and axonal damage in neurodegenerative diseases. Therefore, it is justified
to create resorcinol conjugates as ChEs inhibitors with the additional antioxidant properties.

The recent strategy for design and synthesis of compounds as potential drugs has
focused on creating combinations with multipurpose properties. Compounds with more
than a single molecular target have been found to be more effective as anticancer and
antidementia agents [29,35].

The considered compounds, similarly to the previously described resorcinol deriva-
tives of azoles and azines, also show significant antiproliferative activity against cancer
cells [37,54]. Osmaniye et al. have described that other benzoxazoles show similar antipro-
liferative activity against A549 and HT29 cells (MTT assay) [14].

The obtained results confirm the beneficial effect of the presence of a chlorine atom in
the benzenediol ring on the antiproliferative potential. The additional –OH group adversely
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affects potency (compound 7). This is an effect similar to that observed for other heterocyclic
derivatives with a modified benzenediol ring [55]. It also indicates the direction of the
influence of changes in lipophilicity on activity. The high activity of naphthoxazoles may
be due to their high lipophilicity, as well as the presence of planar polyaromatic system in
the molecule, indicating a potential intercalating effect of compounds [30].

For compounds with antiproliferative activity against cancer cells, the level of cyto-
toxicity for normal cells is important. Analyzing the obtained results of antiproliferative
activity and the influence of compounds on the viability of normal cells, it was found
that the most attractive in this respect are compounds 3 and 10. They exhibit the highest
antiproliferative activity against human cancer cells, and the IC50 values obtained for com-
pound 10 in the cancer cells are lower than for the reference drug—cisplatin. Moreover, the
compounds are not toxic for human normal breast cells and keratinocytes. What is more,
for both compounds in the culture of breast epithelial cells and keratinocytes, a statistically
significant increase in the cell viability was observed, which may indicate the protective
effect of these compounds.

Taking into account the overall biological potential of the tested compounds, the
derivatives of naphthoxazole seem to be of particular interest. These compounds with dual
antitumour and cholinesterase-inhibitory properties can be useful both in the treatment of
cancer and AD prevention.

4. Materials and Methods
4.1. Chemistry
4.1.1. General

Melting points (m.p.) were determined using a BÜCHI B-540 (Flawil, Switzerland)
melting point apparatus and were uncorrected. The elemental analysis (C, H, N) was
performed on a CHNS/O Elemental Analyzer 2400 Series II (Perkin-Elmer, Waltham, MA,
USA). The IR spectra were measured with a Perkin-Elmer FT-IR 1725X spectrophotometer
(Perkin-Elmer, Waltham, MA, USA) (in KBr) in the range of 600–4000 cm−1. The NMR
spectra (1H NMR) were recorded in DMSO-d6 using a Mercury 400 (Varian, Palo Alto,
CA, USA) or Bruker DRX 500 (Bruker Daltonics, Inc., Billerica, MA, USA). Chemical shifts
(δ, ppm) were described in relation to tetramethylsilane (TMS) and coupling constants (J)
expressed in Hz. The MS spectra (EI, 70 eV) were recorded using the apparatus AMD-604
(AMD Analysis & Technology AG, Harpstedt, Germany).

4.1.2. Synthesis of the Compounds

Procedure for the synthesis of compounds 1–7. A mixture of the corresponding
commercially available 2-aminophenol hydrochloride (10 mmol) and STB (10 mmol) in
MeOH (80 mL) was heated to reflux for 2.5–3.5 h (Figure 2). The hot mixture was filtered,
and subsequently the filtrate was concentrated (1, 4). In the case of compounds 2, 3 and
5–7, MeOH/H2O solution was added to the concentrated filtrate to precipitate the product
into a solid state. Finally, the compound was recrystallized from MeOH (compounds 2, 3,
5) (50 mL), from MeOH/H2O (1:1) (1), or from MeOH/H2O (3:1) (4, 6, 7) (50 mL). STB was
obtained according to the previously described procedure [34].

4-(1,3-Benzoxazol-2-yl)benzene-1,3-diol (1). Yield: 71%; m.p.: 189–190 ◦C; 1H NMR
(100 MHz, DMSO-d6) δ: 11.29 (s, 1 H, C3-OH (exchangeable in D2O)), 10.42 (s, 1 H, C1-OH
(exchangeable in D2O), 7.90 (m, 1 H, C5-H), 7.74 (m, 2 H, C5′ ,6′ -H), 7.45 (m, 2 H, C4′ ,7′ -H),
6.58 (m, 1 H, C6-H), 6.50 (m, 1 H, C2-H) ppm; 13C NMR (125 MHz, DMSO-d6) 162.9, 162.8,
150.8, 148.1, 139.5, 128.8, 125.1, 125.0, 118.5, 110.7, 108.7, 102.8, 101.9 ppm; δ: IR (KBr, cm−1):
3367 (OH), 1636 (C=N), 1600 (C=C), 1560 (C=C), 1500 (C=C), 1474, 1456, 1433, 1324, 1296,
1278, 1245, 1229 (C-OH), 1170, 1134, 1108, 1054, 1003, 977, 940, 895, 847, 808, 763, 745, 721;
EI-MS (m/z, %): 227 (M+, 100), 192 (3), 170 (21), 163 (5), 158 (3), 130 (9), 99 (3), 63 (3), 52
(2), 39 (2). Anal. Calc. for C13H9NO3 (227.22) (%): C, 68.72; H, 3.99; N, 6.16. Found (%): C,
68.69; H, 4.01; N, 6.14.
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4-(6-Hydroxy-1,3-benzoxazol-2-yl)-2-methylbenzene-1,3-diol (2). Yield: 73%; m.p.: 236–
238 ◦C (R). 1H NMR (400 MHz, DMSO-d6) δ: 11.30 (s, 1H, C3-OH), 10.35 (s, 1H, C1-OH),
9.87 (s, 1H, C6′ -OH), 7.78 (d, J = 8.6 Hz, 1H, C5-H), 7.54 (d, J = 8.6 Hz, 1H, CAr-H), 7.11 (d,
J = 2.1 Hz, 1H, CAr-H), 6.86 (dd, J = 8.6 and 2.2 Hz, 1H, CAr-H), 6.52 (dd J = 8.6 Hz, 1H,
C6-H), 2.10 (s, 3H, CH3) ppm. IR (KBr, cm−1): 3489 (OH), 3260 (OH), 2957 (CH), 2836 (CH),
1643 (C=N), 1618 (C=C), 1562 (C=C), 1503 (C=C), 1489, 1437, 1342, 1319, 1299, 1279, 1260,
1242 (C-OH), 1183, 1135, 1128, 1107, 1051, 977, 957, 843, 807, 760, 718. EI-MS (m/z, %): 257
(M+, 10), 243 (100), 214 (11), 201 (9), 173 (17), 159 (2), 137 (4), 121 (4), 108 (3), 79 (6), 69 (4), 63
(35), 51 (6), 39 (5). Anal. Calc. for C14H11NO4 (257.24) (%): C, 65.37; H, 4.31; N, 5.44. Found
(%): C, 64.13; H, 4.29; N, 5.41.

Methyl 2-(2,4-dihydroxyphenyl)-1,3-benzoxazole-6-carboxylate (3). Yield: 81%; m.p.: 252–
254 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 11.08 (s, 1H, C3-OH), 10.50 (s, 1H, C1-OH), 8.26 (d,
J = 1.0 Hz, 1H, C7′ -H), 8.02 (dd, J = 8.5 and 1.5 Hz, 1H, C5′ -H), 7.87 (d, J = 8.7 Hz, 1H, C6-H),
7.85 (d, J = 8.3 Hz, 1H, C4′ -H), 6.55 (dd, J = 8.7 and 2.3 Hz, 1H, C6-H), 6.48 (d, J = 2.2 Hz,
1H, C2-H), 3.90 (s, 3H, Me) ppm. 13C NMR (125 MHz, DMSO-d6) 192.1 (C=O), 165.7, 162.0,
156.1, 148.8, 135.9, 132.2, 126.5, 122.7, 119.7, 117.1, 115.2, 108.2, 102.4, 52.0 (CH3) ppm; IR
(KBr, cm−1): 3308 (OH), 2962 (CH), 1697 (C=O), 1636 (C=N), 1621 (C=C), 1598 (C=C), 1559
(C=C), 1433, 1358, 1327, 1302, 1263, 1237 (C-OH), 1198, 1169, 1138, 1122, 1079, 1056, 978,
959, 924, 882, 853, 809, 771, 742, 721. EI-MS (m/z, %): 285 (M+, 100), 254 (69), 199 (3), 127
(7), 65 (2), 63 (4), 39 (2). Anal. Calc. for C15H11NO5 (285.25) (%): C, 63.16; H, 3.89; N, 4.91.
Found (%): C, 63.22; H, 3.91; N, 4.88.

Methyl 2-(2,4-dihydroxy-3-methylphenyl)-1,3-benzoxazole-6-carboxylate (4). Yield: 87%;
m.p.: 249–252 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 11.40 (s, 1H, C3-OH), 10.44 (s, 1H,
C1-OH), 8.26 (d, J = 1.2 Hz, 1H, CAr-H), 8.02 (dd, J = 8.3 and 1.5 Hz, 1H, CAr-H), 7.85 (d,
J = 8.4 Hz, 1H, CAr-H), 7.74 (d, J = 8.7 Hz, 1H, CAr-H), 6.64 (d, J = 8.7 Hz, 1H, CAr-H), 3.90
(s, 3H, OMe), 2.08 (s, 3H, Me) ppm. IR (KBr, cm−1): 3380 (OH), 2963 (CH), 2841 (CH), 1699
(C=O), 1638 (C=N), 1616 (C=N), 1555 (C=C), 1485, 1433, 1360, 1300, 1238 (C-OH), 1203,
1138, 1082, 977, 933, 877, 829, 804, 770, 736. EI-MS (m/z, %): 299 (M+, 100), 285 (2), 70 (13),
268 (22), 254 (5), 242 (2), 12 (7), 150 (2), 120 (2), 63 (2). Anal. Calc. for C16H13NO5 (299.28)
(%): C, 64.21; H, 4.38; N, 4.68. Found (%): C, 64.08; H, 4.40; N, 4.69.

Methyl 2-(5-ethyl-2,4-dihydroxyphenyl)-1,3-benzoxazole-6-carboxylate (5). Yield: 77%, m.p.:
203–206 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 10.92 (s, 1H, C3-OH), 10.48 (s, 1H, C1-OH),
8.25 (d, J = 1.0 Hz, 1H, C7′ -H), 8.01 (dd, J = 8.3 and 1.5 Hz, 1H, C5′ -H), 7.83 (d, J = 8.3 Hz,
1H, C4′ -H), 7.71 (s, 1H, C5-H), 6.53 (s, 1H, C2-H), 3.90 (s, 3H, OMe), 2.56 (q, J = 7.4 Hz, 2H,
CH2Me), 1.17 (t, J = 7.5 Hz, 3H, CH2Me) ppm. IR (KBr, cm−1): 3382 (OH), 2960 (CH), 2837
(CH), 1698 (C=O), 1638 (C=N), 1621 (C=C), 1548 (C=C), 1511 (C=C), 1436, 1400, 1358, 1302,
1265 (C-OH), 1231, 1198, 1180, 1152, 1080, 1039, 972, 883, 848, 809, 772, 743, 708. EI-MS (m/z,
%): 313 (M+, 54), 298 (M+-Me, 100), 282 (4), 270 (7), 228 (3), 157 (2), 134 (7), 77 (2), 69 (3), 63
(4). Anal. Calc. for C17H15NO5 (313.30) (%): C, 65.17; H, 4.83; N, 4.47. Found (%): C, 65.23;
H, 4.81; N, 4.50.

Methyl 2-(5-chloro-2,4-dihydroxyphenyl)-1,3-benzoxazole-6-carboxylate (6). Yield: 89%;
m.p.: 201–202 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 11.39 (s, 1H, C3-OH), 11.04 (s, 1H,
C1-OH), 8.26 (d, 1 Hz, 1H, CAr-H), 8.03 (dd, J = 8.3 and 1.5 Hz, 1H, CAr-H), 7.92 (s, 1H,
CAr-H), 7.86 (d, J = 8.3 Hz, 1H, CAr-H), 6.76 (s, 1H, C5-H), 3.91 (s, 3H, OMe) ppm. 13C NMR
(125 MHz, DMSO-d6) 190.5 (C=O), 165.5, 158.4, 157.0, 154.2, 148.8, 135.0, 132.0, 126.4, 122.5,
119.7, 115.3, 111.8, 103.7, 52.0 (CH3) ppm; IR (KBr, cm−1): 3535 (OH), 3478 (OH), 3080 (CH),
2983 (CH), 1708 (C=O), 1624 (C=N), 1605 (C=N), 1583 (C=C), 1551 (C=C), 1508 (C=C), 1474,
1438, 1407, 1352, 1295, 1259, 1230 (C-OH), 1200, 1135, 1080, 1031, 978, 920, 893, 845, 837, 769,
740, 720. EI-MS (m/z, %): 319 (M+, 100), 288 (46), 254 (3), 232 (12), 144 (6), 119 (2), 99 (2), 79
(2), 69 (2), 62 (3), 51 (2). Anal. Calc. for C15H10ClNO5 (319.70) (%): C, 56.35; H, 3.15; N, 4.38.
Found (%): C, 56.48; H, 3.17; N, 4.40.

Methyl 2-(2,3,4-trihydroxyphenyl)-1,3-benzoxazole-6-carboxylate (7). Yield: 67%; m.p.:
203–204 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 10.97 (s, 1H, C3-OH), 10.03 (s, 1H, C1-OH),
8.27 (d, J = 1 Hz, 1H, CAr-H), 8.04 (dd, J = 8,3 and 1.5 Hz, 1H, CAr-H), 7.87 (d, J = 8.3 Hz,
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1H, CAr-H), 7.42 (d, J = 8.7 Hz, 1H, CAr-H), 6.59 (d, J = 8.7 Hz, 1H, CAr-H), 3.90 (s, 3H,
OMe) ppm. IR (KBr, cm−1): 3425 (OH), 2959 (CH), 2847 (CH), 1703 (C=O), 1638 (C=N),
1622 (C=N), 1563 (C=C), 1500 (C=C), 1483, 1437, 1351, 1298, 1273, 1236 (C-OH), 1139, 1121,
1080, 1025, 982, 957, 923, 900, 879, 840, 805, 770, 742. EI-MS (m/z, %): 301 (M+, 100), 70 (28),
242 (7), 14 (13), 167 (2), 151 (2), 135 (15), 11 (3), 107 (2), 98 (3), 79 (2), 63 (7), 51 (2), 39 (2).
Anal. Calc. for C15H11NO6 (301.25) (%): C, 59.80; H, 3.68; N, 4.65. Found (%): C, 56.63; H,
3.70; N, 4.63.

Procedure for the synthesis of compounds 8–10. A mixture of 1-amino-2-naphthol hy-
drochloride (1.3 mmol) and the corresponding STB (1.3 mmol) in MeOH (7 mL) was heated
to reflux for 3.5–4 h (Figure 3). The hot mixture was filtered and the filtrate concentrated.
Finally, the compound was recrystallized from MeOH/H2O (3:1) (compounds 8, 9) or from
MeOH/H2O (5:1) (5 mL) (10).

4-(Naphtho[1,2-d][1,3]oxazol-2-yl)benzene-1,3-diol (8). Yield: 74%; m.p.: 166–168 ◦C. 1H
NMR (400 MHz, DMSO-d6) δ: 11.45 (s, 1H, C3-OH), 10.67 (s, 1H, C1-OH), 8.85 (m, 1H,
CAr-H), 8.41 (s, 1H, CAr-H), 8.08 (d, J = 7.8 Hz, 1H, CAr-H), 7.91 (d, J = 7.4 Hz, 2H, CAr-H),
7.87 (m, 1H, CAr-H), 7.75 (m, J = 8.2 and 1.4 Hz, 1H, CAr-H), 7.67 (m, J = 8.4 and 1.0 Hz, 1H,
CAr-H), 6.78 (s, 1H, CAr-H), 6.53 (s, 1H, C6-H) ppm. IR (KBr, cm−1): 3480 (OH), 3279 (OH),
2923 (CH), 2854 (CH), 1632 (C=N), 1608 (C=N), 1562 (C=C), 1496, 1448, 1437, 1402, 1381,
1333, 1277, 1252 (C-OH), 1234, 1179, 1134, 1082, 1058, 1026, 1005, 975, 940, 882, 843, 799, 776,
719, 702. EI-MS (m/z, %): 277 (M+, 100), 248 (5), 220 (7), 138 (2), 114 (2), 88 (1), 63 (1). Anal.
Calc. for C17H12NO3 (277.27) (%): C, 73.64; H, 4.00; N, 5.05. Found (%): C, 73.71; H, 3.99;
N, 5.08.

4-Ethyl-6-(naphtho[1,2-d][1,3]oxazol-2-yl)benzene-1,3-diol (9). Yield: 71%; m.p.: 189–
192 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 11.10 (s, 1H, C3-OH), 10.31 (s, 1H, C1-OH), 8.61
(m, 1H, CAr-H), 8,50 (m, 1H, CAr-H), 8,11 (m, 1H, CAr-H), 7.98 (m, 2H, CAr-H), 7.61 (s,
1H, CAr-H), 6.56 (s, 1H, C6-H), 2.58 (q, 2H, CH2Me), 1,23 (t, 3H, CH2Me) ppm. 13C NMR
(125 Hz): 162.4, 160.3, 157.4, 145.7, 142.8, 134.8, 130.9, 128.7, 127.1, 126.8, 125.5, 124.6, 123.2,
121.6, 110.9, 102.6, 101.7, 22.0, 14.1 ppm. IR (KBr, cm−1): 3434 (OH), 2962 (CH), 2924 (CH),
2847 (CH), 1624 (C=N), 1543 (C=C), 1507 (C=C), 1457, 1406, 1383, 1358, 1278, 1242 (C-OH),
1143, 1087, 1061, 1030, 1004, 884, 843, 802, 747. EI-MS (m/z, %): 305 (M+, 62), 290 (M+-Me,
100), 276 (4), 262 (13), 248 (3), 220 (11), 204 (6), 178 (13), 145 (6), 114 (8), 110 (7), 91 (4), 80
(14), 44 (14), 40 (37), 36 (5). Anal. Calc. for C19H15NO3 (305.33) (%): C, 74.74; H, 4.96; N,
4.59. Found (%): C, 74.60; H, 4.98; N, 4.57.

4-Chloro-6-(naphtho[1,2-d][1,3]oxazol-2-yl)benzene-1,3-diol (10). Yield: 73%; m.p.: 228–
231 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 11.22 (s, 1H, C3-OH), 8.85 (m, 1H, CAr-H), 8.45
(m, 1H, CAr-H), 8.13 (d, J = 8.1 Hz, 1H, CAr-H), 7.97 (d, J = 7.1 Hz, 1H, CAr-H), 7.73 (m,
1H, CAr-H), 7.62 (m, 2H, CAr-H), 6.78 (s, 1H, C2-H) ppm. 13C NMR (125 MHz, DMSO-d6)
160.9, 157.5, 157.4, 145.9, 143.6, 134.7, 130.8, 128.7, 127.7, 127.2, 126.4, 126.0, 125.6, 124.6,
121.5, 110.9, 104.2 ppm; IR (KBr, cm−1): 3435 (OH), 3107 (OH), 3078 (OH), 2968 (CH), 1633
(C=N), 1601 (C=C), 1506 (C=C), 1483, 1400, 1384, 1342, 1300, 1257 (C-OH), 1222, 1183, 1164,
1091, 1062, 1030, 1005, 938, 883, 842, 792, 742. EI-MS (m/z, %): 311 (M+, 100), 282 (6), 248 (7),
220 (8), 191 (4), 156 (4), 114 (11), 110 (3), 88 (4), 63 (3), 51 (2). Anal. Calc. for C17H10ClNO3
(311.72) (%): C, 65.50; H, 3.23; N, 4.49. Found (%): C, 65.42; H, 3.25; N, 4.51.

4.1.3. Chromatography

HPLC measurements were performed using a liquid chromatograph (Knauer, Berlin,
Germany) with a dual pump and a UV-visible detector. The measurements were made
at 254 or 320 nm at room temperature. A Eurosil Bioselect C18 (5 µM, 300 × 4.6 mm)
column was applied as the stationary phase. The mobile phase consisted of different
volume mixtures of 20 mM acetate buffer as the aqueous phase, and MeOH as the organic
modifier (pH 7.4). The different concentrations of MeOH from 0.5 to 0.90 (v/v) range was
used, depending on the structure of the compound at 0.05 intervals. The flow rate was 1
mL/min. Retention time of an unretained solute (t0) was determined by the injection of a
small amount of acetone dissolved in water.
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Regular changes in the retention coefficients of compounds in a function of the or-
ganic modifier MeOH content in the mobile phase are described by the Soczewiński–
Wachtmeister equation [56]:

log k = log kw + S ϕ (1)

ϕ—the volume fraction of organic modifier (MeOH) in the mobile phase; log kw—the
intercept; S—slope of the regression curve. Log kw refers to the retention parameter of
a compound with pure water as the mobile phase. The S and log kw parameters for the
considered compounds determined from the linear dependence (1) are summarized in
Table 4.

4.1.4. Computational Methods

The Clog P and Mlog values were calculated using the ChemDraw Ultra 10.0 [57] or
MedChem Designer (TM) 3.0.0.30 [58], respectively.

4.2. Biological Assays
4.2.1. SRB Cytotoxicity Assay

In the antiproliferative assay in vitro, the following human cell lines were applied:
T47D (breast cancer), SW707 (rectal adenocarcinoma), A549 (non-small cell lung carcinoma)
from the American Type Culture Collection (Rockville, MD, USA) and HCV29T (bladder
cancer) from the Fibiger Institute, Copenhagen, Denmark. Cytotoxicity assay was per-
formed after 72 h exposure of the cultured cells at the concentration ranging from 0.1 to
100 µg/mL of the tested agents. The SRB test measuring the cell proliferation inhibition
in the in vitro culture was applied [59]. The cellular material fixed with TCA was stained
with 0.4% sulforhodamine B (Chemie GmbH, Steinheim, Germany) dissolved in 1% acetic
acid (POCh, Gliwice, Poland) for 30 min. The unbound dye was removed by rinsing (four
times) with 1% acetic acid, and the protein-bound dye extracted with 10 mM unbuffered
Tris base (tris(hydroxymethyl) aminomethane (POCh, Gliwice, Poland), for determination
of optical density (at 540 nm) in a computer-interfaced, 96-well Uniskan II microtiter plate
reader (Labsystems, Helsinki, Finland). The experiments were repeated at least 3 times.
The IC50 values were calculated by Cheburator 0.9.0 software [60]. Details were described
in a previous paper [37].

4.2.2. Cytotoxicity Assessment
Cell Culture and Treatments

Normal human epithelial cells from the mammary gland, MCF10A (a generous gift
from our colleague Dr. Saraswati Sukumar (JHU), who obtained them recently from ATCC),
and normal human keratinocytes HaCaT (also obtained from ATCC), were cultured in
DMEM/F12 medium (Gibco), supplemented with 5% horse serum (Gibco), 5% FBS (Sigma-
Aldrich Chemie GmbH, Taufkirchen, Germany ), penicillin streptomycin solution (1×)
(Gibco) at 37 ◦C and 5% CO2. The cells were subcultured twice a week.

LDH Assay

Human epiterial breast cells MCF10A and human keratinocytes HaCaT (1 × 104/mL)
cells were placed on 96-well plates (Nunc, Roskilde, Denmark). The next day, the cells
were exposed to increasing concentrations of compounds 3, 8 and 10 in 0.1, 0.25, 0.5, 1,
2.5, 5, 10 and 25 µM in fresh culture medium. Cytotoxicity was estimated based on the
measurements of cytoplasmic lactate dehydrogenase (LDH) activity released from the
damaged cells after the 72 h exposure to the compounds. The LDH assay was performed
according to the manufacturer’s instructions (Cytotoxicity Detection KitPLUS LDH, Roche,
Mannheim, Germany). Absorbance was measured using a microplate at two different
wavelengths: “measurement wavelength” (492 nm) and “reference wavelength” (690 nm),
using a microplate [61].
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4.2.3. In Vitro AChE and Bche Inhibition Assay

Acetylcholinesterase (AChE, E.C. 3.1.1.7, from human erythrocytes), butyrylcholinesterase
(BChE, E.C. 3.1.1.8, from equine serum), acetylthiocholine iodide (ATCh), butylthiocholine
iodide (BTCh), 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and donepezil were purchased
from Sigma-Aldrich (Steinheim, Germany). The inhibitory activities against AChE and
BChE of the newly-synthesized compounds were determined exactly, according to a pre-
vious paper [42]. Donepezil was applied as the standard. The compounds were tested in
the range from 10−3 to 10−9 M at 412 nm using a Varian Cary 50 Spectrophotometer. The
samples were analysed in triplicate. IC50 values were designated from a dose–response
curve obtained by plotting the percentage of inhibition versus the log concentration, using
GraphPad Prism 8 software. Results were presented as the mean ± standard error of mea-
surements (SEM). AChE and BChE activity data were compared using the Kruskal–Wallis
test at the significance level of 1%.

4.2.4. Kinetic Study of AChE Inhibition Assay

Ellman’s method was used to prepare a kinetic characterization of AChE inhibition
for compound 8. Plots of 1/velocity versus the reciprocal substrate concentration were
constructed at different final concentrations of the ATCh iodide in the range of 2.5–15 nM.
The studies were carried out using the final concentrations of inhibitor 8 (25, 50, 70 nM)
and without it. The tested medium contained DTNB solution (0.4 mg/mL), AChE solution
(2 U/mL), solution of the examined compound 8, and different concentrations of the ATCh
iodide substrate solution (S). Absorbance was detected at 412 nm at room temperature after
10 min. The obtained data were calculated and presented on the Lineweaver–Burk plot.
The determined the Michaelis–Menten constant (KM) and the maximum velocity of the
enzyme (Vmax) values were used to define the type of enzyme inhibition [39].

4.2.5. DPPH Free Radical Scavenging Activity

The DPPH free radical scavenging activities of the synthesized compounds were
measured by DPPH, according to the method described in the paper [41]. The free radical
scavenging activity was measured as a decrease in the absorbance of DPPH, and calculated
using the equation:

DPPH scavenging effects (%) = 100 − [(A0 − A1)/A0]·100] (2)

where: A0 was the absorbance of the control reaction and A1 absorbance in the presence
of the sample of the analysed compounds [62]. The IC50 values were calculated as the
concentration of compound required for scavenging 50% of DPPH [45]. Results were
presented as the mean ± standard deviation (SD). The antioxidant activity data were
compared using the one-way ANOVA test at the significance level 5%.

5. Conclusions

In conclusion, we were able to devise a new one-step synthesis method of 2-aryl
substituted oxazole fused system using 1,2-aminohydroxyaryles and the electrophilic
reagent STB. Naphthoxazoles seem to be particularly interesting as the compounds of bi-
directional biological activity. The most interesting derivative shows high antiproliferative
potency against human cancer cell line and simultaneously is not toxic to normal human
cells. Additionally, a protective effect of this compound was confirmed.

The investigated compounds are also cholinesterase inhibitors and exhibit antioxidant
properties. Since a lot of evidence points to the active involvement of oxidative stress in
neurodegenerative diseases, the compounds with polyphenol rings have also become a
source of new therapeutic agents against AD.

Considering the general biological potential of the tested compounds and their
lipophilic nature, these compounds with dual antitumour and cholinesterase inhibiting
properties may be useful in the design of effective drugs against cancer and AD.
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