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Abstract: As they manifest specifically and reversibly, lectins are proteins or glycoproteins with the
characteristic of agglutinating erythrocytes. Given that grain legume lectins can represent 10% of
protein content and can have various biological functions, they are extensively studied. The objective
of this work was to purify and partially characterize the lectins of Phaseolus vulgaris black, var surco
and vara (LBBS and LBBV). Both lectin types were purified by affinity chromatography on stroma
matrix, which agglutinated human erythrocytes type A, B, and O, as well as rabbit, hamster, pig,
and chicken erythrocytes. Native-PAGE was employed for molecular mass determination, yielding
109.36 and 112.68 kDa for BBS and BBV, respectively. Further analyses revealed that these lectins are
tetrameric glycoproteins that require Ca+2, Mn+2 and Mg+2 ions for exhibiting their hemagglutinating
function, which can be inhibited by fetuin. Moreover, optimal pH was established for both lectins
(10.5 for LBBS and 7−9 for LBBV), while their activity was temperature-dependent and ceased above
70 ◦C. Finally, the observed differences in the biochemical characteristics and bioactive functions
were ascribed to the different physiological characteristics of each seed, as well as the protein itself.

Keywords: lectin; erythrocytes; functional component; antinutritional

1. Introduction

In several Latin American countries, beans are widely cultivated and consumed due
to their high content of protein, carbohydrates, fiber, vitamins, and minerals [1].

Of the 150 bean species known around the world, four species are cultivated and
consumed in Mexico: common bean, comba, ayocote, and tepari, which have different col-
orations; consumption varies between regions of the country. One of the varieties consumed
in Mexico is the black bean, and there is great variety in black beans [2]. Despite being a
food with favorable nutritional benefits, it has been shown that this food contains some
compounds that are considered to be anti-nutritional, such as tannins, phytates, protease
inhibitors, and lectins that can affect the bioavailability and digestibility of nutrients [3].

Legume lectins have been extensively studied because they are toxic proteins that
represent a health risk, as some are capable of resisting the gastrointestinal digestion
process; in legume seeds, they can represent up to 10% of the total protein in the mature
seed [4,5].

Plant lectins, ubiquitously distributed in a variety of plant species, are carbohydrate-
binding proteins of non-immune origin. They are extensively studied because they are toxic
proteins that represent a health risk, as some are capable of resisting the gastrointestinal
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digestion process [5]. Moreover, they are a valuable tool in the study of glycoproteins
and cell membrane oligosaccharides and can be used in cell identification and separation,
histochemistry, cytochemistry, neuronal pathway mapping, mitogenic stimulation of lym-
phocytes, bone marrow purging for transplantation, selection of lectin resistant mutants,
glycoprotein biosynthesis, and many other contexts.

This research interest is also motivated by their important biological functions as their
anticarcinogenic, antifungal, antimicrobial, immunomodulatory, and immunomodulatory
properties [4,6–9] make them suitable candidates for cancer therapy and transplantation
and other potential applications [10,11].

As lectins are present in all living organisms, they are studied in viruses, bacteria,
plants, and animals [12,13]. In the plant kingdom, these proteins are found in all parts
of plants, where they are posited to provide defense against insects and pathogens, as
well as facilitate protein storage, seed dormancy maintenance, carbohydrate transport, and
symbiosis, among other physiological functions [14–16].

Lectins have a wide range of specificity, binding to either monosaccharides or complex
carbohydrates, binding in a non-covalent way across hydrogen bounds (hydrogen bounds)
electrostatic interactions, and hydrophobic stacking. They are frequently utilized when
studying the structure of carbohydrates in cells and purification of glycosylated molecules
in order to expand the use of these proteins [15,17,18]. The characteristics of lectins can be
very varied, even within the same genus or species, as is the case of Phaseolus vulgaris, in
which lectins can vary in content, number of subunits, carbohydrate binding specificity,
amino acid sequence in their isoforms, and biological activity.

In this context, lectins of the genus Phaseolus are of particular value, as indicated by
a considerable body of glycobiology research focusing on the purification, characteriza-
tion, and functions of lectins from various species of beans, such as Phaseolus vulgaris,
Phaseolus acutifolius, Phaseolus coccineus, and Phaseolus lunatus. These studies indicate that
these lectins present isoforms and are glycosylated tetrameric proteins that can be used
for obtaining bioactive peptides but require metals for their biological function. Moreover,
they consist of two polypeptide chains L and E, which indicate their binding to leukocytes
and erythrocytes, respectively; they may exist in five possible tetrameric isoforms (E4,
E3L1, E2L2, E1L3, and L4) [18,19] as well as stimulate mitogenesis and can act as both
antiviral and antimicrobial agents. As they are cytotoxic to various cell types, they can
exhibit adverse toxicological effects, which may result in death [6,9,13,20–28].

Despite these beneficial findings, further research is still needed, as lectins from
different sources can have important structural and functional differences [29]. Although
many lectins from different bean species are known, it is convenient to continue studying
these proteins from this type of seed, since there may be functional and structural differences
that may allow us to broaden our knowledge and possible uses.

Thus, to contribute to this ongoing endeavor, as a part of the present study, lectins
from the surco (BBS) and vara (BBV) varieties of black bean Phaseolus vulgaris were purified
to facilitate their partial characterization.

2. Results
2.1. Protein Content

The Kjeldahl method was adopted to determine the total protein content, yielding
21% for BBV and 17% for BBS, as shown in Table 1 along with the corresponding crude
extract values.
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Table 1. Purification of black bean lectins on immobilized stroma.

Fraction Protein Concentration
(mg/mL)

Hemagglutination Titer *
(Units)

Specific Activity
(HA)

Purification
Factor Lectin (%)

BBV
Crude extract 1086.47 16 0.0147 1
Protein bound

to stroma 0.0488 8 163.93 11,151.7 0.0045 a

BBS
Crude extract 1034.77 1.09 × 1012 1.05 × 109 1

Protein bound to
stroma 0.1062 8.38 × 106 7.89 × 107 0.075 0.0103 b

Data shown represent mean ± SEM obtained in at least three independent experiments. Means with different
superscripts are significantly different (Tukey’s test, p < 0.05). * Tripsinized erythrocytes type O

2.2. Lectin Purification

For both BBV and BBS, lectin purification was carried out in an affinity column
containing stroma immobilized on Sephadex G25. The chromatograms obtained after
elution with acetic acid (in which most of the hemagglutinating activity was recovered)
showed only one peak corresponding to lectin. As shown in Figure 1, lectins were collected
in the ranges 88−101 and 97−127, for BBS and BBV, respectively.
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dimensional structure of the lectins. 

Figure 1. Black bean surco (BBS) and black bean vara (BBV) lectin purification in an affinity column
containing stroma immobilized on Sephadex G25. Protein aqueous extracts of BBS and BBV were
applied onto affinity column; the unretained fraction was eluted with PBS (50 mM), and the retained
fraction, corresponding to lectin, was eluted with acetic acid (3%).

The extracts of both beans were characterized by high soluble protein concentration
and low lectin activity, as shown in Table 1. After purification, lectin activity increased by
1,115,170% for BBV and 7.5% for BBS with respect to the crude extract.

2.3. Polyacrylamide Gel Eletrophoresis (SDS-PAGE and NATIVE-PAGE)

The electrophoretic patterns of purified lectins shown in Figure 2 indicate that both
lectins produce one band in the retained fraction. According to the SDS-PAGE elec-
trophoretic pattern depicted in Figure 2A, both lectins were purified correctly, resulting
in 27.34 and 28.17 kDa molecular weight (MW) for lectin black been vara (LBBV) and
lectin black been surco (LBBS), respectively. The electrophoretic pattern under native
conditions presented in Figure 2B shows a single band corresponding to the purified lectin,



Molecules 2022, 27, 8436 4 of 15

whereby the differences between SDS-PAGE and NATIVE-PAGE findings are attributed to
the three-dimensional structure of the lectins.
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from the surco black bean variety.

2.4. Hemagglutination Activity

The hemagglutinating activity of both purified lectins was determined in trypsinized
erythrocytes, of which, three were of human origin, and six were derived from animal
species. Table 2 shows the hemagglutination titers of both lectins, indicating that the
proteins have a broad spectrum of binding to human and animal erythrocytes; both lectins
were statistically different (p < 0.05). The effect of the two lectins BBV and BBS on hemag-
glutinating activity was evaluated in two groups, human erythrocytes (A, B, and O) and
animal erythrocytes (rabbit, chicken, hamster, beef, pig, and sheep). It was found that, for
BBV in A and B erythrocytes, there is no difference. In BBS, all blood types are different.
For the two lectins studied in animal erythrocytes, all show significant differences.

Moreover, higher hemagglutination titers were noted for LBBS in all types of erythro-
cytes, indicating its preference for type O erythrocytes. Nonetheless, the observed affinity
for type O human erythrocytes was considerably exceeded by hamster erythrocytes (which
was 1.8 × 1016 greater), while the lowest affinity was noted for rabbit and bull erythrocytes.

On the other hand, LBBV exhibited the highest affinity for hamster erythrocytes,
followed by rabbit and chicken and finally human erythrocytes, albeit with equal affinity
for type A and B and very low affinity for type O erythrocytes.
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Table 2. Hemagglutination activity of purified lectin from both black bean varieties (surco and vara)
on trypsinized human and animal erythrocytes.

Erythrocyte Type Lectins

Human
BBV BBS

Hemagglutination Titer

A 16 ± 0 a 2097152 ± 0 a

B 16 ± 0 a 67108864 ± 0 b

O 4 ± 0 b 4.39 × 1012 ± 0 c

Animals
Rabbit 128 ± 0 a 134217728 ± 0 a

Chicken 32 ± 0 b 262144 ± 0 b

Hamster 1.12 × 1015 ± 0 c 7.92 × 1028 ± 0 c

Bull ND 1024 ± 0 d

Pig 16 ± 0 d 524288 ± 0 e

Sheep 2 ± 0 e 8192 ± 0 f

Data shown represent mean ± SEM obtained in at least three independent experiments. Means with different
superscripts are significantly different (Tukey’s test, p < 0.05).

2.5. Carbohydrate and Mineral Content

Carbohydrate content analysis, which yielded 11.39% and 9.54% for LBBS and LBBV,
respectively, indicated that both lectins are glycoproteins.

Moreover, plasma spectrometry results shown in Table 3 indicate that Ca+2 and Mg+2

are present in higher concentration relative to Mn+2 and Cu−1. While Ca+2, Mn+2, and Zn+2

concentrations in BBS were 3.16−37.12% higher than in LBBV, Cu−1 and Mn+2 content was,
respectively, 22.59% and 21.21% higher in LBBV relative to LBBS.

Table 3. Metal content in BBS and BBV lectins.

Metal
Native Lectins Demetallized Lectins

BBV BBS BBV BBS
Concentration (ppm)

Ca+2 597.5 ± 0.03 a 823.0 ± 0.05 a 284.0 ± 0.01 b 199.0 ± 0.02 b

Cu−1 274.5 ± 0.02 a 212.5 ± 0.01 a 185.0 ± 0.01 b 186.0 ± 0.02 b

Mg+2 487.0 ± 0.03 a 774.5 ± 0.25 a 358.0 ± 0.02 b 171.0 ± 0.06 b

Mn+2 224.0 ± 0.01 a 176.5 ± 0.02 a 185.0 ± 0.01 b 170.0 ± 0.02 a

Zn+2 306.5 ± 0.02 a 316.5 ± 0.08 a 182.5 ± 0.01 b 182.0 ± 0.02 b

Data shown represent mean ± SEM based on the results obtained in at least three independent experiments.
Means with different superscripts are significantly different between lectins (Tukey’s test, p < 0.05).

EDTA treatment significantly reduced (p < 0.05) the ion content in both lectins, with
the greatest decrease noted for Mg+2 and Mn+2 ions (17.41−52%). On the other hand, in
LBBS, the greatest decline was noted for Mg+2 and Ca+2 (77.92% and 75.82%, respectively),
while the effect on Mn+2 was minimal. As can be seen from Table 4, these decrements
are directly related with the decrease in the hemagglutinating activity (to 1.49 × 10−6%
of the original level). Once some of the ions were reconstituted, the biological activity
was recovered and even surpassed the values obtained for the native lectin, whereby the
greatest effect was exerted by Mg+2, followed by Ca+2, and finally Mn+2.
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Table 4. Hemagglutination activity of two black bean lectins after demetallization and ion metal
addition.

Native
Lectin

Demetallized
Lectin

Demetallized Lectins
Reconstituted with Metals
(Hemagglutination Titer)

Hemagglutination Titer Ca2+ Mg2+ Mn2+

BBV 2 ± 0 a 0 ± 0 a 128 ± 0 a 4096 ± 0 a 4 ± 0 a

BBS 1,073,741,824 ± 0 b 16 ± 0 b 6.87 × 1010 ± 0 b 1.09 × 1012 ± 0 b 2048 ± 0 b

Data shown represent mean ± SEM based on the results obtained in at least three independent experiments.
Means with different superscripts are significantly different between lectins (Tukey’s test, p < 0.05).

2.6. Inhibition of Hemaglutinating Activity

In this work, the inhibitory effect of monosaccharides, oligosaccharides, and glycopro-
teins on the hemagglutinating capacity of lectins was also studied, and the obtained results
indicate that fetuin caused hemagglutination inhibition in both lectins. As can be seen from
Table 5, LBBS was also inhibited by monosaccharide mannose, while trisaccharide raffinose
was the only other inhibitor of LBBV.

Table 5. Effects of different carbohydrates on the LBBV and LBBS hemagglutination activity.

Inhibitory Concentration (mg/mL) *

Monosaccharides LBBV LBBS

Glucose ND ND
Galactose ND ND
Mannose ND 45.04
Fructose ND ND

Oligosaccharides
Maltose ND ND

Trehalose ND ND
Raffinose 252.21 ND

Glycoproteins
Ovoalbumin ND ND

Fetuin 0.0075 0.129
Notes: Tripsinized erythrocytes type O, * Lowest concentration resulting in complete inhibition, Carbohydrate
concentration 0.5 M, Lectin concentration 0.1 mg/mL. Data shown represent mean ± SEM based on the results
obtained in at least three independent experiments.

2.7. Influence of pH and Temperature on Hemaglutinating Activity

The two studied black bean lectins exhibited significant differences in their hemag-
glutinating activity as a function of pH. The results reported in Figure 3 show that, in the
3.5−6.5 and 9.5−10.5 pH ranges, LBBV lost its biological activity, while maintaining some
of its activity in the 7−9 pH range. On the other hand, LBBS was very stable irrespective of
the pH values and maintained strong activity throughout the analyzed pH range. Moreover,
numerous dilutions were required to reduce its erythrocyte hemagglutination capacity
(the greatest decrease was achieved at the 3.5, 4.5, and 8.5 pH values). Conversely, the
highest titers were obtained at pH 9.5, 10, and 10.5, with dilutions reaching 253, 257, and
258, respectively. Similar results to those related to LBBV and LBBS have been reported for
several bean lectins, which have shown stability in the 0−70 ◦C temperature range.
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3. Discussion

In this study, partial characterization of two lectins purified from the Phaseolus vulgaris
variety surco and Phaseolus vulgaris variety vara, respectively, was performed as these
varieties are commonly found in a typical Mexican diet. For this purpose, total proteins
were first determined in crude extract, and the obtained results concurred with those
reported for other varieties such as black turtle bean, belonging to the P. vulgaris family
(19.54−22.62%) [30], or for the common black bean (23.9 and 25.9%). According to the
available data, the differences in nutrient content (including protein) may be due to the
variations in climate, as rainfall and temperature, as well as timing and area of cultivation
have been shown to impact these parameters [31,32].

In practice, affinity chromatography is typically employed for lectin purification,
and this strategy yielded 43.7% higher recovery for BBV relative to BBS in our analyses,
demonstrating that this column is more suited to purifying lectins from BBV.

In the present study, a stroma column obtained from erythrocytes was utilized in
affinity chromatography, as this is also a standard approach and has previously allowed
most of the activity to be recovered from lectin purified from Phaseolus acutifolius in the
fraction eluted with glycine-HCl, which resulted in a 347-fold increase in hemagglutination.
This type of column has also been used in the purification of lectin from Amaranthus
cruentus and Amaranthus leucocarpus. However, these results differ significantly from those
obtained for the surco and vara black beans varieties, possibly due to the differences in the
purification sources, the affinity they exhibit towards the chosen matrix, and the purification
conditions [33,34].

The chromatographic patterns obtained for both surco and vara varieties differ from
those reported for other types of Phaseolus vulgaris, such as Anasazi bean, which was
previously purified by affi-gel blue column and ion exchange chromatography [17], as
well as common black bean purified by a reverse micellar system [26] and by affinity
chromatography on agarose-fetuin column [9].

The purification results were further utilized in this work for determining protein
sizes by NATIVE-PAGE and SDS-PAGE methods, given that several Phaseolus lectins are
composed of four subunits [35,36]. Available data further indicate that the MW of Phaseolus
vulgaris lectin subunits can vary between 30 and 36.5 kDa [6,9,24,25,37], concurring with
the values obtained for LBBV and LBBS using SDS-PAGE.

The molecular weights yielded by NATIVE-PAGE were approximately four times
higher than those obtained using SDS-PAGE. This difference aligns with the results reported
for several Phaseolus species, whose MW ranged from 21 to 35 kDa and which were found
to exhibit homotetrameric structure [6,9,13,22,23,38–40]. Therefore, the results obtained
for the vara and surco bean lectins indicate that these lectins likely have this type of
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tetrameric structure consisting of identical subunits, as this assumption is supported by
extant evidence pertaining to several bean lectins which have this type of structure, with
MW in the 83−150 kDa range [6,36,38,41].

Lectin hemagglutination was also evaluated in this work in order to establish whether
they show specificity towards any type of erythrocytes, revealing higher hemagglutina-
tion titers for LBBS in all types of erythrocytes. Moreover, this lectin showed preference
for type O erythrocytes, followed by α-D-Galactose and α-D-N-Acetyl Galactosamine
found in erythrocytes B and A, respectively [4,9,14,42]. Rabbit erythrocytes are widely
used in lectin hemagglutination activity tests, since many of these proteins tend to re-
act preferentially with erythrocytes from this source [9], as demonstrated for lectins de-
rived from Erythrina speciosa, Andira anthelmia, Phaseolus vulgaris, Phaseolus coccineous, and
Moringa oleifera [23,43–46].

Erythrocytes from various animal sources such as sheep, horse, cow, guinea pig, rat,
mouse, and chicken have also been used in extant research to evaluate the hemagglu-
tinating activity of lectins from Erythrina speciosa, A. naeslundii, Phaseolus vulgaris, and
Phaseolus coccineus [23,43–46], revealing a wide spectrum of biological activity for different
erythrocyte sources, thus supporting the current findings.

Likewise, the findings related to carbohydrate content are in agreement with those
reported for lectins of the genus Phaseolus, such as P. vulgaris, P. coccineousu, and P. acutifolius
(5.98−7.56%) [6,9,36,38,41,47,48]. Many legume lectins are recognized as metalloproteins,
containing Ca+2, Mn+2, Mg+2, and other ions important for their biochemical activity. Thus,
eliminating them causes a decrease or loss of hemagglutinating activity [49,50].

Lectins such as those from Phaseolus coccineous, Phaseolus acutifolius, Inocybe umbrinella,
LBBV, and LBBS, which contain higher Ca+2 concentrations, are recognized as C-type
lectins [9,38,51]. Ions such as Ca+2 and Mn+2 are attached to each subunit located in the
vicinity of the carbohydrate binding site, and, thus, participate in the stabilization and
specificity of the biological activity of the lectin, since these ions interact with water and
carbohydrates to which they bind [14,52–54].

EDTA treatment caused a reduction in the ion content of the lectins studied in this
work, which suggests that ions are strongly bound to the protein fraction of the lectin [9].

An ample body of research indicates that lectin demetallization induces conformational
changes in the regions in which metals are found, causing alterations in the lectins’ ability to
bind carbohydrates, as reflected in the decrease or loss of their biological activity. However,
some aspects of the secondary structure, such as the lamellae and helices, do not exhibit
severe alterations as a result of stability imparted by hydrogen bridges without causing
alterations in the quaternary structure [53,55,56]. In the present study, reconstitution of
some of the metal ions allowed LBBV and LBBS biological activity to be recovered, and even
exceed that of the native lectin, whereby Mg+2 caused the greatest effect, followed by Ca+2,
and finally Mn+2. These findings are in line with those reported by other authors [53,57].
For example, when Ca+2, Mg+2, and Mn+2 are chelated from lectins, hemagglutination
is inhibited, whereas Fe+2, Na+1, Ba+2, and K+1 ions do not cause this effect [58,59]. The
hemagglutination tests in demetallized lectins after the addition of Ca+2, Mg+2 and Mn+2

conducted as a part of this investigation further showed that these ions are essential
for both lectins to maintain their biological function, with the effect of Mg+2 exceeding
that of Ca+2 and Mn+2 by 96−99%. Moreover, inhibition of hemagglutinating activity
revealed that both lectins have an affinity for complex carbohydrates, such as those found
in glycoproteins. These results are in agreement with the findings reported for lectins
from tepary, ayocote, lima, or common bean, indicating that lectin activity is unaffected
by simple sugars, while it is inhibited by complex oligosaccharides such as thyroglobulin,
ovalbumin, and fibrinogen [6,9,17,22,60].

Although some lectins show affinity for some monosaccharides [37,58], their affinity
for oligosaccharides or complex glycans is higher, as lectins contain some amino acid
residues that participate in the binding with other residues that make up the oligosaccha-
ride [14]. Finally, studies in which the influence of pH and temperature on hemaggluti-



Molecules 2022, 27, 8436 9 of 15

nating activity was evaluated indicate that some lectins (including LBBV as well as lectins
from Parkia panurensis and Dolichos lablab) only maintain their activity in near-neutral pH
ranges [50,61].

These alterations in lectin activity due to changes in pH are attributed to ionization of
the amino acid side chains, which modifies the binding capacity of the protein to carbo-
hydrates on the erythrocyte surface, leading to a decrease or loss of hemagglutination, as
these changes in the amino acid residues of lectins may cause protein denaturation [62,63].

When temperature effects on LBBV and LBBS were examined, their stability in the
0−70 ◦C range was confirmed, concurring with the results obtained in other studies
focusing on other bean lectins. On the other hand, higher temperatures have been found
to cause considerable decrease in hemagglutinating activity, which typically ceases above
90 ◦C [17,60,61,64–66]. Moreover, as the hemagglutinating activity of lectins is dependent
on their native tridimensional structure, any structural changes would impact the biological
activity of the protein, ultimately causing denaturation and, therefore, complete loss of
hemagglutinating capacity [13,67,68].

In extant studies, oligosaccharides have been found to improve the stability of gly-
coproteins when exposed to physicochemical treatments, and this phenomenon has been
attributed to the fact that glycans increase the electrostatic interactions of proteins, help-
ing preserve their structure. It has also been reported that these interactions stabilize
the native structure, since the number of non-covalent bonds increases, which provides
stability against thermal damage and various chemical agents. Likewise, the presence of
intramolecular disulfide bridges in the protein was posited by several authors to impart
greater thermal stability to some proteins [16,63,69].

These and similar findings reported in extant literature may explain the differences
observed between the two lectins in the focus of the present research, since LBBS contained
a greater amount of carbohydrates in its structure and was less influenced by pH and
temperature compared to LBBV. These results also concur with those reported for Phaseolus
coccineous lectin, where the variety with the highest carbohydrate content also exhibited the
greatest thermal stability [9].

4. Materials and Methods
4.1. Plant Material

The two black bean varieties—black bean variety vara (BBV) and black bean variety
surco (BBS)—required for this investigation were obtained from the Huasteca Hidalguense,
in Huejutla, Hidalgo, Mexico (21◦10′25.6”N 98◦21′47.7”W). The purchased seeds were
cleaned before being ground in a grain mill (Analitycalv mill, 4301-00, Cole Palmer, IL,
USA) and sieved through a 40-mesh (USA Standard Testing). The resulting flour was
packed in airtight bags and refrigerated at 4 ◦C until required for analyses.

4.2. Chemicals

Standard multi-ionic solution for plasma spectrometry was obtained from Perkin-
Elmer (Waltham, MA, USA), while trypsin, molecular weight markers, and glycine were
acquired from Sigma Chemical Co. (St Louis, MO, USA). All other chemicals were of
analytical grade.

4.3. Protein Quantification

Been seed flour was analyzed according to the 920.87−1920 AOAC method using a
factor of 6.25 to calculate the percentage of total protein. Bradford’s method was employed
for protein quantification in crude extract and during lectin purification, with bovine serum
albumin (BSA) serving as the standard. The relative protein concentration of the eluted
fractions was determined by measuring the absorbance at λ = 280 nm [70,71].
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4.4. Lectin Extraction

Lectin extraction was performed using the methodology described by Valadez-Vega
and colleagues [6]. Briefly, prior to analyses, the bean meal was suspended in 10 mM
phosphate-salt buffer solution (PBS 1:10 w/v, pH 7.4), and was shaken for 16 h at 4 ◦C.
Next, proteins were precipitated with 70% (NH4)2SO4 from the supernatant obtained by
centrifugation, and precipitate was subsequently dialyzed against PBS before being used
for lectin purification.

4.5. Lectin Purification

The affinity column used for lectin purification was prepared with human erythrocyte
stroma matrix, according to the methodology described by Zenteno and colleagues [34].
Briefly, stroma was obtained by lysis of human type A erythrocytes, washed with deionized
H2O, and fixed with 2% glutaraldehyde overnight under refrigeration, after which it was
washed with deionized water. The resulting sample was kept overnight in 1 M glycine
solution at 4 ◦C and was subsequently washed with NaCl (0.9%). The obtained stroma
was mixed with Sephadex G25 (Amersham Biosciences PD-10, Piscataway NJ, USA) and
was placed in a glass chromatographic column (2.5 × 30 cm). Prior to use, the column
was equilibrated with 50 mM PBS pH 7.4 after which 10 mL of protein extract was applied
to the column, and the non-retained fraction was washed with PBS at a flow rate of
3 mL/min. The retained lectin fraction was eluted with 3% acetic acid and was monitored
spectrophotometrically at λ = 280 nm (Perkin Elmer Lambda 40 UV/Vis spectrometer,
Waltham MA, USA). The recovered lectin was dialyzed for 24 h against deionized water
with three changes and was subsequently lyophilized and stored at −20 ◦C until use.

4.6. Hemagglutinating Activity

Human erythrocytes type A, O, and B from healthy donors who signed informed
consent, as well as erythrocytes from chicken, beef, rabbit, pig, hamster, and sheep were
used for determining the hemagglutinating activity. For this purpose, blood was collected
in tubes containing anticoagulant, and erythrocytes were obtained by centrifugation at
2500 rpm for 10 min, after which the samples were washed three times with fresh volumes
of PBS. Next, a trypsin solution (0.6 mg/mL, Sigma Chemical Co., St Louis, MO, USA) was
added to the erythrocyte suspension, after which the sample was incubated for 60 min at
37 ◦C under agitation. Finally, the trypsinized erythrocytes were washed with PBS and
were resuspended (2%) in PBS until required for further analyses [6].

The hemagglutination assay was performed according to the serial dilution (2-fold)
method, using 96-well (U-shaped) microtiter plates. For this purpose, 50 µL of lectin
solution was added to the first well and serial dilutions were performed, adjusting the
volume in each well to 50 µL with PBS, whereby 50 µL of the trypsinized erythrocyte
suspension (2%) was added to each well. The reaction mixture was incubated for 60 min
at room temperature, and the last dilution showing hemagglutination was observed to
obtain the agglutination titer. The hemagglutination titer was defined as the reciprocal of
the highest dilution showing detectable agglutination and the inverse of the last dilution
showing hemagglutination [6]. The hemagglutination units (HU/mg) were calculated by
dividing the hemagglutination titer by the soluble protein concentration (mg) in the sample,
determined by the Bradford method [72].

4.7. Hemagglutination Inhibition

The ability of monosaccharides (mannose, glucose, galactose, and fructose), oligosac-
charides (maltose, trehalose, and raffinose), and glycoproteins (ovalbumin and fetuin) to
inhibit the hemagglutination reaction of lectins was determined.

For this purpose, each of the sugar solutions (50 mM) were serially diluted in order
with PBS in 96-well (U-shaped) microplates, whereby 50 µL of lectin solution (0.1 mg/mL)
was added to each well and was incubated for 60 min at room temperature, after which
50 µL of trypsinized erythrocyte suspension was added to each well. After incubation
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for 60 min at room temperature, the last dilution that showed hemagglutination was
observed, and the lowest concentration of the sugars that inhibited hemagglutination was
determined [6,9].

4.8. Polyacrylamide Gel Electrophoresis (PAGE)

PAGE was performed according to the Laemmli technique [73], whereby 12% gels
under reducing conditions were used for electrophoresis under denaturing conditions
(SDS-PAGE). Electrophoresis was performed in a vertical mini VE (Amersham Biosciences,
Piscataway, NJ, USA). The molecular weight of each lectin was estimated using a mixture
of molecular weight markers containing phosphorylase B, bovine albumin, ovalbumin,
carbonic anhydrase, soybean trypsin inhibitor, and lactoalbumin at 97, 66, 45, 30, 20, and
14 kDa, respectively (Sigma Chemical Co., St Louis, MO, USA).

Electrophoresis on native gels (NATIVE-PAGE) was performed on 7% polyacrylamide
gels in a vertical mini VE (Amersham Biosciences, Piscataway NJ, USA). Thyroglobulin
(669 kDa), ferritin (440 kDa), catalase (232 kDa), lactate dehydrogenase (142 kDa), and
bovine albumin (66 kDa) (Amersham Biosciences, Piscataway, NJ, USA) were used as
molecular weight standards. For lectin separation, electrophoresis was performed at
45 mA, 180 V, and 4 ◦C, and the separated bands were visualized by silver staining.

4.9. Carbohydrate and Metal Ion Content Determination

Carbohydrate content was determined according to the sulfuric phenol method pro-
posed by Dubois et al. [74], using glucose as the standard. For this purpose, lectin was
dissolved in NaCl (0.15%), dialyzed against EDTA solution (0.02 M) in NaCl (15 mM) for
12 h, and then digested with nitric acid (38%). Metal ion content was determined by plasma
spectrophotometry (ICP/OES, Perkin-Elmer Optima™ 8300, Waltham, MA, USA) using a
standard calibration curve for each ion (Ca+2, Mg+2, Mn+2, Cu−1, and Zn+2), whereby their
respective concentrations in the lectin were calculated by graphic interpolation [6,9].

4.10. Effect of Metal Ions on Hemagglutination

Prior to assessing the influence of metal ions on hemagglutination, the studied lectins
were demetallized by dialysis against EDTA (2 mM) in NaCl (15 mM) for 12 h, and the titer
was determined as described above. To determine the effect of metals on agglutination,
96-well (U-shaped) microplates were used, and 50 µL of PBS, 50 µL of demetallized lectin,
and 50 µL of a solution (0.5 mM) containing metal ions (CaCl2, MgCl2 and MnCl2) were
added to each well. After allowing the reaction to incubate for 60 min at room tempera-
ture, 50 µL of the O erythrocyte suspension was added, and the agglutination titer was
observed [6,9].

4.11. Influence of pH and Temperature on Hemagglutination

For assessing the influence of pH and temperature on hemagglutination, lectins were
dissolved in PBS (1 mg/mL) and were incubated for 60 min at room temperature with
the following buffers (2 mM): sodium acetate (pH 3. 5, 4.0, 4.0, 4.5, 5.0, and 5.5), sodium
phosphate (pH 6.0, 6.5, 7.0, and 7.5), tris-HCl (pH 8.0 and 8.5), and glycine-NaOH (pH
9.0, 9.5, 10.0, and 10.5), all of which were purchased from Sigma Chemical Co. (St Louis,
MO, USA). Subsequently, each solution was dialyzed against two fresh PBS volumes for
12 h at 4 ◦C, and the hemagglutination tests were performed using trypsinized human
erythrocyte O [13].

For this purpose, lectins were dissolved in PBS (1 mg/mL) and heated in a water bath
for 30 min at 25, 30, 40, 40, 50, 50, 60, 60, 70, 80, 90, and 100 ◦C, after which the samples
were cooled on ice. Finally, the hemagglutination test was performed using trypsinized
human erythrocyte O [13].
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4.12. Statistical Analysis

The reported study findings are based as the average of three replicates (mean ± standard
deviation). Moreover, both one way analysis of variance (ANOVA) and Tuk-ey’s test were
conducted to determine the differences between samples using the commercial statistical
program GRAPHPAD INSTAT (San Diego, CA, USA) version 3.0.

5. Conclusions

In this work we report the partial characterization of two black Phaseolus vulgaria
lectins, BBV and BBS, which are tetrameric glycoproteins with subunits of 27.34 and
28.17 kDa, respectively. Both lectins exhibited capacity to hemagglutinate human and
animal erythrocytes, which was inhibited by fetuin and required metal ions to carry out
their biological activity, such as Mg and Ca, for which temperatures below 60 ◦C and
conditions close to neutral (LBBV) and alkaline (LBBS) pH were found to be the most
optimal. Furthermore, the difference in the observed characteristics was attributed to the
structure of these proteins, the seed variety involved, and the agronomic conditions under
which these plants were grown. More advanced analyses are needed to have a complete
characterization of these lectins Future research may be oriented to the knowledge of the
proteomics of these lectins, such as sequencing, Malditof, and oligosaccharide identification,
among others.
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