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Abstract: Pesticides are widely used on tea plants, and pesticide residues are of significant concern
to consumers. The National Food Safety Standard Maximum Residue Limits for Pesticides in Food
(GB 2763-2021) was recently amended. However, detection methods for pesticides newly added to
the list of residues in beverages have not yet been established. For that reason, this study developed
a solid-phase extraction (SPE) and gas chromatography–tandem mass spectrometry (GC–MS/MS)
method for determining the residues of 12 pesticides, including four newly added, in black and green
tea. Sample preparation processes (sample extraction, SPE clean-up, elution solvent, and elution
volume) were optimized to monitor these residues reliably. Multiple reaction monitoring (MRM)
was used for GC–MS/MS electron impact (EI) mode determination. Finally, satisfactory recoveries
(70.7–113.0% for green tea and 72.0–99.1% for black tea) were achieved at three concentrations
(10 µg/kg, 20 µg/kg, and 100 µg/kg). The LOQs were 0.04–8.69 µg/kg, and the LODs were
0.01–3.14 µg/kg. This study provides a reliable and sensitive workflow for determining 12 pesticide
residues in tea, filling a gap in the newly revised National Standards.

Keywords: gas chromatography–tandem mass spectrometry; solid-phase extraction; pesticide
residues; multiple reaction monitoring; GB 2763-2021

1. Introduction

Among three common non-alcoholic beverages (coffee, cocoa, and tea), tea is the
most popular worldwide due to its high content of polyphenols, caffeine, and aromatic
substances, which have anticancer, antioxidant, and anti-inflammatory properties [1,2].
In addition, as a widely consumed beverage, tea has historically provided significant
economic benefits. To ensure the quality of tea, a large number of pesticides are used
during cultivation, drying, and processing; consequently, tea leaves contain more pesticide
residues than other crops. Massive pesticide exposure can lead to pesticide accumulation in
the body, which harms human health and causes various diseases. To reduce the harmful
effects of pesticide residues in humans, China has continuously revised the maximum
residue standards for tea, expanding the pesticide range to 106 pesticide residue limits.

To detect pesticide residues in tea, liquid chromatography–tandem mass spectrometry
(LC–MS/MS) and gas chromatography–tandem mass spectrometry (GC–MS/MS) with
MRM detection mode have been widely utilized [3–7]. To improve the precision of ex-
perimental results, pretreatment purification methods are required due to the presence of
hundreds of chemical substances in tea that can cause significant interference during the
detection process. Currently, QuEChERS [8–10] and solid-phase extraction (SPE) account
for the majority of the pretreatment of tea [11,12]. Although QuEChERS is simple and quick
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to operate, its clean-up effect is significantly inferior to solid-phase extraction, particularly
when the matrix is tea. Moreover, solid-phase extraction has a very high recovery rate and
can reduce instrument maintenance costs. Residue detection methods for the simultaneous
detection of 12 pesticides in tea (heptenophos, tridiphane, chlorthal-dimethyl, pantoprazole
sodium, fluoronitrofen, genite, picoxystrobin, erbon, cycloprate, chloropropylate, chlorni-
trofen, and indanofan, Figure 1) have not been reported or determined using GC–MS/MS
until now.
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Figure 1. Structures of 12 pesticides (4 newly added, red) for residue determination.

This study established and optimized a workflow for determining 12 pesticide residues
by combining SPE clean-up and GC–MS/MS. This workflow satisfies the requirements for
detecting multiple pesticide residues in tea and provides technical support for establishing
standards for newly added pesticide residues.

2. Results and Discussion
2.1. Optimization of GC–MS/MS Condition

All tested pesticides’ GC and MS parameters were optimized using GCMS Solution
version 4.45 and Microsoft ExcelTM-based files (MRM Optimization Tool and GC/MS/MS
pesticide database version 1.01). Before S-parameter optimization, all compounds were
analyzed in full scan mode between 45 and 450 m/z. MS was subsequently operated in
MRM mode. Using the Shimadzu SMART MRM Optimization Tool, the three most intense
transitions and optimal collision energies (CE) were determined for each pesticide. Table 1
summarizes the operational parameters of the MS, including MRM transitions, retention
times, CE, and dwell times. In addition, detector voltage was optimized absolute and
relative to the tuning result modes (up to 0.5 kV). Regarding chromatographic peak heights,
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a detector voltage of 2 kV resulted in the best sensitivity. Mixtures of the 12 pesticides’
standards were detected using the optimized method, and the extracted ion chromatograms
(EIC) are shown in Figure 2.

Table 1. GC–MS/MS detection conditions for 12 pesticides.

Pesticide Retention
Times/min Dwell Times/ms Quantitative

Mass/ m/z
Collision
Energy/V

Qualitative Ion
Pair, m/z

Collision
Energy/V

Heptenophos 7.567 25 124.00 > 89.10 9 124.00 > 63.10 27
Tridiphane 9.879 25 173.00 > 145.00 15 187.00 > 159.00 12

Chlorthal-dimethyl 10.475 25 299.00 > 220.90 24 301.00 > 222.80 27
Pantoprazole Sodium 11.065 25 193.00 > 127.00 5 127.00 > 109.00 15

Fluoronitrofen 11.453 25 301.00 > 270.90 12 220.00 > 157.10 27
Genite 11.345 25 141.00 > 77.10 6 141.00 > 51.10 27

Picoxystrobin 11.377 25 335.10 > 173.10 9 335.10 > 303.10 6
Erbon 11.745 25 169.00 > 96.90 15 169.00 > 61.10 30

Cycloprate 12.319 25 97.00 > 55.10 10 111.00 > 69.10 8
Chloropropylate 11.876 25 251.00 > 139.00 14 251.00 > 111.10 26

Chlornitrofen 12.243 25 236.00 > 173.00 24 317.00 > 287.00 12
Indanofan 12.957 25 139.00 > 111.00 15 139.00 > 75.10 27
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Figure 2. Extracted ion chromatogram of 12 standard pesticide solutions. (A) heptenophos,
(B) tridiphane, (C) chlorthal-dimethyl, (D) pantoprazole sodium, (E) fluoronitrofen, (F) genite,
(G) picoxystrobin, (H) erbon, (I) cycloprate, (J) chloropropylate, (K) chlornitrofen, (L) indanofan.
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2.2. Optimization of Sample Preparation
2.2.1. Optimization of Extraction Method

According to EN15662-2018, extraction of the target can be enhanced by soaking it in
water when the sample’s water content is below 10% [13]. ACN is typically used to extract
pesticide traces because it reduces co-extractions and improves extraction efficiency [8].
The effects of the following four extraction techniques were studied: extraction-1: direct
extraction with 20 mL of ACN; extraction-2: extraction with 5 mL of water followed by
20 mL of ACN; extraction-3: extraction with 10 mL of water followed by 20 mL of ACN;
extraction-4: extraction with 15 mL of water followed by 20 mL of ACN. The recoveries
of the 12 pesticides were investigated by adding a mixed standard solution (0.02 mg/kg)
to the tea samples. The results revealed that the pesticide recoveries were 45.6–76.5%
(extraction-1), 61.6–87.3% (extraction-2), 80.4–102.6% (extraction-3), and 105.5–134.15%
(extraction-4) (Figures 3A and 4A). It was demonstrated that soaking in water prior to
ACN extraction significantly improved extraction efficiency. Extraction-3 can be used in
future experiments.
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2.2.2. Selection of Solid-Phase Extraction (SPE)

The experiment examined the effects of four commonly used Cleanert SPEs for tea:
Florisil, Carb/NH2, Carb/PSA, and TPT. The results indicated that Florisil and Carb/NH2
were not as effective as Carb/PSA and TPT SPE (the fraction after Florisil and Carb/NH2
was dark in color); consequently, Carb/PSA and TPT SPE were chosen for further re-
search. According to Figure 3B, the recoveries of the Carb/PSA solid-phase extraction
ranged between 109.1% and 137.2%, and the recoveries of the Cleanert TPT SPE ranged
between 82.5% and 95.7% (Figures 3B and 4A). The Cleanert Carb/PSA SPE results re-
vealed a severe matrix effect; consequently, Cleanert TPT SPE was deemed appropriate for
future experiments.

Based on the results, we hypothesized that the loading materials of Carb/PSA SPE
and TPT SPE produced disparities. Cleanert Carb/PSA SPE is loaded with two materials
(graphitized carbon black and ethylenediamine-N-propyl). In contrast, Cleanert TPT SPE is
a composite of three materials (graphitized carbon black, amine-modified silica, and amide-
modified polystyrene), with the amine-modified silica and amide-modified polystyrene in
the column being quite effective on alkaloids.

2.2.3. Eluent Conditions

According to the polarities of the 12 pesticides and the properties of the Cleanert TPT
SPE, the elution solvents for spiked recovery of the 12 pesticides were determined to be
ACN–toluene (3:1) and acetone–hexane (1:1). According to the results of the experiment,
the capacities of these two solvents to elute the 12 pesticides were comparable (Figures 3C
and 4B). Given that toluene is a strictly regulated and more toxic chemical, acetone–hexane
(1:1) was chosen as the elution solvent for further research. To determine the effects of
elution volume, the elution solvent was supplemented with 5, 10, 15, 20, and 25 mL at a rate
of 5 mL per time. After the fractions were concentrated, they were subjected to GC–MS/MS
analysis. The recoveries of the 12 pesticides were more than 85% when the eluent volume
was 25 mL (Figures 3D and 4B). Therefore, the final elution volume was determined to
be 25 mL.

2.2.4. Combination of the Optimized Procedures

The results of single-factor optimization (extraction methods, purification methods,
elution solvents, and elution volumes) are depicted in Figure 4. It was demonstrated that
extraction-4 and purification-1 (Figure 4A) and elution solvent-2 and elution volume-5
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(Figure 4B) were the methods that achieved the greatest recoveries. Since elution solvent-
2 (ACN–toluene (3:1)) contains toluene, which is toxic and strictly controlled, elution
solvent-2 (acetone–hexane (1:1)) was chosen for further research.

2.3. Method Evaluation
2.3.1. Linear Range, Limit of Detection (LOD), and Limit of Quantification (LOQ)

In accordance with the optimized experimental conditions, a series of standard solu-
tions containing concentrations of 0, 10, 20, 50, 100, 200, 500, and 1000 µg/L were prepared
from the dilutions of the 12 pesticide standard solutions with blank tea sample extracts to
calculate the standard curve. With a three-fold signal-to-noise ratio, the limits of detection
(LODs) and limits of quantification (LOQs) of the 12 pesticides were calculated. The results
indicated that the correlation coefficients between the concentrations of the 12 pesticide
compounds and their peak areas in the range of 10–1000 µg/L were all greater than 0.9976.

The limits of detection (LODs) and limits of quantification (LOQs) of the 12 pesticides
in green tea were 0.01–3.14 µg/kg and 0.04–8.69 µg/kg, respectively. As indicated in
China’s National Food Safety Standard Maximum Residue Limits for Pesticides in Food
(GB 2763-2021) (http://down.foodmate.net/standard/sort/3/97819.html, accessed on
3 March 2021), the LOQs for all 12 pesticides were significantly lower than the maximum
residue levels specified, indicating that the method described in this paper meets the actual
detection requirements. Finally, satisfactory recoveries (70.7–113.0% for green tea and
72.0–99.1% for black tea) were achieved at three concentrations (10 µg/kg, 20 µg/kg, and
100 µg/kg).

2.3.2. Matrix Effect

The matrix effect refers to the presence of substances other than the target that appear
to inhibit or boost the detection signal of the standard solution of the pure solvent. Tea
contains pigments, caffeine, minerals, and other substances that reduce the influence of
endogenous substances on the precision of test results. The matrix effect was determined
using the slope ratio of the matrix standard curve to the solvent standard curve [14]. Less
than 0.9 indicated a matrix inhibition effect, while greater than 1.1 indicated a matrix
enhancement effect [15]. According to the experimental results, the ratios of the 12 pesti-
cides were 1.21–1.48, indicating that the 12 pesticides exhibited matrix effects; therefore, a
matrix-matched standard curve was utilized for quantification.

2.3.3. Spiked Recovery and Precision

Three mixed standard solutions of 10 µg/kg, 20 µg/kg, and 100 µg/kg were added
to the blank tea matrix, and six parallel experiments were performed for each spiked
level. The conditions were optimized for the determination. Based on the optimized
workflow for these pesticides, black and green tea from the market in Fujian Province,
China (black tea from Wuyi Mout. Zichen Tea Industry Co., Ltd.; green tea from Shiyi
Tongyuan Biotechnology Co., Ltd.), were utilized to determine the pesticide residues in
tea. As shown in Tables 2 and 3, this workflow can effectively determine these 12 pesticide
residues. Thus, it is evident that the method offers excellent accuracy and precision and
can be used to determine these 12 pesticide residues in tea samples [16].

http://down.foodmate.net/standard/sort/3/97819.html
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Table 2. Linear equations, limits of detection, and limits of quantification, precision of 12 pesticides for green tea.

Pesticide
Green Tea

Spiked Level

10 µg/kg 20 µg/kg 100 µg/kg

Linear Equation R2 LOD (ug/kg) LOQ (ug/kg) Recovery (%) RSD (%) Recovery (%) RSD (%) Recovery (%) RSD (%)

Heptenophos f(x) = 1502.694572 ∗ x − 113.0040 0.9994 0.01 0.04 101.6 6.6 96.0 7.7 103.6 3.2
Tridiphane f(x) = 560.965491 ∗ x − 45.0606 0.9994 1.49 4.97 102.2 8.9 91.4 9.9 93.9 3.9
Chlorthal-dimethyl f(x) = 383.149211 ∗ x − 24.5600 0.9997 0.06 0.21 86.5 11.6 87.0 10.6 90.5 3.5
Pantoprazole Sodium f(x) = 818.174622 ∗ x − 78.9870 0.9998 0.02 0.07 83.2 10.5 86.3 8.0 90.6 2.0
Fluoronitrofen f(x) = 365.018769 ∗ x − 65.8542 0.9989 0.06 0.21 70.7 7.7 86.3 9.2 91.4 1.3
Genite f(x) = 2082.333399 ∗ x − 145.0708 0.9997 0.01 0.04 95.1 8.6 87.9 8.9 94.2 2.7
Picoxystrobin f(x) = 140.532755 ∗ x − 3.5060 0.9999 0.13 0.43 79.5 10.9 81.5 10.9 89.3 4.3
Erbon f(x) = 938.903891 ∗ x − 21.0300 0.9996 0.11 0.38 94.8 8.8 90.2 8.3 94.3 3.1
Cycloprate f(x) = 2157.633788 ∗ x − 231.0450 0.9983 2.61 8.69 109.4 6.1 90.8 11.5 101.6 4.9
Chloropropylate f(x) = 1647.330772 ∗ x − 121.0034 0.9999 0.11 0.35 88.1 6.5 88.8 8.9 92.7 2.8
Chlornitrofen f(x) = 272.771764 ∗ x − 12.0450 0.9999 0.08 0.27 76.4 10.7 80.4 7.6 90.3 2.9
Indanofan f(x) = 632.674102 ∗ x − 32.4315 0.9998 0.31 1.04 113.0 2.9 93.6 7.0 93.7 3.2

Table 3. Linear equations, limits of detection, and limits of quantification, precision of 12 pesticides for black tea.

Pesticide
Black Tea

Spiked Level

10 µg/kg 20 µg/kg 100 µg/kg

Linear Equation R2 LOD (ug/kg) LOQ (ug/kg) Recovery (%) RSD (%) Recovery (%) RSD (%) Recovery (%) RSD (%)

Heptenophos f(x) = 1079.505741 ∗ x − 864.5287 0.9993 0.01 0.08 97.2 7.8 93.2 3.8 94.9 6.0
Tridiphane f(x) = 396.966791 ∗ x − 561.8339 0.9994 1.76 6.57 99.1 12.7 87.9 3.3 89.0 5.8
Chlorthal-dimethyl f(x) = 257.457728 ∗ x − 125.6542 0.9996 0.06 0.24 74.2 14.2 84.9 5.9 87.2 4.6
Pantoprazole Sodium f(x) = 576.950434 ∗ x − 674.7645 0.9996 0.03 0.08 77.2 8.7 80.6 5.5 85.8 6.1
Fluoronitrofen f(x) = 247.444329 ∗ x − 127.4367 0.9996 0.05 0.30 72.0 13.8 80.3 6.5 85.8 4.5
Genite f(x) = 1518.161305 ∗ x − 6453.9763 0.9976 0.01 0.03 90.8 10.8 87.5 2.3 88.9 6.5
Picoxystrobin f(x) = 95.176043 ∗ x − 125.5432 0.9978 0.24 0.44 78.7 9.9 75.7 7.2 84.7 5.2
Erbon f(x) = 658.202230 ∗ x − 786.5413 0.9997 0.44 0.3 84.9 8.5 84.7 3.0 88.1 6.3
Cycloprate f(x) = 1682.980785 ∗ x − 154.3278 0.9996 3.14 7.37 98.8 13.1 85.0 11.5 93.2 5.7
Chloropropylate f(x) = 1129.119124 ∗ x − 125.4536 0.9994 0.13 0.37 91.7 13.0 86.9 3.5 88.6 7.0
Chlornitrofen f(x) = 200.986221 ∗ x − 789.5482 0.9998 0.08 0.34 79.0 11.5 80.3 3.3 85.6 6.2
Indanofan f(x) = 456.259727 ∗ x + 12.3457 0.9993 0.45 1.41 94.9 10.8 89.4 2.8 89.2 6.3
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2.4. Pesticide Residue Determination in Different Tea Samples

Based on the optimized workflow, 20 tea samples available for sale were used for
pesticide residue determination. Picoxystrobin was detected in 6 of 20 (30%) samples, with
a concentration ranging from 0.04 to 0.15 mg/kg, which is much lower than the limitation
(20 mg/kg). The other 11 pesticides were not detected in the 20 tea samples (Table 4). It
was determined that these 12 pesticide residues were below the limitation; therefore, the
tea we tested is safe for human consumption.

Table 4. Summary of the pesticide residues in 20 tea samples available for sale.

Pesticide No. of Detection Percent of
Detection (%) Range (mg/kg)

No. of
Unqualified

Samples

Percent of
Unqualified
Samples (%)

Limitation
(mg/kg)

Heptenophos 0 0 / / / 0.01 *
Tridiphane 0 0 / / / 0.05 *
Chlorthal-dimethyl 0 0 / / / 0.01
Pantoprazole Sodium 0 0 / / / 0.05 *
Fluoronitrofen 0 0 / / / 0.01 *
Genite 0 0 / / / 0.01 *
Picoxystrobin 6 30% 0.04–0.15 0 0 20
Erbon 0 0 / / / 0.01 *
Cycloprate 0 0 / / / 0.01 *
Chloropropylate 0 0 / / / 0.02 *
Chlornitrofen 0 0 / / / 0.01 *
Indanofan 0 0 / / / 0.01 *

* Temporary limitation.

3. Materials and Methods
3.1. Chemicals and Materials

BePure supplied the pesticides (heptenophos, tridiphane, chlorthal-dimethyl, pan-
toprazole sodium, fluoronitrofen, genite, picoxystrobin, erbon, cycloprate, chloropropy-
late, chlornitrofen, and indanofan). Anhydrous sodium sulfate (Beijing Chemical Factory,
Beijing, China) was cauterized at 550 ◦C for 4 h, placed in a desiccator, and cooled to make
it ready for use. Agela Technologies supplied Fosrisil (500 mg, 6 mL), Carb/NH2 (500 mg,
6 mL), Cleanert TPT (2 g, 6 mL), and Carb/PSA (500 mg, 6 mL) SPEs. All chemicals and
solvents utilized in this investigation were of analytical purity. Triple-distilled water was
used in this study. The black and green tea utilized in this work were acquired from the
Fuzhou market.

3.2. Standard Solutions and Calibration Curves

The 100 mg/L working standard solutions of the 12 pesticides were dissolved in
acetone and stored at −20 ◦C. The mixed standard solutions were prepared in acetone
at a concentration of 2 mg/L and stored at −20 ◦C. To calculate the calibration curves,
working standard solutions were prepared by diluting the mixed standard solutions in
a concentration series of 0.0 µg/L, 20 µg/L, 50 µg/L, 100 µg/L, 200 µg/L, 400 µg/L,
800 µg/L, and 1000 µg/L.

3.3. Extraction and Clean-Up

The tea was ground and passed through a 20-mesh sieve, and a 5.0 g (accurate to 0.01 g)
sample of the ground tea was weighed. Next, the samples were soaked in varying volumes
of water for 30 min: 0 mL (extraction-1), 5 mL (extraction-2), 10 mL (extraction-3), and
15 mL (extraction-4). After adding 20 mL of acetonitrile (ACN), the mixture was vigorously
vortexed for 5 min. The samples were then centrifuged at 4000 rpm/min for 5 min. Then,
10 mL of the acetonitrile layer was drawn into a new centrifuge tube for purification.

For clean-up, 4 mL of supernatant was passed through either a Cleanert TPT (purification-1)
or Carb/PSA (purification-2) SPE with approximately 2 cm of anhydrous sodium sulfate.
Two solvents for elution were tested for this step: (1) For column activation, 25 mL of elution
solvent-1 (acetone–hexane (1:1)) was used; for elution, a specific volume of acetone–hexane
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(1:1) was used. (2) 25 mL of elution solvent-2 (ACN–toluene (1:3)) was used for column
activation. For elution, a specific volume of ACN–toluene (1:3) was used. For elution
volumes, 5 mL (elution volume-1), 10 mL (elution volume-2), 15 mL (elution volume-3),
20 mL (elution volume-4), and 25 mL (elution volume-5) were tested.

The gathered fraction was concentrated using a rotary evaporator. For GC–MS/MS
analysis, the mixtures were diluted into 1 mL of corresponding solvent and passed through
a 0.22 m filter membrane.

3.4. GC–MS/MS Analysis

Pesticide concentrations were determined using tandem mass spectrometry (GCMS-
TQ 8040, Shimazu Corp., Japan). GC separation was performed using an Agilent HP-5
MS (30 m × 0.25 mm × 0.25 µm) capillary column. The following conditions were set for
the oven: 50 ◦C, maintain for 1 min; 50–150 ◦C at intervals of 25 ◦C/min, hold for 1 min;
150–300 ◦C at intervals of 10 ◦C/min, hold for 5 min. The temperature at the inlet was set
to 250 ◦C. With a 2.0 mL/min flow rate, 99.999% pure helium was used as the carrier gas
for chromatographic analysis. An injection volume of 2 µL was analyzed in the splitless
mode under high pressure conditions (200 kPa).

A triple quadrupole mass spectrometer in electron impact (EI) ionization mode was
operated with a 70 eV ionization voltage and 60 µA of emission current. The interface
(transfer line to the tandem MS), ion source, and quadrupole temperatures were main-
tained at 230 ◦C and 150 ◦C. Multiple reaction monitoring (MRM) mode was used for
target detection.

3.5. Method Validation

For each pesticide, the precision, accuracy, linearity, limit of detection (LOD), and
limit of quantification (LOQ) were calculated following European Commission guidelines
to validate the analytical method used in this study [16]. Working solutions containing
pesticide concentrations ranging from 10.0 to 1000.0 µg/L were prepared and utilized to
generate calibration curves. Each working solution was analyzed three times, and the peak
area ratios of each pesticide standard to internal standard were determined. Minimum
analyte concentrations in spiked blank samples inducing MRM traces with signal-to-noise
ratios (S/N) of 3 and 10, respectively, were used to calculate the LOD and LOQ values.
Recovery of the analytical method was evaluated by adding the standard pesticide mixture
to the sample matrix at three different concentrations (10.0, 20.0, and 100.0 µg/kg) and then
extracting and analyzing these pesticides according to the previously described method.

3.6. Statistical Analysis

The collected data were analyzed using Origin (version 2021) software.

3.7. Application of the Optimized Workflow for Pesticide Residues

Twenty tea samples available for sale were purchased for pesticide residue determina-
tion. An amount of 200 g was ground into powder for each sample, and 5 g of each was
used for further determination (following optimized procedures).

4. Conclusions

This study optimized the sample preparation workflow (extraction methods, SPE
columns, elution solvents, and elution volume) for 12 pesticides in GB 2763-2021. A
combination of SPE and GC–MS/MS was used to simultaneously determine the residues
of 12 pesticides in tea. The method demonstrated simple operation, rapidity, and high
qualitative and quantitative accuracy. It is applicable for the detection of 12 pesticide
residues in tea. The optimized workflow provides technical support for food safety and
fills the gap for newly added pesticide residues, particularly in tea.
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