
Citation: Yang, M.; Yang, C.; Liang,

M.; Yang, G.; Ran, R.; Zhou, W.; Shao,

Z. Solid Oxide Cells with

Phase-Inversion Tape-Casted

Hydrogen Electrode and

SrSc0.175Nb0.025Co0.8O3−δ Oxygen

Electrode for High-Performance

Reversible Power Generation and

Hydrogen Production. Molecules

2022, 27, 8396. https://doi.org/

10.3390/molecules27238396

Academic Editor: Jean St-Pierre

Received: 8 October 2022

Accepted: 24 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Solid Oxide Cells with Phase-Inversion Tape-Casted Hydrogen
Electrode and SrSc0.175Nb0.025Co0.8O3−δ Oxygen Electrode for
High-Performance Reversible Power Generation and
Hydrogen Production
Meiting Yang 1, Changjiang Yang 1, Mingzhuang Liang 1, Guangming Yang 1,* , Ran Ran 1, Wei Zhou 1

and Zongping Shao 1,2

1 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering,
Nanjing Tech University, Nanjing 211816, China

2 WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University,
Perth, WA 6845, Australia

* Correspondence: ygm89525@njtech.edu.cn

Abstract: Solid oxide cells (SOCs) have been considered as a promising energy conversion and
storage device. However, state-of-the-art cells’ practical application with conventionally fabricated
Ni-(Y2O3)0.08(ZrO2)0.92 (YSZ) cermet hydrogen electrode and La0.8Sr0.2MnO3 perovskite oxygen
electrode is strongly limited by the unsatisfactory performance. Instead, new advances in cell materi-
als and fabrication techniques that can lead to significant performance enhancements are urgently
demanded. Here, we report a high-performance reversible SOC that consisted of a combination of
SrSc0.175Nb0.025Co0.8O3−δ (SSNC) and phase-inversion tape-casted Ni-YSZ, which served as the oxy-
gen and hydrogen electrode, respectively. The hydrogen electrode synthesized from phase-inversion
tape-casting showed a high porosity of 60.8%, providing sufficient active sites for hydrogen oxidation
in the solid oxide fuel cell (SOFC) mode and H2O electrolysis in the solid oxide electrolysis cell
(SOEC) mode. Accordingly, it was observed that the maximum power density of 2.3 W cm−2 was
attained at 750 ◦C in SOFC mode and a current density of −1.59 A cm−2 was obtained at 1.3 V in
SOEC mode. Hence, these results reveal that the simultaneous optimization of oxygen and hydrogen
electrodes is a pragmatic strategy that improves the performance of SOCs, which may significantly
accelerate the commercialization of such an attractive technology.

Keywords: solid oxide ells; hydrogen electrode; phase-inversion tape-casting; oxygen electrode;
SrSc0.175Nb0.025Co0.8O3−δ

1. Introduction

With the rapid consumption of fossil fuels and aggravation of the global climate crisis,
innovative technologies must be developed to utilize renewable energies such as solar
and wind power effectively. Considering the intermittent nature of renewable energy,
energy storage technologies are needed to achieve high-quality renewable energy use.
Hydrogen energy has attracted widespread attention as an energy carrier due to having
high calorific value and no pollution [1–3]. In the hydrogen production process, using a
solid oxide electrolysis cell (SOEC) for water electrolysis has been extensively studied owing
to its high energy efficiency and ease of product separation and modular operation [4–7].
Noteworthily, solid oxide cells (SOCs) can operate in two modes, regarded as SOEC and
solid oxide fuel cell (SOFC), meaning that energy can be efficiently stored and regenerated
by alternately switching between the different modes [8–10]. The integration of hydrogen
production, SOEC technology utilizing renewable energy, and SOFC technology generating
power from hydrogen will provide a sustainable renewable energy-based clean energy
system for the future.
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Recently, many researchers have discovered that the oxygen electrode plays a critical
role in developing high-performance and stable SOCs [11–14]. In the SOFC mode, the
oxygen electrode is used as an electrocatalyst for an oxygen reduction reaction (ORR),
whereas it acts as an oxygen evolution reaction (OER) catalyst in the SOEC mode. An ideal
oxygen electrode for SOCs should have good activity and durability for both the ORRs and
OERs. Cobalt-based perovskite oxides such as La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) are the most
intensively investigated oxygen electrodes in SOCs [12,15]. Unfortunately, these materials
have not exhibited excellent ORR activity in the SOFC mode, especially at low to interme-
diate temperatures. Moreover, it was found that the effects of water vapor and chromium
poisoning cannot be negligible in terms of the electrochemical performance of the LSCF
electrode in the SOEC mode, resulting in rapid performance degradation [16,17]. Many
works have reported that oxygen electrode performance is related to many factors, such as
surface area, oxygen vacancy concentration, and oxygen transport rates. Several perovskite
oxides derived from the SrCoO3−δ parent oxide, such as Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)
and BaCo0.4Fe0.4Zr0.1Y0.1O3−δ (BCFZY), have showed superior ORR activity under inter-
mediate temperatures [18–21]; for instance, this result was observed that the BSCF electrode
has a lower area-specific resistance (ASR) of 0.1 Ω cm2 when working at 600 ◦C in the
SOFC mode and at a current density of −0.45 A cm−2 at 850 ◦C in the SOEC mode [18,19].
Recently, Sc and Nb co-doped perovskite oxide denominated SrSc0.175Nb0.025Co0.8O3−δ

(SSNC) was demonstrated to be an outstanding electrode for the SOFC mode. Moreover,
the single cells fabricated by SSNC can achieve a maximum power density of 910 mW cm−2

at 500 ◦C with hydrogen fuel [22]. However, the OER performance of SSNC in the SOEC
mode has not been further studied.

Apart from the oxygen electrode, there is another type of excellent electrocatalyst, the
hydrogen electrode, that plays a crucial role concerning both hydrogen electro-oxidation in
the SOFC mode and water splitting in the SOEC mode. Recently, considerable attention
has also been paid to the development of a practical hydrogen electrode for SOCs [23–27].
Ni-(Y2O3)0.08(ZrO2)0.92 (YSZ) composite is the state-of-the-art anode for the SOFC mode
due to its favorable catalytic activity for hydrogen electro-oxidation, high conductivity,
good thermomechanical compatibility with the YSZ electrolyte, and relatively low cost,
which is also widely used in SOCs. However, the hydrogen electrode prepared by the
conventional tape-casting method usually showed low porosity, thus introducing massive
polarization resistance in the SOEC mode, especially under a high polarization current.
This suggests that optimizing the porosity of electrode may contribute to increase the SOC’s
performance. Some studies have applied a phase-inversion tape-casting technique with
NMP as a solvent, PESF as a binder, and PVP as a dispersant to improve the morphology
and porosity of the Ni-based hydrogen electrode [28–31].

In this study, we conducted the simultaneous improvement of both oxygen and
hydrogen electrodes to achieve a high performance of SOCs. It was demonstrated that
SSNC is an excellent cathode for SOFC, and for the first time, we proved that SSNC is
also a suitable oxygen electrode in the SOC mode; thus, it was adopted as the oxygen
electrode in the SOCs. We also report a Ni-YSZ hydrogen electrode with a honeycomb-
like structure synthesized by a novel phase-inversion tape-casting method and having a
much-increased electrode porosity. Combining the SSNC oxygen electrode and Ni-YSZ
hydrogen electrode casted by phase-inversion tape has a remarkable performance in both
two modes: a maximum power density of 2.3 W cm−2 at 750 ◦C in the SOFC mode and a
current density of −1.59 A cm−2 at 1.3 V in the SOEC mode, respectively.

2. Results and Discussion
2.1. Microstructure of Hydrogen Electrode

It was reported that the hydrogen electrode’s porosity had a considerable influence in
terms of the electrode performance, and a highly porous electrode microstructure could
result in an improvement of the electrochemical performance of single cells [32–35]. Here,
to emphasize the importance of microstructure optimization regarding the performance
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of hydrogen electrodes in SOFCs, two types of Ni-YSZ hydrogen electrodes with dif-
ferent structures were fabricated by the tape-casting and phase-inversion tape-casting
methods, respectively.

The cross-sectional FE-SEM images of two hydrogen electrodes calcined at 1400 ◦C for
5 h before tests are shown in Figure 1a,b for the tape-casted electrode and Figure 1c,d for the
electrode fabricated from the phase-inversion tape-casted electrode, respectively. Obviously,
the hydrogen electrode produced by the conventional tape-casting method showed poor
porosity after calcining at 1400 ◦C, and there are only a few 1–2 µm tortuous and irregular
pores (Figure 1a,b). The porosity of this electrode after the reduction would be mainly
attributed to the contraction due to the reduction from NiO to Ni. However, for the electrode
prepared from the phase-inversion tape-casting method, in addition to some unevenly
distributed large pores (30–250 µm), there are also many uniformly distributed small pores
(~10 µm), which takes after the honeycomb structure (Figure 1c,d). Such honeycomb-
type pores were not observed in the electrodes prepared by others based on the similar
phase-inversion tape-casting method. Such a difference could result from the different
casting solvents used in the phase-inversion tape-casting processes. Many researchers have
obtained finger-like macroporous structures by using N-Methyl pyrrolidone (NMP) as a
solvent [28–31]. It is known that NMP is an oily solvent, which slowly exchanges with
water during the phase-inversion process and causes finger-like macropore formations. In
this study, ethanol and xylene were used as the solvents. It is well-known that ethanol
is readily miscible with water; thus, finger-like macropores did not appear. Meanwhile,
due to xylene’s presence, a regular and ordered honeycomb structure can be formed
if H2O entered the casting tape (Figure S1). Such a conclusion was further verified by
thermogravimetric-mass spectrometric (TG-MS) testing of the casted tapes prepared by
two different methods; the results are shown in Figure S2. Within the temperature range
of 50–1000 ◦C, the calculated weight losses of the conventional casted tape and the phase-
inversion casted tape were 16.2% and 14.7%, respectively (Figure S2a). In the same test
interval, the conventional casted tape released slightly more water than prepared by the
phase-inversion method, which was mainly caused by the immersion of the casted tape
in water and not being thoroughly dried. However, the conventional casted tape released
significantly more CO2 (Figure S2b) because the ethanol was entirely dissolved in the H2O,
and part of the xylene was exchanged with H2O during the phase inversion process. Jin
et al. also used glycol as a non-solvent and NMP as a solvent to obtain honeycomb-like
pores in the electrode by the phase-inversion method; unfortunately, these honeycomb
structures were destroyed after the electrochemical test [36]. Hence, there is no doubt that
the ordered honeycomb-like structure of the hydrogen electrode would benefit the mass
transfer of fuels and by-products formation in the operation of SOCs [34].

The surface morphology of the two hydrogen electrodes was also examined with
the results shown in Figure S3. Unlike the dense hydrogen electrode prepared by the
tape-casting method (Figure S3a,b), there were many pores with a size of ~5 µm on the
surface of the hydrogen electrode generated by the phase-inversion tape-casting method
(Figure S3c,d). Such rich pores facilitated the modification of the hydrogen electrode
using an impregnation method. The electrode should usually be pre-reduced to introduce
sufficient pores before conducting the solution-impregnated modification to modify the
electrode through impregnation [37,38]. Due to the rich pores, the hydrogen electrode
made by the phase-inversion tape-casting method can be directly applied to the surface
modification through solution impregnation, thus greatly simplifying the preparation
process and effectively reducing the fabrication cost. To verify the wettability of the
surface on different hydrogen electrodes, a drop of water was dropped on the different
hydrogen electrodes surface simultaneously, and the images were taken after 3 s (Figure S4).
Obviously, the water on the surface of the phase-inversion tape-casting hydrogen electrode
was wholly impregnated into the electrode, while that on the surface of the conventional
tape-casting hydrogen electrode was hardly absorbed due to the low porosity.
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Figure 1. Cross-sectional FE-SEM images of hydrogen electrodes produced by tape-casting (a,b) and
phase-inversion tape-casting (c,d) after calcining at 1400 ◦C for 5 h (not reduced).

The cross-sectional FE-SEM images of the two different hydrogen electrodes fabricated
by the traditional tape-casting and phase-inversion tape-casting methods after the cell test
(reduced) were also conducted. Under the cast slurry with the same thickness, the hydrogen
electrodes’ thickness increased from the initial ~500 µm to ~750 µm before and after the
phase inversion (Figure 2a,b). The variation in the thickness of the hydrogen electrode also
proves that the phase-inversion tape-casting method is a remarkably simple and effective
method for improving electrode porosity. Because NiO was usually reduced to Ni under a
reducing atmosphere, the hydrogen electrode produced by the conventional tape-casting
method also clearly demonstrated a connected porous structure (Figure 2c,e), and there
were also small micropores between the NiO and YSZ particles. Except for the micropores
in the space of different Ni and YSZ particles, the hydrogen electrode prepared by the
phase-inversion method also shows sufficient ordered honeycomb-structure pores with
a size of ~10 µm (Figure 2d,f). Therefore, the hydrogen electrode prepared by the phase
inversion method demonstrated a better continuous transitional microstructure, which will
facilitate fuel and product transportation and electrode electrochemical reactions.

The pore size distribution of Ni-YSZ substrate was evaluated through mercury
porosimetry measurement, with the results shown in Figure 3. Only one primary pore
size was detected in the electrode prepared from the conventional tape casting method,
i.e., pore size of 0.1–1 µm in diameter, and such pores were mainly attributed to the void
space between the Ni and YSZ particles. However, there are two domains of pores in the
electrode synthesized by the phase-inversion tape-casting method: one corresponds to the
void space of Ni and YSZ particles (0.1–1 µm), and the other relates to the effective small
pores with a diameter between 1 and 10 µm explicitly introduced by the phase-inversion
method. These results agree well with previous FE-SEM observations (Figure 2). The total
intruded volume and the porosity of the two different hydrogen electrodes are listed in
Table S1. By using the phase-inversion method, the intruded volume in the electrode was
increased from 0.067 to 0.24 cm3 g−1, and the porosity was also increased from 32.1% to
60.8%. In a previous work, Suzuki et al. reported that the porosity of a tubular SOFC was
increased from 37% to 54% by tailoring the calcination temperatures, thus achieving an
effective improvement in the peak power density from 0.2 to 1 W cm−2 [34]. Therefore, the
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electrode synthesized by the phase-inversion tape-casting method with high porosity is
expected to deliver a higher electrochemical performance in SOCs.
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To further prove that the nickel and YSZ in the prepared Ni-YSZ hydrogen electrode
by the phase-inversion tape-casting method were evenly distributed, a STEM-EDX analysis
was performed for the reduced hydrogen electrode at 750 ◦C for 5 h, with the typical images
shown in Figure 4. There was no apparent aggregation of Ni or YSZ particles, and the Ni
and YSZ particles were closely connected, effectively forming the continuous oxygen ion
diffusion path (YSZ) and electron conduction path (Ni) (Figure 4b–e). The prepared Ni-YSZ
electrode’s elemental composition was further illustrated by the EDX test (Figure 4f), which
is consistent with the initial element ratio of Ni and YSZ.
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STEM-EDX result of Ni-YSZ (f).

2.2. Water Resistance of Oxygen Electrode

It is crucial for SOCs to have high activity concerning oxygen reduction reactions
(ORRs) and oxygen evolution reactions (OERs) and prolonged durability of the oxygen
electrode when working at low-to-intermediate temperatures. Zhou et al. have confirmed
that the perovskite material SrSc0.175Nb0.025Co0.8O3−δ (SSNC) is an excellent candidate
because of its relatively high ORR activity and low activation energy, which was enhanced
to 100% at 500 ◦C relative to the benchmark oxygen electrode of BSCF [22]. Zhang et al.
also confirmed that SSNC had a higher ORR activity and CO2-resistance than BSCF [39].
To further confirm the high activity of SSNC, an O2-TPD test was carried out. As shown in
Figure S5, during the programmed increase of temperature, the thermal reduction of B-site
cations to a lower oxidation state occurs, along with the oxidation of O2− to O2, which is
finally released into the surrounding atmosphere (via flowing inert gas). It is evident that
the peak area of SSNC is much higher than that of BSCF, indicating that SSNC has more
variable oxygen vacancies than BSCF [39]. However, in the SOEC mode, because a large
amount of water vapor is introduced into the hydrogen electrode, which may be penetrated
by the oxygen electrode, and a stable phase structure and micromorphology under an
absolute water pressure is vital for oxygen electrodes for SOCs. Figure 5 shows the XRD
patterns of the BSCF and SSNC before and after treatment in 10% H2O-Ar at 750 ◦C for 5 h.
Obviously, a significant impurity peak appeared at the 2-theta position at about 26◦ in the
BSCF sample (Figure 5a). Yan et al. found the presence of a OH group after the treatment
of BSCF in an atmosphere containing H2O [40]. Wang et al. also confirmed that Ba(OH)2
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could be formed on Ba0.9Co0.7Fe0.2Nb0.1O3−δ (BCFN) after treatment under an atmosphere
containing H2O [41]. During the electrolysis process, the presence of Ba(OH)2 on the BSCF
oxygen electrode’s surface may inhibit the oxygen evolution process. Nevertheless, for the
SSNC perovskite, no impurity peaks appeared after treatment in 10% H2O-Ar atmosphere,
indicating its high resistance to water poisoning (Figure 5b). This is mainly because the
alkalinity of the Ba element is greater than that of the Sr element, so water reacts more
easily with BSCF to form Ba(OH)2. Zhang et al. found that CO2 is more likely to poison
BSCF due to Ba’s strong alkalinity, while SSNC is much more CO2-resistant than BSCF [39].
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5 h: (a) BSCF; (b) SSNC. u Ba(OH)2 impurity.

To further verify the different effects of H2O on the SSNC and BSCF perovskites, the
electrode microstructure was examined after the water treatment. In our previous work,
the surface roughness of BSCF and SSCN samples before treatment is close to each other
with no significant difference, which was illustrated by scanning electron microscopy and
atomic force microscopy [39]. As shown in Figure 6a,b, the surface of SSNC perovskite
was smooth without the presence of any impurities, while there were large amounts of
impurities with a particle size distribution of 100–200 nm emerging on the surface of BSCF
perovskite (Figure 6c,d). According to the XRD results, such impurities on the BSCF surface
were mainly Ba(OH)2. Therefore, in addition to the higher bulk oxygen diffusion rate and
oxygen reduction activity than BSCF, SSNC also has a stronger resistance towards water
poisoning, making it a more promising oxygen electrode for SOCs compared with BSCF.
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2.3. SOFC Mode

Cell 1 was first tested in the SOFC mode and compared with the other two cells listed
in Table 1. Figure 7a–c exhibits the I-V and I-P curves where three cells with different
compositions work at various temperatures of 650–750 ◦C in the atmosphere consisting
of humidified H2 as the fuel and ambient air as the oxidant. The open-circuit voltages
(OCVs) of Cell 1, Cell 2, and Cell 3 at 750 ◦C were 1.06, 1.06, and 1.03 V, respectively,
which indicated that YSZ electrolyte could be densified and the porous hydrogen electrode
prepared by the phase-inversion method did not affect the compactness of the three cells.
In comparison, Huang et al. reported a cell with finger-like large pores on the hydrogen
electrode, which was prepared via the phase-inversion tape-casting method and showed
an OCV of only 1.00 V at 750 ◦C [29]. Significantly, the peak power densities (PPDs) of
the three cells were 1.44, 1.70, 1.36 W cm−2 at 700 ◦C, respectively. Obviously, the power
densities of these cells produced by the phase-inversion tape-casting method are superior
to those synthesized through the traditional tape-casting method when compared under
similar testing conditions. Similarly, the SSNC cathode cells had higher power densities
than those that made up of BSCF cathode. The detailed PPDs of the three cells at the specific
operating temperatures are shown in Figure 7d, suggesting that the performance in the
SOFC mode was enhanced by optimizing the microstructure of the hydrogen electrode and
the reactivity of the oxygen electrode. The performances of various single cells containing
Ni-based hydrogen electrodes, YSZ electrolyte, and other well-known oxygen electrodes
are compared in Table 2 [28,29,37,42–51]. It was found that the cells consisted of a hydrogen
electrode with a honeycomb-like structure, and the oxygen electrode with SSNC cathode
demonstrated the best electrochemical performance.

Table 1. The various parameters of SOCs in this study.

Hydrogen Electrode Electrolyte Oxygen Electrode

Cell 1 Traditional tape casting YSZ-SDC SSNC
Cell 2 Phase-inversion tape-casting YSZ-SDC SSNC
Cell 3 Phase-inversion tape-casting YSZ-SDC BSCF

Table 2. Comparison of the electrochemical performance of various SOFCs.

Cell Composition Temp. (◦C) PPDs (W cm−2) Ref.

Ni-YSZ a|YSZ|SDC|SSNC 750 2.3 This work
Ni-YSZ a|Ni-ScSZ b|ScSZ|LSM-ScSZ|LSM 750 1.32 [28]

Ni-YSZ a|YSZ|LSM-YSZ 800 0.78 [29]
Ni-YSZ-GDC c|GDC|YSZ|GDC|STFC d 750 ~1.9 [37]

Ni-YSZ|YSZ|SDC|SC-SDC e 750 ~1.75 [42]
Ni-YSZ|YSZ|GDC|BSCF 800 1.56 [43]
Ni-YSZ|YSZ|NBCF f-YSZ 800 1.44 [44]

Ni-YSZ|Ni-ScSZ|ScSZ|MCCO g-ScSZ 800 1.92 [45]
Ni-YSZ|YSZ|GDC|NBCCF h-GDC 850 1.39 [46]

Ni-YSZ|YSZ|SDC|BC-PBCC i 750 ~1.15 [47]
Ni-YSZ|YSZ|GDC|PBSCF j 800 ~1.0 [48]

Ni-YSZ|YSZ|GDC|GDC-LSCF|LSCF 800 ~0.8 [49]
Ni-YSZ|YSZ|SDC|SDC-BNF k 800 1.2 [50]

Ni-YSZ|YSZ|GDC|PCFC l 750 ~0.85 [51]
a phase-inversion tape-casting method, b ScSZ: 10 mol% Sc2O3-ZrO2,c GDC: Ce0.9Gd0.1O2, d STFC:
Sr(Ti0.3Fe0.63Co0.07)O3−δ, e SC-SDC: SrCoO3−δ impregnated into SDC, f NBCF: NdBaCoFeO5+δ, g MCCO:
Mn1.3Co1.3Cu0.4O4, h NBCCF: NdBa0.5Ca0.5Co1.5Fe0.5O5+δ, i BC-PBCC: BaCoO3−δ-PrBa0.8Ca0.2Co2O5+δ, j PBSCF:
PrBa0.5Sr0.5Co1.5Fe0.5O5+δ, k BNF: Ba0.97Nd0.03FeO3−δ, l PCFC: Pr0.8Ca0.2Fe0.8Co0.2O3−δ.
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2.4. SOEC Mode

Figure 8a–c presents the temperature-dependent I-V curves of the three different cells
for electrolysis. Within the test period, the volume flow ratio of H2O/H2 was maintained
at 1:1, and the test voltages started from OCVs to −1.6 V with a current sweeping rate of
50 mA s−1. Thus, it was necessary to utilize Faraday’s law to calculate the H2 production
rate at the corresponding current density. As seen in the following, Faraday’s law is
∆NH2 = I/2F, where ∆NH2 is the H2 production rate (mL cm−2 h−1), and I and F is the
current (A) and Faraday’s constant (C), respectively [52,53]. When the thermo-neutral
voltage for steam electrolysis is 1.3 V, the current densities of three cells are −1.43, −1.59,
and −1.35 A cm−2 at 750 ◦C, and the corresponding derived H2 production rate are 597.6,
664.5, and 564.1 mL cm−2 h−1 at 750 ◦C, respectively. Meanwhile, it can be seen that Cell 1
showed an obvious polarization phenomenon at 750 ◦C, which cannot be seen for the other
two cells. This is due to the water electrolysis reaction at higher temperatures needing much
more reactant with a high concentration of water compared with that of lower temperatures,
and the insufficient porosity (32.1%) of Cell 1 cannot satisfy the demands for water diffusion.
Therefore, Cell 1 showed an obvious concentration polarization phenomenon at 750 ◦C.
However, the phase-inversion tape-casting hydrogen electrodes had good porosity (60.8%);
the concentration polarization phenomenon cannot be seen in the I-V curves of Cell 2 and
Cell 3. Figure 8d illustrates the detailed current densities of three cells at the operating
voltage and temperature. It was found the electrolysis performance of Cell 2 is superior
to Cell 1 and Cell 3, implying that the electrolysis performance of cell was successfully
strengthened by combining the phase-inversion tape-casted hydrogen electrode with the
SSNC oxygen electrode. Moreover, the electrolysis performances of various single cells
with the Ni-based hydrogen electrodes, YSZ electrolyte, and other oxygen electrodes are
compared in Table 3 [30,44,46,48–50,54–57]. Again, SOECs consisted of the hydrogen
electrode with a honeycomb-like structure and the SSNC oxygen electrode show the best
electrochemical performance.
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Table 3. Comparison of the electrochemical performance of various SOECs for H2O electrolysis.

Cell Composition Temp.
(◦C)

Gas
Composition

j (A cm−2)
at 1.3 V Ref.

Ni-YSZ|YSZ|SDC|SSNC 750 H2/H2O (50/50) −1.59 This work
Ni-YSZ a|YSZ|LSM-YSZ 800 H2/H2O (67/33) −1.35 [30]

Ni-YSZ|YSZ|GDC|PBSCF 750 H2/H2O (70/30) −0.6 [44]
Ni-YSZ|YSZ|GDC|NBCCF-GDC 800 H2/H2O (50/50) −0.92 [46]

Ni-YSZ|YSZ|GDC|PBSCF 800 H2/H2O (50/50) −1.3 [48]
Ni-YSZ|YSZ|GDC|GDC-LSCF|LSCF 800 H2/H2O (50/50) −0.85 [49]

Ni-YSZ|YSZ|SDC|SDC-BNF 800 H2/H2O (50/50) −2.05 [50]
Ni-YSZ|YSZ|GDC|PCFC 750 H2/H2O (50/50) −0.79 [51]

Ni-YSZ|YSZ|SDC|BSCF-SDC 800 H2/H2O (50/50) −0.62 [54]
Ni-YSZ|ScSZ|NNO b-ScSZ 800 H2/H2O (50/50) −1.08 [55]

Ni-YSZ|YSZ|SDC|PNO c-GDC 800 H2/H2O (50/50) −0.78 [56]
NiYSZ|YSZ|SDC|LSFCN d 800 H2/H2O (50/50) −1.04 [57]

a phase-inversion tape-casting method, b NNO: Nd2NiO4+δ, c PNO: Pr2NiO4+δ, d LSCFN:
La0.5Sr0.5Fe0.8Cu0.15Nb0.05O3−δ.

To further research the electrochemical performance, it is essential to exert the electro-
chemical impedance spectra (EIS) to measure the impedance value of the SOECs, and the
final results of this investigation are shown in Figure S6a–c. The polarization resistance (Rp)
of Cell 2 is smaller than those of the other two cells under the same conditions (Figure S6d).
These results are consistent with the SOC performance. Simultaneously, the three cells’
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ohmic resistances (Ro) are basically the same, indicating that the three cells’ electrolyte
thicknesses are almost the same.

2.5. Stability

It is known that the easy agglomeration of Ni nanoparticles at high temperatures is a
severe problem during SOEC operation [58,59]. The accumulation of Ni crystal grains at
high temperature may be accelerated owing to the relatively low melting point of metallic
Ni and the adverse interaction between YSZ and Ni, which means that it could seriously
damage the contact surface between the Ni metal and the electrolyte substrate. This is the
main reason why it reduced electronic conductivity and declined the area of the three-phase
boundary. Accordingly, the cell performance has been expected to deteriorate over a long
time, which results from increasing polarization and ohmic impedances. The durability
of Cell 2 was tested in both the SOFC and SOEC modes. Figure 9 shows the variation of
cell voltage concerning operation time in the alternating operation mode for a period of
50 h under −0.5 A cm−2 for the electrolysis mode and then 50 h of operation at 0.5 A cm−2

for the fuel cell mode with a total period of 200 h. Although the voltage slightly increased
from 1.3 V to 1.39 V during the first 50 h under the electrolysis mode, the voltage returned
to 1.31 V when the cell was electrolyzed for the second 50 h. SOCs based on Ni-based
hydrogen electrodes can effectively suppress the electrolytic performance by switching
the SOEC and SOFC modes. In the SOFC mode, no significant performance degradation
was observed in two different sets of 50 h operation. Therefore, the SOCs with the phase-
inversion tape-casted hydrogen electrode and SSNC oxygen electrode have a good stability
and potential application prospect.
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modes (@ 0.5 A cm−2) at 650 ◦C.

After the stability test, the cross-sectional FE-SEM image of Cell 2 (Ni-YSZ|YSZ|SDC|SSNC)
was conducted, as shown in Figure S7, demonstrating that the thickness of the YSZ electrolyte,
SDC barrier layer, and SSNC oxygen electrode were ~4.5µm, ~2µm, and ~9µm, respectively. The
thin YSZ electrolyte layer was still dense without the appearance of obvious holes. Simultaneously,
the SSNC oxygen electrode and electrolyte did not show any delamination after 200 h of testing.
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3. Materials and Methods
3.1. Powder Preparation

SrSc0.175Nb0.025Co0.8O3−δ (SSNC) oxide powder was prepared by a standard solid-
state reaction method. In detail, according to the nominal composition of the perovskite
oxides, stoichiometric amounts of SrCO3, Sc2O3, Nb2O5, and Co3O4 were weighted and
mixed with ethanol in a ball milling machine for 30 min. After drying at 180 ◦C for
5 h, the precursor powder was calcined at 1200 ◦C for 10 h in air to obtain pure SSNC
perovskite power. Using the detailed procedure presented in the literature, a classic EDTA-
citric acid complexing sol-gel process was introduced and used to synthesize the oxygen
electrode materials, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) perovskite oxide [32]. Meanwhile,
Sm0.2Ce0.8O1.9 (SDC) oxide powder, acting as a buffer layer of the YSZ electrolyte of SOCs
in this study, was synthesized by a hydrothermal process [33], where the YSZ was a
commercial product purchased from Tosoh, Japan.

3.2. Single Cell Preparation

A hydrogen electrode-supported half-cell was synthesized through the phase-inversion
tape-casting method. Usually, the single cell consists of the Ni-YSZ cermet hydrogen elec-
trode, the YSZ electrolyte (SDC as a barrier), and the SSNC or BSCF oxygen electrode. The
phase-inversion tape-casting method was introduced to create the unreduced NiO-YSZ
(NiO and YSZ in a mass ratio of 6:4) hydrogen electrode. In detail, NiO and YSZ oxide
powders were mixed well through ball milling at a mass ratio of 6:4, and a proper amount
of ethanol and xylene were added during the ball milling process as solvents; fish oil was
added as the dispersing agent. The milling was first conducted in a planetary ball mill
for 24 h to ensure sufficient dispersion between the NiO and YSZ. Then, a second feeding
was performed. An appropriate amount of polyvinyl butyral ester as a binder and dioctyl
phthalate and polyethylene glycol 400 as plasticizers was added to the solution, which
was ball remixed for another 24 h to obtain a slurry that would be used for subsequent
tape-casting. The prepared hydrogen electrode mixture’s slurry was degassed for 5 min
by the vacuum pump and casted with a 2 mm height gap. A part of the tape-casting
hydrogen electrode was directly dried at room temperature for 24 h to prepare a traditional
tape-casting hydrogen electrode, and the other part was directly immersed in water for
24 h to prepare a phase-inversion tape-casting hydrogen electrode. The detailed prepara-
tion process for the traditional tape-casting and phase-inversion tape-casting hydrogen
electrodes was shown in Figure S1. A hydrogen electrode pellet was formed by punching
the tape-casted film using a puncher with a 16 mm diameter. Through a 2 h heating process
in air, the punched pellets were fired to 1000 ◦C at a heating rate of 1 ◦C min−1. The
hydrogen electrode surface was sprayed with the prepared YSZ slurry, and the sprayed
pellet continued to be calcined at 1400 ◦C for 5 h in air. Moreover, spraying the SDC slurry
on the YSZ electrolyte uniformly and calcining it in air at 1300 ◦C for 5 h should not be
negligible, as the formation of the SDC barrier layer was aimed at avoiding adverse phase
reaction happening at the contact surface between the electrolyte and the oxygen electrode.
Eventually, in order to fabricate the entire single cell, it was essential to uniformly spray
the SSNC oxygen electrode slurry on the surface of the SDC layer, where the effective area
was 0.45 cm2, and the layer was calcined in air at 900 ◦C for 2 h. In order to enhance the
current collection effect, silver paste was brushed on the oxygen electrode surface. For the
convenience of distinguishing different SOCs, the cells were named as follows: Cell 1, com-
posed of a tape-casting hydrogen electrode and SSNC oxygen electrode; Cell 2, composed
of a phase-inversion tape-casting hydrogen electrode and SSNC oxygen electrode; and
Cell 3, composed of a phase-inversion tape-casting hydrogen electrode and BSCF oxygen
electrode. The different structures of the three cells are listed in Table 1.
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3.3. Characterization and Measurements

To verify the phase structure of the SSNC and BSCF perovskite powders, it was
necessary to exert room temperature X-ray diffraction (XRD, D8 Advance, Bruker, Billerica,
MA, USA) to characterize them. The microstructural features of the cell components
were examined with the use of scanning electron microscopy (FE-SEM, HITACHI-S4800).
Silver adhesive was used to seal and fix the prepared cell on the end of a tubular alumina,
and silver ink and wires were applied to contact and collect electricity. Electrochemical
impedance spectra (EIS) were measured under the frequency range of 0.1 Hz–100 kHz with
a signal amplitude of 10 mV in an open-circuit voltage (OCV). When tested in the SOFC
mode, the flow rate of pure hydrogen was set to 80 mL min−1 [STP] to supply the hydrogen
electrode chamber; the oxygen electrode was exposed to the static ambient air, and the cells
operated in the temperature range of 750–650 ◦C. The operating temperature selection is a
balance between the performance and degradation factors. In the test of the SOEC mode,
hydrogen and water vapor were pre-mixed at a volume ratio of 50:50 and then supplied
into the hydrogen electrode chamber, where the oxygen electrode was directly exposed to
the ambient air atmosphere. Furthermore, for the stability in both the SOFC and SOEC
modes, these cells were tested at a fixed current density of ±0.5 A cm−2. Different from
the single-cell performance test, in order to ensure that the collector did not sinter at high
temperatures, a silver mesh was used as the single-cell collector for stability testing instead
of silver paste, sacrificing part of the cell’s performance.

4. Conclusions

In this paper, solid oxide cells with a phase-inversion tape-casted hydrogen electrode
and SrSc0.175Nb0.025Co0.8O3−δ oxygen electrode were successfully fabricated and inves-
tigated. The ordered honeycomb-like structure of the hydrogen electrode was formed
through the phase-inversion method, which was favorable to fuel transfer and byprod-
uct generation in SOCs. Compared with the benchmark BSCF oxygen electrode, the
SSNC electrode had a stronger resistance to water poisoning. Combined with the phase-
inversion tape-casted hydrogen electrode and SSNC oxygen electrode, the SOC achieved
a peak power density of 2.3 W cm−2 in the SOFC mode and a high current density of
−1.59 A cm−2 (at 1.3 V) in the SOEC mode at 750 ◦C. These results demonstrate that the
SOC with a SrSc0.175Nb0.025Co0.8O3−δ oxygen electrode and phase-inversion tape-casted
hydrogen electrode has promise in water splitting prospects at high temperatures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/molecules27238396/s1. Figure S1: Schematic of the preparation processes for the tape-casting and
phase-inversion tape-casting hydrogen electrodes; Figure S2: TG-DTA curves (a) and the MS analysis
(b) for the tape-casting and phase-inversion tape-casting hydrogen electrodes before calcined. m/z = 18
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