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Abstract: Helminths, with an estimated 1.5 billion annual global infections, are one of the major health
challenges worldwide. The current strategy of the World Health Organization to prevent helminth
infection includes increasing hygienic awareness, providing better sanitation and preventative an-
thelmintic drug therapy in vulnerable populations. Nowadays, anthelmintic drugs are used heavily
in livestock, both in case of infection and as a preventative measure. However, this has led to the
development of resistance against several of the most common drugs, such as levamisole, ivermectin
and thiabendazole. As many as 70% of the livestock in developed countries now has helminths
that are drug resistant, and multiple resistance is common. Because of this, novel anthelmintics are
urgently needed to help combat large-scale production losses. Prior to this review, no comprehensive
review of the anthelmintic effects of essential oils and their components existed. Multiple review
articles have been published on the uses of a single plant and its extracts that only briefly touch upon
their anthelmintic activity. This review aims to provide a detailed overview of essential oils and their
components as anthelmintic treatment against a wider variety of helminths.

Keywords: anthelmintic; essential oil; gastro-intestinal nematodes; human helminths; synergy; toxicity

1. Introduction
1.1. Epidemiology of Human Helminthosis

Parasitic worms or helminths are one of the main health challenges in developing coun-
tries in Africa, Asia and South America. Each year, approximately 1.5 billion individuals are
infected worldwide, with many being host to multiple parasitic species simultaneously [1,2].
It is estimated that up to 420,000 people die annually due to various forms of helminthosis
(helminth infection). However, cases of disability are much more common, and the global
helminthic burden is estimated at 51.7 million disability-adjusted life years (DALYs) [3,4].
The reason for this high rate of helminthosis is two-fold; the aforementioned regions are
characterized by high poverty and poor sanitation, and they generally have tropical and
subtropical climates [5–8]. Children are especially prone to ascariasis and schistosomosis in
comparison to adults [9,10]. Helminthosis leads to growth deficits, impaired memory and
reduced educational performance among children [4,11].

Knowledge of helminthosis goes back to the Roman Empire and early Arab scholars,
but a true understanding of helminths’ biology was only attained starting from the 18th
century [12,13]. Today, the most common helminthoses are part of the neglected tropical
diseases (NTDs). These are afflictions that are linked to poverty-stricken areas in tropical
and subtropical environments but are not at the center of international efforts [14]. Sub-
Saharan Africa is particularly heavily afflicted by NTDs, of which helminthoses form the
vast majority of cases [15]. Eight out of twenty NTDs, as defined by the WHO, are caused by
helminths [16,17]. Preventive deworming, in addition to improving hygiene and sanitation,
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are the main WHO-recommended interventions [2,14,18]. Thanks to these interventions,
a decrease in infections has been observed in the period from 2006 to 2016. However,
there are still several challenges in treating helminthosis, including recurrent infections,
“super-spreaders”, persistence despite treatment and polyparasitism [19]. Diagnosis is
often difficult and usually occurs by detection of eggs or larvae passed in feces [20]. In
2012, the signatories of the London Declaration vowed to eradicate Guinea worm disease,
eliminate lymphatic filariasis and control schistosomosis, soil-transmitted helminths and
onchocerciasis by 2020 [21]. Despite WHO efforts, investment in treatment and prevention
remains low, and calls have been made to strengthen the strategy [22].

There are an estimated 76,930 species of parasitic helminths, with 43,945 known host
species [23]. However, cryptic diversity, especially among trematodes, makes it difficult to
assess the true number of species [24]. Three hundred species of helminths are capable of
infecting humans, although accidental infection by species with different host specificity
is possible [12,13,25]. In addition, understanding the factors involved in host shifting
is important to limit the spread of newly discovered parasites to humans [26]. A small
selection of human helminths is shown in Figure 1. Helminth is a general term, which is
applied to multiple species from the phyla Nematoda (roundworms) and Platyhelminthes
(flatworms). Parasitic flatworms belong to either the class Cestoda (tapeworms) or Trema-
toda (flukes). Within the Nematoda, parasites can be found in both classes Chromadorea
and Enoplea [12,27–29].

Prior to this paper, no comprehensive review of the anthelmintic effects of essential
oils and their components existed. Multiple review articles discuss the uses of a single plant
and its extracts and only briefly touch upon their anthelmintic activity [30–32]. Luna et al.
discussed the use of essential oils and their components against neglected diseases but
mostly focussed on trypanosomiasis [33]. Another recent review deals with the effects of
essential oils and their components on Schistosoma mansoni [34]. Under the circumstances,
a review describing the anthelmintic effects of essential oils against a wider variety of
helminths seems timely.
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Figure 1. Examples of human helminths. (A) Female Ascaris lumbricoides (large human roundworm).
(B) Schistosoma mansoni male and female. The smaller female resides in the tegumental fold of the
male. (C) Dracunculus medinensis (Guinea worm) emerging from a human ankle. (D,E) Taenia saginata
(beef tapeworm) scolex (head) and proglottid segment. (F) Ancylostoma duodenale (one of the two
species of hookworm). All images reside in the public domain.
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1.2. Common Human Helminths
1.2.1. Nematoda

The most widespread human helminths belong to the phylum Nematoda. They are
divided into two groups: the soil-transmitted nematodes (afflictions include: ascariasis,
trichuriasis, hookworm infections, enterobiasis and strongyloidiasis) and the filarial ne-
matodes (causing lymphatic filariasis, onchocerciasis, loiasis and dracunculiasis). Several
anatomical traits distinguish nematodes from platyhelminths, of which the cylindrical body
shape and an exoskeleton (cuticle) are the foremost. Due to this exoskeleton, nematodes
must undergo four larval molts before transitioning into adulthood. The parasitic nema-
todes are typically dioecious, with both male and female forms, although Strongyloides
stercoralis can reproduce by parthenogenesis [1,27,35].

There are some variations among the life cycles of various soil-transmitted helminths.
Ascaris lumbricoides, Trichuris trichiura (whipworm) and Enterobius vermicularis (pinworm) in-
fect through the ingestion of infective eggs. In contrast, hookworms (Ancylostoma duodenale
and Necator americanus) and Strongyloides stercoralis infect by means of free-living larval
stages that hatch from eggs excreted in fecal matter. E. vermicularis is unique in that females
migrate out of the anus to lay eggs on the perianal skin [27,36]. Globally, the soil-transmitted
helminthoses are responsible for more than 1.5 billion infections, up to 135,000 deaths and
upwards of 39 million DALYs [3]. Ascariasis, trichuriasis and hookworm infections are
the most common afflictions caused by parasitic nematodes worldwide [1,3,17]. In the
developed world, pinworm infection is the main type of soil-transmitted helminthosis [37].

Filarial nematodes are less widespread. The most common infections are lymphatic filaria-
sis (Wuchereria bancrofti and Brugia malayi), onchocerciasis or river blindness (Onchocerca volvulus),
loiasis (Loa Loa) and dracunculiasis or Guinea worm disease (Dracunculus medinensis) [1].
Filarial nematodes require an arthropod intermediate host, such as a mosquito or a blackfly,
with the exception of D. medinensis, which is not a true filarial nematode [27]. Lymphatic
filariasis and onchocerciasis are, respectively, responsible for 120 million and 21 million
infections worldwide and for a total burden of 7.3 million DALYs. Wuchereria bancrofti is the
leading cause of lymphatic filariasis (90% of cases) and has been confirmed to be endemic
in 76 countries [38]. Death is uncommon; instead, both diseases cause high morbidity in
the form of elephantiasis and blindness, respectively [3,39,40]. An estimated 44 million
people suffer from overt morbidities connected to W. bancrofti [38]. Guinea worm disease is
on the verge of eradication, with only 54 cases reported in 2019 [41].

1.2.2. Platyhelminthes
Trematoda

The trematodes that are infectious to humans can be divided into four groups: liver
flukes (Clonorchis sinensis, Fasciola hepatica, F. gigantica, Opisthorchis viverrini and O. felineus),
lung flukes (Paragonimus spp.), intestinal flukes (Fasciolopsis buski) and blood flukes
(Schistosoma mansoni, S. japonicum, S. mekongi, S. haematobium and S. intercalatum) [12,27,42,43].
Liver, lung and intestinal flukes are labeled as foodborne trematodes by the WHO. They
can be acquired by consuming undercooked fish or watercress, crustaceans and water
chestnuts, respectively. All three types use snails as intermediate hosts. After hatching, the
miracidia (larvae) infect aquatic snails through ingestion or penetration and form cercariae.
These cercariae migrate to the environment and encyst either within a second host (fish or
crustaceans) or on a plant surface, depending on the species. The cysts (metacercariae) are
then ingested by the final human host and develop into hermaphroditic adults in either
the liver, lungs or the intestines. Eggs are passed in the sputum (lung flukes), stool or
urine [27,44]. Annually, foodborne trematodes infect 200,000 people, cause 7000 deaths
and create a burden of more than 2 million DALYs [42]. People who work in aquaculture
are especially at risk due to contact with fresh water [45]. The blood flukes of the genus
Schistosoma are responsible for the disease schistosomosis (bilharzia). They are not trans-
mitted via food; instead, the cercariae directly penetrate their final host, often via the foot.
They develop into adults in the lungs and the hepatic portal system before migrating to the



Molecules 2022, 27, 8327 4 of 30

venules of the intestine or the bladder. Schistosomes are dioecious, and the smaller female
resides in a tegumental fold on the ventral side of the male [27,46,47]. In 2018, 290.8 million
people required treatment for schistosomosis [43]. The global burden of the disease has
been estimated at 1.7 million DALYs. However, these do not take related morbidities, such
as cirrhosis and cancer of the bladder and liver, into account [48].

Cestoda

Tapeworms have several unique anatomical features. They do not possess an alimen-
tary canal; instead, nutrients diffuse through the integument. In addition, they possess
a scolex or head, which is connected via a neck to a series of repeating segments called
proglottids. The proglottids at the neck get detached from the posterior end when mature.
These terminal segments carry eggs that are passed in the stool upon release. Upon in-
gestion by the intermediate host, the eggs hatch into oncospheres, which migrate to the
muscles and develop into cysticercus larvae (or hydatid larvae, depending on the species).
The cysticercoid larvae mature into adults in the intestine of the definitive host [27].

Approximately 40 species of tapeworms are capable of infecting humans, although
most of these infections are accidental. Taenia saginata (beef tapeworm) and T. solium (pork
tapeworm) can live in the intestines as adults in a condition called taeniasis. However,
infection by the cysticercus stage is also possible after consumption of eggs, leading to
cysticercosis [12,49]. Taeniasis causes few clinical symptoms. In contrast, cysticercosis can
cause blindness, epileptic seizures and convulsions due to formation of cysts in the brain
(neurocysticercosis). The number of people affected by neurocysticercosis worldwide is
estimated between 2.56 and 8.30 million, many of whom receive poor treatment [49].

Echinococcus is another genus of tapeworm capable of infecting humans. They can
infect humans as an intermediate host. The disease is called echinococcosis or hydatidosis
and is characterized by the formation of hydatid cysts in the liver and lungs. More than
1 million people suffer from echinococcosis worldwide [27,50].

1.3. Animal Parasites

Helminth infections are not solely limited to humans but are widespread among
all vertebrates. Of the estimated 76,930 helminth species, 1555 infect cartilaginous fish,
14,154 infect bony fish, 4225 infect amphibians, 11,486 infect reptilians, 33,849 infect birds,
and 11,631 infect mammals [23]. Of special economic and societal importance are those
helminth species that infect livestock. Helminthoses are a major cause of livestock produc-
tion loss worldwide [51], the main reasons being direct damage caused by helminths, energy
use for immune defense and reduced food intake by infected cattle. These manifest them-
selves in the form of reduced milk production, carcass weight and reproduction [52]. The
worldwide impact is difficult to assess, but gastro-intestinal nematodes are the cause of the
livestock diseases with the greatest impact on the poor [53]. Common veterinary helminths
are the nematodes Ostertagia ostertagi (cattle), Haemonchus contortus (sheep and cattle),
Teladorsagia circumcincta (sheep and goats), Dictyocaulus viviparus (ruminants), Ascaris suum
(pigs) and the trematode Fasciola hepatica (sheep and cattle) [52,54]. Aside from food pro-
duction, food safety is also a concern, as livestock can act as intermediate hosts for some
infections. For example, the tapeworms T. saginata and T. solium are transmitted to humans
through the ingestion of undercooked meat [12]. Some helminths, such as the liver flukes
F. hepatica and F. gigantica, are able to infect livestock as well as humans [53]. Ascaris suum,
the large roundworm of pig, might be the same species as A. lumbricoides, the foremost
human roundworm parasite [55]. Treatment of these helminths in livestock could help
limit future infection in humans. Climate change will likely cause a shift in the prevalence
and intensity of helminthoses. In order to maintain food production, adapted preventative
and treatment measures are necessary [56,57].

Detection of these parasites is often difficult, as many infections are asymptomatic.
In the past, preventive treatment with anthelmintics was used, but this led to increasing
anthelmintic resistance [52]. Infective Ostertagia larvae can remain on pastures for up to a
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year, indicating that long-term treatments may be needed to fully eliminate helminths from
a herd [58]. Many helminths have a broader host specificity; hence, wild ruminants can
often infect domesticated cattle. Wildlife could thus be a possible source of reinfection even
if the diseases have been eliminated previously [59].

In addition to anthelmintic treatment, there are several strategies to limit infection
among livestock. Simple practices, such as grazing management, biological control and
supplementary feeding, can be followed without the need for additional research. Graz-
ing management can help limit the exposure of livestock to helminths. Letting livestock
sequentially graze on different plots causes the number of infective helminths to decrease
due to the absence of their host before the cattle are reintroduced. Biological control
involves denying helminths the necessary environment for infection. The most logical
procedure is through dung removal, but supporting wildlife can also lead to decreased
infection. For example, ducks can feed on snails and deprive Fasciola spp. of their
intermediate hosts [60]. Additionally, soil saprophytic fungi, viz. Mucor circinelloides,
Pochonia chlamydosporia, Duddingtonia flagrans, Arthrobotrys spp. and Monacrosporium spp.,
can act as effective biological anthelminthic agents to reduce the presence and survival
of free-living stages (eggs, larvae), thus avoiding infection. The health of the infested
animals can also be improved through supplementary feeding. The genetic resistance of
livestock can also be increased through selective breeding and crossing. Maasai sheep have
increased resistance against nematodes, and trematode resistance has been observed in
Javanese thin-tailed sheep. Crossing these breeds with high performance breeds can lead
to decreased production loss [61]. Finally, the possibility of helminth vaccines has been
discussed for several decades. As of yet, no large-scale veterinary (or human) vaccine
programs exist. However, research into vaccines for H. contortus has been underway for
many years, and recent human vaccine trials against hookworms increase the prospect of
veterinary vaccines [60–63]. The eventual end goal would be a multivalent vaccine that
protects against several helminths, including Haemonchus spp. and Ostertagia spp. [53].

2. Current Anthelmintics

Anthelmintics are drugs used for the treatment of parasitic worms in humans, animals
or plants. While the vast majority act upon receptors of the neuromuscular system in
helminths, the efficacy differs strongly between nematodes, trematodes and cestodes [64].
The anthelmintic strength often differs even among the more closely related gastro-intestinal
nematodes [65]. An overview of some of the major anthelmintic drugs follows.

2.1. Ivermectin

Ivermectin, a macrocyclic lactone and derivative of avermectin, is one of the most
potent anthelmintics used in both human and veterinary therapies. In humans, it is used
as a treatment for filariasis and onchocerciasis, whereas it sees broader antinematodal use
in livestock and domestic pets [66–68]. Ivermectin allosterically activates glutamate-gated
chloride channels (GluCl), resulting in hyperpolarization of the cell and paralysis in the
pharyngeal and body wall muscles of the nematode [64,69]. Resistance to ivermectin has
been observed in Cooperia spp. and Ostertagia spp. [66,70,71]. In the Netherlands, as many
as 78.3% of sheep flocks harbor ivermectin-resistant parasites [72]. The genetic basis for
resistance has been identified in Caenorhabditis elegans. Mutations in the GluCl subunits
glc-1, avr-14 and avr-15 can decrease susceptibility. Additionally, increased expression of
P-glycoproteins leads to increased resistance against ivermectin, as well as moxidectin,
levamisole and pyrantel [64,69,73,74]. However, it is unclear whether resistance in par-
asitic nematodes has the same mutational basis [66]. Aside from the issue of resistance,
avermectin excreted in feces may be harmful to larvae of coleopterans [75].

2.2. Nicotinic Acetylcholine Receptor (ant)Agonists

Nicotinic acetylcholine receptors (nAChRs) are targeted by a variety of anthelmintic
drugs with differing chemical structures. Levamisole (an imidazothiazole), pyrantel and
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morantel (both tetrahydropyrimidines) act as agonists on L-nAChRs (levamisole-sensitive
nAchRs), mimicking the action of acetylcholine. They cause prolonged excitation, leading
to muscle spasms and paralysis [69]. They are used to treat intestinal nematodes in humans,
although levamisole has a low therapeutic efficacy [64,68]. Resistance to all three drugs has
been observed in human and veterinary helminths. Due to their shared mechanisms, single
mutations can lead to multiple resistance [68,76]. Levamisole-resistant C. elegans mutants
have led to the identification of more than 20 mutant genes that confer resistance, several
of which have also been observed in parasites [64,69,77].

Derquantel acts as a competitive antagonist of nAChRs and has a preference for
bephenium-sensitive B-nAChRs [64]. It has synergistic effects with abamectin, an iver-
mectin analog, but efficacy of this treatment against Haemonchus spp. has begun to
decline [69,78]. No modes of resistance are currently known.

Amino-acetonitrile derivatives (AAD) are a relatively new class of anthelmintic
drugs [79]. Monepantel, an AAD, targets nAChRs with ACR-23 subunits belonging to
the DEG-3 family [64,69]. Resistance has been detected in C. elegans through mutations
in the acr-23 gene [80]. There are indications of resistance in H. contortus, only four years
after its introduction [72,78,81]. Whether the resistance mechanism is similar to that in
C. elegans is unclear; recent in vivo selection for resistance could provide insight into the
exact mechanisms [82].

2.3. Benzimidazoles

Benzimidazoles include thiabendazole and albendazole among others and are used to
treat a wide range of flukes, tapeworms and roundworms. They act by interfering with the
cytoskeletal structure through the binding of β-tubulin monomers. This results in decreased
intracellular transport with far-ranging effects, ending in paralysis and death [64,69,83].
Drug resistance has been observed in sheep and goat parasites across countries [84–87]. The
resistance mechanism is connected to several possible mutations in the β-tubulin gene at
codons 167,200 (both phenylalanine to tyrosine) and 198 (glutamic acid to alanine) [69,87].
Alanine in position 198 produces the strongest resistance but only in combination with
the benzimidazole-susceptible single-nucleotide polymorphisms in codon 200 [88]. The
phenylalanine-to-tyrosine substitution in codon 200 corresponds to the allele in mammals,
likely explaining the specificity [87].

2.4. Cyclooctadepsipeptides

Emodepside was developed as a novel anthelmintic effective against levamisole-,
ivermectin- and benzimidazole-resistant helminths [64]. It is a broad-spectrum anthelmintic,
which affects both gastro-intestinal nematodes and larval stages of filariae. In C. elegans, it
is thought to act intracellularly on the calcium-activated phosphate channel SLO-1 located
in the body wall muscle. The activation results in increased opening of the channels, and
as a result, a decrease in locomotion and feeding behavior [89]. It has been proven to be
effective in a wide range of hosts, including sheep, cattle, rodents and reptiles [90,91].

3. Future Strategies

The discovery of novel anthelmintic drugs is advancing slowly, despite the severity of
human helminthoses. The main drive behind anthelmintic research are veterinary applica-
tions, and many drugs used in humans today were originally developed for livestock [64].

Anthelmintic resistance is a widespread and growing phenomenon, especially in small
ruminants and, to a lesser but increasing degree, in cattle [76,92]. Resistance occurs world-
wide but is more pronounced in the southern hemisphere due to longer seasonal activity of
parasites [53]. As of now, the efficacy of ivermectin, levamisole and benzimidazoles has
decreased considerably [64,93]. Helminths’ resistance lowers the productivity of livestock
and endangers the sustainability of the current production levels [92,94]. Factors contribut-
ing to the development of anthelmintic resistance include large-scale prophylactic use, high
frequency of treatments, single-drug treatments and underdosing [52,68,95]. Several im-
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provements to current practices could serve to limit the rise and spread of resistant strains.
In addition to limiting infection, grazing management and biological control could serve to
limit the spread of resistant strains [60,76]. Targeted intervention, instead of drenching, and
fewer treatments, are preferred to limit unnecessary exposure of helminths to anthelmintics.
To limit survivability, correct dosages should also be used [68,96]. A combination therapy is
also recommended. Although multiple resistance is not uncommon, using multiple drugs
simultaneously would likely result in better treatment results. This is partly due to the
absence of multiple resistance but also due to possible synergistic effects [68,69,76,97].

Whether anthelmintic resistance is present in human helminths is unclear, but the
possibility should be considered seriously, and efforts should be undertaken to limit
it [68,98,99].

Aside from possible methods to limit anthelmintic resistance, there is an urgent need
for novel anthelmintics [93]. Several helminthoses are poorly treatable with currently
available drugs, requiring new targets to be explored [68,100]. By using genome-wide
approaches, it could be possible to identify putative anthelmintic targets and ways in
which resistance can occur [101]. Targeting drugs against multiple members of a multigene
family can also limit the development of resistance [73]. Screening compound libraries
as well as examining the repurposing of existing drugs could lead to new candidate
compounds [98,102]. A possibly interesting avenue for novel drugs is neuropeptides. These
have an important role in nematode signaling but have not been the target for anthelmintics
as of yet [99].

4. Anthelmintic Assays

The most straightforward method to test anthelmintic activity is the fecal egg count
reduction test—an in vivo assay that compares the number of helminth eggs in the feces
between treated and untreated groups [103]. Large-scale in vivo tests like this are impracti-
cal and unethical due to the number of animal hosts necessary [93]. The adult stage is the
most harmful and clinically meaningful in helminth infections. Unfortunately, there are
no ways to test in vitro anthelmintic activity against adult parasitic helminths that do not
require post-mortem collection from hosts. Anthelmintic assays, therefore, require either
larval stages of helminths or a model organism, such as C. elegans, to measure anthelmintic
activity [104]. Such assays typically measure easily quantifiable traits, such as development,
growth, behavior, motility or lethality [64]. Various assay designs are possible based on the
helminth life cycle—egg hatch assays, larval motility assays and adult motility (and mor-
tality) assays being the most common [104,105]. Egg hatch tests can be conducted directly
on parasitic helminths via eggs collected from feces [106,107], as well as in C. elegans [105].
They typically consist of egg collection, compound addition and counting of the ratio of
unhatched eggs [103,106]. However, this is impractical and labor intensive [93]. Similarly,
larval motility assays require collection of infective larvae from feces. Anthelmintic activity
is then estimated by observing the larval movement across a sieve or surgical gauze, which
is placed on or in the liquid medium [108,109].

Adult (and L4) motility and mortality assays can take several forms [98]. The simplest
readout is determining the motile/immobile or dead/alive ratio among the worms. Though
quite robust, this method is labor intensive [104]. There are also automated alternative
measurements. WormScan uses light stimuli to induce negative phototaxis in C. elegans in
order to assess motility. Two sequential scans are performed, which allows the identifica-
tion of immobile or dead worms [110,111]. Recently, an automated version, aptly called
Automated WormScan, was developed, which generates images based on the detected
differences between the scans. This allows for high throughput with minimal operator time
required [112]. A third method is the WMicrotracker (Phylumtech, Argentina). It utilizes
infrared beams and detects beam interruptions caused by the movement of C. elegans in
a microtiter plate. These fluctuations in the signal intensity are used as a measure of the
locomotor activity [113,114].
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Positive hits from the aforementioned assays can be further tested in egg-hatching
assays of parasitic nematodes as an additional test of relevance [115]. The assays can also
be applied to anthelmintic mechanism discovery via forward genetics approaches. Random
mutagenesis screens with ethyl methane-sulfonate mutants can be subjected to the assay to
establish the degree of anthelmintic resistance and to identify putative targets [64,110,115].
Testing mutants resistant to the current anthelmintics can also help select compounds with
novel targets [115]. Additional information can be obtained through morphological analysis
with scanning electron microscopy and transmission electron microscopy [105,116].

5. Essential Oils as Anthelmintic Candidates

Essential oils (EOs) are mixtures of volatile hydrophobic secondary plant metabolites
of low molecular weight. They are usually extracted from plants through steam distilla-
tion and more rarely by cold pressing. Chemically, they are blends of up to hundreds of
different plant metabolites [117] and include aromatic alcohols, acids, esters, phenolics,
ketones, aldehydes and hydrocarbons. EOs usually contain two to three major terpene
or terpenoid components, which constitute up to 30% of the oil [117]. EO-derived bioac-
tive molecules, such as terpenoids and phenylpropanoids [118,119], are widely used in
pharmaceutical sciences, medicine, biology and agronomy. EO compounds may have
antitumor, larvicidal [120], insecticidal [27,121] or anthelmintic activities [105], as well as
activity against arbovirus vectors [122,123]. The Arabs used EOs since the Middle Ages
against a variety of pathogens. Bakkali et al. reviewed the biological effects of Eos, in-
cluding their antimicrobial, anti-inflammatory, analgesic, spasmolytic, sedative and local
anesthetics properties [117].

Due to their promising biological effects, EOs and/or their derived components have
gained much attention nowadays [124–126]. The lipophilic nature of essential oils allows
them to cross the membranes of parasites, as well as the blood–brain barrier, opening
possibilities to combat the second stage of several of these infections [33]. Generally,
EOs can induce oxidative stress in parasites, increasing the levels of nitric oxide in the
infected host, reduce parasite resistance to reactive oxygen species and increase lipid
peroxidation, ultimately leading to serious damages to cell membranes [33]. Reviews on
EOs are available for the control of veterinary ectoparasites [127], neglected tropical diseases
and arboviruses [33], and infections with protozoa or helminths [128]. We conducted an
exhaustive search for literature describing the anthelmintic effects, either in vitro or in vivo,
of EOs and their principal components (see Tables 1 and 2). The search terms “(essential
oil AND helminth) OR (essential oil AND anthelmintic)” were used to query PubMed
(for details, see Supplementary Materials, Table S1). We found 63 articles that described
anthelminthic assays of EOs or EOCs. Figure 2 describes the distribution of these papers
by year. An increased interest starting from 2011 is visible in our results, with a peak in
2019. The range of helminth or model species used in anthelminthic EO research is shown
in Figure 3, with some studies utilizing more than one species. The majority of articles
studied species belonging to the phylum Nematoda (45 out of 63 articles), with H. contortus
(24 articles) as the most utilized helminth species. Other Nematoda are unspecified gastro-
intestinal nematodes in in vivo research (nine articles) and Anisakis simplex in research
on fish parasites (four articles). The anthelminthic effects on Trematoda are studied in
13 articles: 12 on Schistosoma mansoni and 1 on Schistosoma haematobium. Echinococcus spp.
belonging to the phylum Cestoda are studied in 10 articles. Monogenean Gyrodactylus spp.
and the Annelid Pheritima posthuma are studied in one article each. The range of assays used
in both in vitro and in vivo studies is shown in Figure 4. In in vitro studies, the most used
methods are egg hatch assays (23 articles), mortality assays on adults (16 articles), larval
development assays (15 articles) and protoscolex viability assays conducted on Echinococcus
spp. (10 articles). In vivo studies depend heavily on fecal egg count reduction assays
(10 articles) and measurements of the animal’s worm burden (8 articles).
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Table 1. List of selected essential oils and their major constituents with in vivo models (for an expanded list, see Supplementary Material).

Name of the Essential Oil Major Active Component(s) Parasite Model Host In Vivo
Effect/

Reduction/
Mortality

Assay References

Artemisia campestris L. β-Pinene (36.4%), 2-Undecanone (14.7%) and
Limonene (10.57%) HP Mice 5000 mg/kg 72% FECRA [129]

Artemisia campestris β-Pinene (36.4%), 2-Undecanone (14.7%) and
Limonene (10.57%) HP Mice 5000 mg/kg 72% WB [129]

* Croton zehntneri Pax and K.Hoffm. Anethole (63.88%) and Estragole (21.84%) SOAT Albino Swiss
mice 800 mg/kg 11.64 ± 35.0% WB [130]

* Cymbopogon citratus (DC.) Stapf 3,7-Nonadien-2-one, 4,8-dimethyl (24.86%), Geranial
(18.98%) and Neral (17.77%) GIN Sheep 500 mg/kg 46.90% WB [131]

Cymbopogon citratus Geranial (57.3%) and Neral (40.4%) Hc Gerbil 800 mg/kg 38.60% WB [132]
Cymbopogon schoenanthus (L.) Spreng. Geraniol (59.42%) and Geranial (13.49%) Hc Sheep 180 mg/kg 97.50 ± 0.66% EHA [133]

Cymbopogon schoenanthus Geraniol (59.42%) and Geranial (13.49%) Hc Sheep 180 mg/kg 93.33 ± 1.99% LDA [133]
Corymbia citriodora (Hook.) K.D.Hill

and L.A.S.Johnson
(Synonym: Eucalyptus citriodora Hook.)

Citronellal (63.94%) GIN Sheep 500 mg/kg 41.8%/69.5% FECRA [134]

Eucalyptus citriodora Citronellal (67.5%) GIN Sheep 500 mg/kg 55.9%/34.5% FECRA [135]
Eucalyptus citriodora β-Citronellal (71.77%) GIN Goat 500 mg/kg 66.25/60.34/58.45% FECRA [136]

Eucalyptus staigeriana F.Muell. ex
F.M.Bailey Limonene (72.91%) GIN Sheep 365 mg/kg 60.79% WB [137]

Eucalyptus staigeriana Limonene (28.82%), E-Citral (14.16%) and
Z-Citral (10.77%) Hc Goat 500 mg/kg 61.4/76.57/73.66% FECRA [138]

* Lippia sidoides Cham. Thymol (59.65%) and (E)-Caryophyllene (10.60%) SOAT Albino Swiss
mice 1600 mg/kg 68.94 ± 15.1% WB [130]

Lippia sidoides Thymol (59.65%) and (E)-Caryophyllene (10.60%) Ts Sheep 200 mg/kg 63.6 ± 10.2% WB [139]
Lippia sidoides Thymol (59.65%) and (E)-Caryophyllene (10.60%) Hs Sheep 283 mg/kg 56.9 ± 10.7% WB [139]

Melaleuca alternifolia (Maiden and
Betche) Cheel

Terpinen-4-ol (41.98%), γ-Terpinene (20.15%) and
α-terpinene (9.85%) Hc Gerbil 0.75 mL/kg 46.36% WB [140]

* Thymus vulgaris L. Thymol (50.22%) and para-Cymene (23.76%) Hc Sheep 300 mg/kg / FECRA [141]

*—Essential oil selected based on traditional information; Hp—Heligosomoides polygyrus polygyrus; SOAT—Syphacia obvelata and Aspiculuris tetraptera; GIN—Gastro-intestinal nematodes;
Hc—Haemonchus contortus; Hs—Haemonchus spp.; Ts—Trichostrongylus spp.; FECRA—Fecal egg count reduction assay; WB—Worm burden; EHA—Egg hatch assay; LDA—Larval
development assay; In vivo (95% confidence interval in brackets; or ± SE); Effect/Reduction/Mortality (95% confidence interval in brackets; or ± SE); /− Data not available.
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Table 2. List of selected essential oils and their major constituents with in vitro activity that were not studied so far with in vivo models (for an expanded list, see
Supplementary Material).

Name of the Essential Oil Major Active Constituents Parasite
Model In Vitro Effect/Reduction/

Mortality Assay References

Ageratum conyzoides (L.) L. Precocene I (74.30%) and (E)-Caryophyllene (14.23%) Sm 100 µg/mL 25%/0% MA [142]
Alpinia zerumbet (Pers.) B.L.Burtt and

R.M.Sm. 1,8-Cineole (24.69%), p-Cymene (22.56%) and 4-Terpineol (17.43%) Hc 3880 (2940–5090) µg/mL EC50 LDA [143]
Alpinia zerumbet 1,8-Cineole (24.69%), p-Cymene (22.56%) and 4-Terpineol (17.43%) Hc 940 (670–1280) µg/mL EC50 EHA [143]

Anethum graveolens L. Dihydrocarvone (39.1%), Carvone (22.24%) and D-Limonene (16.84%) Hc 6 µg/mL IC50 EHA [144]
* Anthemis aaronsohnii Eig (Synonym:

Anthemis nobilis L.) Isobutyl angelate (29.26%) and Isoamyl angelate (15.27%) Hc 117 µg/mL IC50 LDA [145]

Arisaema franchetianum Engl. Linalool (8.89%) Hc 1100 (940–1270) µg/mL CE50 LDA [146]
Arisaema lobatum Carvacrol (7.05%) Hc 480 (390–570) µg/mL CE50 LDA [146]

Artemisia lancea Vaniot 1,8-Cineole (34.56%) and Camphor (16.65%) Hc 1430 (1040–1840) µg/mL LC50 LMGA [147]

Artemisia vulgaris L. Caryophyllene (37.45%), Germacrene D (16.17%)
and Humulene (13.66%) Hc 1200 µg/mL LC50 LMGA [148]

Baccharis dracunculifolia DC. (E)-Nerolidol (33.51%) and Spathulenol (16.24%) Sm 10 µg/mL 100% MA [149]

Baccharis trimera (Less.) DC. Germacrene D (15.31), trans-Caryophyllene (14.77%) and
Bicyclogermacrene (14.67%) Sm 130 µg/mL 80% MA [150]

Bunium persicum (Boiss.) B.Fedtsch. γ-Terpinene (46.1%) and Cuminaldehyde (15.5%) Es 25 µL/mL 100/100% PVA [151]
* Citrus aurantifolia (Christm.) Swingle Limonene (56.37%), β-Pinene (11.86%) and γ-Terpinene (11.42%) Hc 44 µg/mL IC50 LDA [145]

Citrus limon (L.) Osbeck Limonene (29.9%) and β-Pinene (12.0%) Sm 81.7 µg/mL LC50 MA [152]
Coriandrum sativum L. β-Linalool (73.21%) Hc 2890 (2600–3200) µg/mL EC50 LDA [143]

* Cosmos sulphureus Cav. 2,6-di-tert-butyl-4-methylphenol (44.98%), Germacrene D (33.70%)
and β-Caryophyllene (10.23%) Sm 100 µg/mL 75%/50% MA [153]

Curcuma longa L. β-Turmerone (21.8%), Ar-Turmerone (14.7%) and
α-Turmerone (12.4%) Es 200 µL/mL 100% PVA [154]

Cymbopogon martini (Roxb.) W.Watson Geraniol (81.4%) and Isomenthyl isomenthyl acetate (10.1%) Ts 130 (110–140) µg/mL CL50 EHA [155]
Cymbopogon martinii Geraniol (69.63%) Pp 20,000 µg/mL 3.21 ± 0.31 min MA [156]

* Dysphania ambrosioides (L.) Mosyakin
and Clemants

cis-Piperitone oxide (35.2%), para-Cymene (14.5%) and
trans-Isoascaridole (14.1%) Sm 6.50 ± 0.38 µg/mL LC50 MA [157]

Ferula gummosa Boiss. β-Pinene (57.0%) and β-Acorenone (11.4%) Es 17.18 µg/mL LC50 PVA [158]
* Foeniculum vulgare Mill. (E)-Anethole (69.8%) and Limonene (22.5%) Sm 100 µg/mL 50 ± 25%/50 ± 25% MA [159]

* Lavandula angustifolia Mill.
(Synonym:

Lavandula officinalis Chaix)
Linalool acetate (35.97%) and trans-Sabinene hydrate (29.17%) Hc 280 µg/mL IC50 LDA [145]

Mentha piperita Menthol (42.5%) and Menthone (27.4%) Ts 260 (230–300) µg/mL CL50 LDA [155]
* Mentha x villosa Huds. Rotundifolone (70.96%) Sm 100 µg/mL 100% MA [160]

Myrtus communis L. α-Pinene (24.7%), 1,8-Cineole (19.6%) and Linalool (12.6%) Es 100 µL/mL 100% PVA [161]
* Newbouldia laevis (P.Beauv.) Seem. β-Caryophyllene (36.08%) Sr 51.7 ± 7.7 µg/mL IC50 LMGA [162]

Nigella sativa L. Thymoquinone (42.4%), para-Cymene (14.1%) and Carvacrol (10.3%) Es 100 µg/mL 21.6%/76.6% PVA [163]
Ocimum gratissimum L. Eugenol (43.7%) and 1,8-Cineole (32.71%) Hc 0.5vol% 100.0 ± 6.13% EHA [164]

Origanum compactum Benth. Carvacrol (50.32%), Thymol (14.8%) and γ-terpinene (13.6%) As 429 µg/mL LD50 MA [165]
Origanum compactum Carvacrol (59.1%) and para-Cymene (11.7%) Sh 1 µg/mL 100% MA [166]

* Origanum syriacum L. Carvacrol (82.6%) As 87 µg/mL LC50 LMA [167]
Pelargonium radens H.E.Moore Citronellol (37.7%), Geraniol (17.6%) and Citronellyl formate (11.0%) Es 8.52 µg/mL LC50 PVA [158]
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Table 2. Cont.

Name of the Essential Oil Major Active Constituents Parasite
Model In Vitro Effect/Reduction/

Mortality Assay References

* Pinus nigra subsp. pallasiana
(Lamb.) Holmboe α-Pinene (27.46%) and β-Caryophyllene (11.03%) Es 10,000 µg/mL 61.69%/81.76% PVA [168]

Piper aduncum L. Dillapiole (76.2%) Hc 100 (90–110) µg/mL IC50 LDA [169]
Plectranthus neochilus Schltr. β-Caryophyllene (28.23%), α-Pinene (12.63%) and α-Thujene (12.22%) Sm 100 µg/mL 100%/100% MA [170]

Rosmarinus officinalis L. 1,8-Cineole (42.11%), 2-Bornanone (16.37%) and α-Pinene (14.76%) GINS 7100 µg/mL 97.40% EHA [171]
Ruta chalepensis L. 2-Nonanone (25.31%), 2-Undecanone (24.01%) and Limonene (12.82%) GINS 1290 ± 1100 µg/mL EC50 LMGA [172]

* Satureja khuzistanica Jamzad Carvacrol (94.97%) Es 10,000 µg/mL 100.00% PVA [173]
Tagetes minuta L. Piperitone (86.27%) and Limonene (13.73%) Hc 1670 (1020–2530) µg/mL EC50 LDA [143]
Tagetes patula L. Piperitenone (23.5%) and Piperitone (20.1%) Hc 40 (35–44) µg/mL LC50 LDA [174]

* Tanacetum vulgare L. β-Thujone (84.13%) Sm 200 µg/mL 100% MA [175]
Tetradenia riparia (Hochst.) Codd Fenchone (18.9%), (E,E)-Farnesol (17.7%) and

Aromadendrene oxide (17.3%) Sm 100 µg/mL 100% MA [176]
Trachyspermum ammi (L.) Sprague Thymol (50.07%), γ-Terpinene (23.92%) and para-Cymene (22.9%) Es 10,000 µg/mL 100.00% PVA [177]
* Zanthoxylum bungeanum Maxim. Borneol (18.61%) and β-Elemene (10.87%) Hc 3980 (2890–5310) µg/mL LC50 EHA [178]

* Zanthoxylum zanthoxyloides (Lam.)
Zepern. and Timler γ-Terpinene (18.0%) and Undecane (14.84%) Sr 18.2 ± 0.5 µg/mL IC50 EHA [162]

*—Essential oil selected based on traditional information; Sm—Schistosoma mansoni; Hc—Haemonchus contortus; ES—Hydatid cyst (Echinococcus spp.) protoscolices; GINC—GI nematodes
(cattle); Ts—Trichostrongylus spp.; Pp—Pheritima posthuma; Sr—Strongyloides ratti; As—Anisakis simplex; GINS—Gastro-intestinal nematodes (sheep); MA—Mortality assay; LDA—Larval
development assay; EHA—Egg hatch assay; LMA—Larval mortality assay; LMgA—Larval migration assay; PVA—Protoscolex viability assay; In vitro (95% confidence interval in
brackets; or ± SE); Effect/Reduction/Mortality (95% confidence interval in brackets; or ± SE).
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6. Chemical Classes of EO Components with Reported Anthelmintic Activity
6.1. Monoterpenes

Limonene is a major terpene (28% to 73%) in EOs from Eucalyptus staigeriana, Citrus
reticulata, C. limonia and C. aurantifolia [137,138,145,152]. It is effective at variable EC50
against H. contortus, a pathogenic nematode of ruminants, as determined by egg hatch
assays and larval development assays [138]. These authors have also ascertained its effects
in goat and sheep models (500 mg/kg) through the fecal egg count reduction assay [137].
Its efficacy has been proved for Schistosoma mansoni, causing full inhibition of motion at
43.75 µg/mL and with an LC50 of 81.7 µg/mL [152,160].

Another monoterpene, gamma-terpenene, has been isolated as a major component (10 to
35%) of Zanthoxylum zanthoxyloides, Melaleuca alternifolia and Bunium persicum EOs [140,151,162].
It is present along with undecane (14.84%), carvacrol (35%), terpinen-4-ol (41.98%) and
cumin aldehyde (15.5%). It is effective against hydatid cysts of Echinococcus spp. (3.125 to
50 µL/mL) [151], assessed through the protoscolex viability assay, and against H. contortus,
determined via the egg hatch assay (LC50 = 430 µg/mL) [179].

p-Cymene (synonym: p-cymol or p-isopropyltoluene) is an alkyl-substituted aro-
matic compound. Although not a major constituent, it is present in EOs of many plants,
such as Origanum compactum, Alpinia zerumbet, Thymus vulgaris, Trachyspermum ammi and
Nigella sativa [141,143,163,166]. It is effective against Echinococcus spp. and H. contortus.
This compound is well known for its health benefits and antiparasitic properties [180].

α-Pinene (24 to 27% in Myrtus communis and Pinus nigra) is active against hydatid
cysts of Echinococcus spp. assessed through protoscolex viability assays, where 6.3 ± 0.3%
and 100% reduction occurred after, respectively, with 5 to 30 min of exposure [161,168].
β-Pinene is a major constituent in EOs of plants, such as Artemisia campestris (36.4%)
and Ferula gummosa (57.0%), and is effective against Heligmosomoides polygyrus [129] and
Echinococcus spp. [158]. It is also a minor constituent in Citrus aurantifolia EO, along with
others (limonene (56.37%), β-pinene (11.86%) and γ-terpinene (11.42%)), and was effective
against H. contortus [145].
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Monoterpene myrcene (β-myrcene) is a minor constituent in the EOs of Mentha piperita
and Croton zehntneri. The compound is well known for its biological properties, as well as its
safety (used in the food industry). In several animal studies, β-myrcene has shown promis-
ing health benefits. Along with other constituents, it was active against Trichostrongylus
spp. and H. contortus when tested in a larval development assay [106].

6.2. Sesquiterpenes

Sesquiterpenes are terpenoids (C15) containing three isoprene units and are the second
most important group of compounds in plant EOs. Several sesquiterpenes have been
reported as antiprotozoal since the discovery of artemisinin [181]. β-Caryophyllene is
present in the EO of plants, such as Bidens sulphurea (10.23%) [153] and Newbouldia laevis
(36.08%) [170], and is effective in a mortality assay on Schistosoma mansoni. In addition, it is
found in the EO of Plectranthus neochilus, which is effective against Strongyloides ratti [162],
as well as in Pinus nigra Arn. subsp. pallasiana (active against Echinococcus spp.) assessed
through a larval development assay [168]. Trans-Caryophyllene, found in several EOs,
such as Baccharis trimera, Mentha x villosa etc. [150,160], is effective against Schistosoma
mansoni. (E)-Caryophyllene, present in variable amounts in several EOs, such as those
from Ageratum conyzoides and Lippias idoides, is effective against several helminths, such as
Trichostrongylus spp., Haemonchus spp., Syphacia obvelata and Aspiculuris tetraptera [130,139].
Caryophyllene oxide (50.26%) and copaene (10.58%) in Lantana camara are also effective in
an egg-hatching assay with H. contortus [143].

6.3. Alcohols

Citronellol or dihydrogeraniol, present in the EOs of Eucalyptus citriodora and Pelargonium
roseum (37.7%), is a natural acyclic monoterpenoid. It is effective against hydatid cysts of
Echinococcus spp. assessed through protoscolices viability assays measured after 60 min of
exposure [158].

Geraniol is the principal component in many EOs of the genus Cymbopogon. Its con-
centration varied from 53 to 81% in the EO of lemon grasses, such as Cymbopogon citratus,
C. schoenathus and C. martinii. The in vivo efficacy has been tested by Katiki et al. [133] with
the parasite H. contortus in sheep through fecal egg count reduction, egg hatch and larval devel-
opment assays. The in vitro effects were tested through fecal egg count reduction, egg hatch
and larval development assays against Trichostrongylus spp. (CL50s = 40–160 µg/mL) [155]
and Pheritima posthuma (20 mg/mL) [156]. Geranial (18.98%), along with other EO con-
stituents, such as 3,7-nonadien-2-one, 4,8-dimethyl (24.86%) and neral (17.77%), at a dose of
500 mg/kg, was able to reduce the worm burden in sheep [131]. Menthol (42.5%) and men-
thone (27.4%) from Mentha piperita EO were found to be effective against Trichostrongylus
spp. (egg hatch assay, CL50 = 260 µg/mL) [155]. Parreira et al. [149] observed 100% mor-
tality of Schistosoma mansoni at 10 µg/mL EC50 using Baccharis dracunculifolia EO, which
contains (E)-nerolidol (33.51%) and spathulenol (16.24%).

Terpinen-4-ol is the main bioactive component of tea-tree oil. It is active against Anisakis
simplex (up to 10 µL/mL, LD50, mortality assay) [182] and H.contortus (LC50 = 630 µg/mL,
egg hatch assay) [179].

β-Linalool, the major component (73.21%) of Coriandrum sativum EO, is active against
H. contortus at 630–2890 µg/mL based on egg hatch and larval development assays [143].

6.4. EO Phenols

Thymol, also called 2-isopropyl-5-methylphenol (IPMP), is a natural colorless crystalline
mono-terpenoid phenol derivative of cymene, C10H14O. It is abundantly (50–60%) found
in the oils of plants, such as Melaleuca alternifolia, Trachyspermum ammi, Thymus vulgaris and
Lippia sidoides, has a pleasant aromatic odor and strong antiseptic properties. It was the
treatment of choice for hookworm infection in the United States after 1910 [183,184]. Based
on its EC50s (390 to 2970 µg/mL, egg hatch assay), IC50s (22–497µg/mL, egg hatch, larval
motility and larval development assay) and LD50s (291 µg/mL, mortality assay), it is
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highly effective against H. contortus [130], Anisakis simplex [165], Syphacia obvelata and
Aspiculuris tetraptera [130], Haemonchus spp., and Trichostrongylus spp., gastro-intestinal
nematodes [139] and hydatid cysts of Echinococcus spp. [177]. Worm burden, fecal egg
count reduction and protoscolex viability assay were also used by various authors.

Carvacrol, isomeric to thymol, is a major monoterpene phenol in the EO of sev-
eral plants, especially Zanthoxylum simulans, Satureja montana (40–64%), S. khuzistanica
(94%), Origanum dictamnus (44–50%), O. compactum (50–59%), Thymus caespititius (54%),
Thymbra capitata (68%), Origanum vulgare (68.5%), Mentha spicata (64.5%) and O. syriacum
(82%), etc. This compound is active against H. contortus (EC50 = 320 µg/mL, egg hatch
assay) [146], Anisakis simplex (LC50 = 87 µg/mL, larval mortality assay) [167], hydatid cyst
of Echinococcus spp. and protoscolices (3000, 5000 and 10,000 µg/mL through a protoscolex
viability assay after 10 and 60 min exposure) [173] and Schistosoma haematobium (1 µg/mL,
mortality test; the minimum concentration for immobilization was determined using an
ethyl-acetate extract with this compound as a major constituent) [166].

6.5. Phenyl Methyl Ethers

Eugenol, an allyl chain-substituted guaiacol, is a significant component (43.7 to 53%)
of the EO of Ocimum basilicum and other plants, such as clove. Its efficacy was assessed
through mortality and egg hatch assays, and it has been proven with H. contortus (662.5 to
5.300 µg/mL). According to El-Kady et al. [185], there are many activities and properties
of eugenol that remain undiscovered and need to be further investigated to elucidate the
anthelminthic properties of eugenol, both in vivo and in vitro [185]. Anethole (1-methoxy-
4(1-propenyl)-benzene) constitutes up to 70% of the EOs of Foeniculum vulgare and is
effective (10 to 100 µg/mL) against Schistosoma mansoni (a water-borne blood fluke of hu-
mans) based on mortality tests [159]. It is also a minor constituent in EOs of Croton zehntneri
and effective against H. contortus [130]. Estragole (an isomer of anethole) is a major compo-
nent (72%) of the EO of Ocimum basilicum. It is mostly active against GI nematodes (cattle,
11,100–21,590 µg/mL, LC50, larval mortality and larval migration assays) [106].

6.6. Aldehydes

Citral (a natural mixture of geranial and neral) is the second most effective drug after
carvacrol against Haemonchus contorts parasites at concentrations of 130 to 1370 µg/mL
(EC50, egg hatch and larval development assays) [132].

Citronellal is a monoterpenoid aldehyde, which is the main component (around 67%)
in the mixture of terpenoids that give citronella EO its distinctive lemon scent. It’s in vitro
efficacy against H. contortus is 410 to 1700 µg/mL (EC50, motility assay) [134]. When
tested with in vivo models, such as sheep, through a fecal egg count reduction assay for GI
nematodes [135], it is effective at 55.9% and 34.5%.

6.7. Esters

Esters are also common in EOs due to their widespread occurrence in nature. Linalool
acetate (35.97%), along with trans-sabinene hydrate (29.17%), in Lavandula officinalis EO was
effective in an egg-hatching assay against H. contortus (IC50 = 316 µg/mL) [145]. Geranyl
acetate in Tetradenia riparia EO is also effective against Anisakis simplex [186]. Isomenthyl
acetate (10.1%), a minor constituent along with geraniol (81.4%) in Cymbopogon martini EO,
is effective against Trichostrongylus spp. when tested in egg hatch and larval development
assays [155]. Isobutyl angelate (29.26%) and isoamyl angelate (15.27%) from Anthemis nobilis
EO are effective against H. contortus in egg hatch and larval development assays [145].
Citronellyl formate (11.0%), along with another major constituent, such as citronellol (37.7%)
and geraniol (17.6%) in Pelargonium roseum EO, is effective against Echinococcus spp. [158].

6.8. Ketones

Monoterpenoid dihydrocarvone is a key building block for synthesizing sesquiter-
penes. In Anethum graveolens EO, dihydrocarvone (39.1%), along with carvone (22.24%)
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and D-limonene (16.84%), was effective against H. contortus at IC50 = 6 µg/mL, ascertained
through egg hatch and larval development assays [144].

B-Thujone (84.13%), a monoterpene ketone found in Tanacetum vulgare EO, is effective
against Schistosoma mansoni in a mortality assay (100–200 µg/mL) [175]. This compound is
well known for its presence in other genera of Salvia and Artemisia and is known to be toxic.

6.9. EO Quinones

Thymoquinone is also a monoterpene (2-methyl-5-isopropyl-1, 4-benzoquinone) found
in the EOs of plants, such as Lippia sidoides and Nigella sativa (42%), and is active against
hydatid cysts of Echinococcus spp., as has been demonstrated by Mahmoudvand et al. [163]
through protoscolex viability assays (100–10,000 µg/mL) after 10 and 60 min of exposure.

6.10. Miscellaneous EO Compounds

1,8-Cineole (eucalyptol) is a major component of EOs (17 to 42%) of several plants, includ-
ing Eucalyptus. This compound is active against H. contortus and other GI nematodes (sheep).
Camphor (16.65%) and 1,8-cineole (34.56%) are active against H. contortus [147]. 1,8-Cineole
(24.69%), along with p-cymene (22.56%) and 4-terpineol (17.43%) in Alpinia zerumbet EO [143]
and 1,8-cineole (42.11%), 2-bornanone (16.37%) and α-pinene (14.76%) in Rosmarinus officinalis
EO [171], are effective against GI nematodes (sheep). α-pinene (24.7%), 1,8-cineole(19.6%)
and linalool (12.6%) from Myrtus communis EO are effective against Echinococcus spp. [161].
1,8-Cineole (32.71%), along with eugenol (43.7%) derived from Ocimum gratissimum EO,
is effective against H. contortus in an egg hatch assay [164]. Caryophyllene oxide (50.26%)
and copaene (10.58%) in Lantana camara EO are also effective in egg-hatching and larval
development assays against H. contortus [143].

Borneol (18.61%) was more effective than β-elemene (10.87%) in Zanthoxylum simulans
EO in an egg-hatching assay with H. contortus [178]. Piperitenone, derived from the EO of
Tagetes patula (23.5%), is active against H. contortus (40 µg/mL, EC50, egg hatch assay) [174].
Gaínza et al. [169] found dillapiole (76.2% in the EOs of Piper aduncum) effective against
H. contortus (100 to 5720 µg/mL, IC50). De Melo et al. [142], using a mortality assay,
verified the activity of precocene I, a major component (74.30%) of Ageratum conyzoides EO,
present along with (E)-caryophyllene (14.23%). Rotundifolone (70.96%) is active against
Schistosoma mansoni at 10 to 100 µg/mL in a mortality assay [160].

It appears from the above that the efficacy of EOs is quite variable. There are differences
among the strains, the concentrations used and the assay methods. Significant differences
have been observed in EC50 or IC50 values even when tested on the same species based on
the chemical class of the components (monoterpene or phenylpropanoid) or based on the
main functional groups (aldehyde, ketone and alcohol). It seems that the carbon backbone
is important, with cyclohexene-containing compounds differing significantly from both
the phenylic compounds and the alkenes. The difference between phenylic compounds
and those with an alkene structure was also observed among the tests. This suggests that
the overall structure of the compound is more important for bioactivity than the specific
functional groups or other properties. It is also interesting to note that the effective dose
may differ between the isomers, suggesting an interaction with a specific drug target (rather
than a physicochemical effect on membranes, as is often assumed).

7. Traditional Knowledge: The Key to Novel Anthelmintic Drug Candidates

EOs are complex mixtures of substances, which are volatile in nature; they have been
used in traditional medicine for millennia. These EOs and their EOC are known to possess
many bioactivities, but in the past two decades, researchers have devoted special attention
toward their anthelmintic properties. Because of their lower toxicity and frequent use by
local practitioners for many parasitic infections in animals and humans, they offer attractive
leads for inexpensive and safe drugs.

In Turkish folk medicine, Pinus nigra is frequently used for the treatment of worm in-
fection in cattle [187]. This information encouraged Kozan et al. [168] to study its scolicidal
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activity. The authors conclude that the EO could be a new treatment, as it showed strong in-
hibition compared to the control group [168]. Origanum syriacum is used as vermifuge [188].
Due to its usage in folk medicine, Lopez and coworkers studied the anthelmintic property
of its EO and observed strong inhibition against Anisakis L3 larvae [165,167]. Accordingly,
the EOs extracted from the leaves of Origanum syriacum are proposed as an ecofriendly
nematocide and support the folk usages of this plant as an antiparasitic [165]. Other
authors [141,145] also reported the traditional uses of three plants, e.g., Citrus aurantifolia,
Anthemis nobile and Lavandula officinalis, in folk medicine as anthelmintics. They studied
their EOs on different developmental stages of H. contortus and concluded that their study
validates the ethnopharmacological importance of three EOs as anthelmintics.

Dysphania ambrosioides (Chenopodiaceae) is widely used as a vermifuge, and its extract,
as well as infusion, were used as an anthelmintic [189]. Its EO was also reported to treat
parasitic infections of non-ruminant livestock (e.g., cats, dogs), as well as humans [190].
Because of its frequent use in folk medicine, Soares et al. [157] further investigated the
effects of its EO against Schistosoma mansoni, finding it 31.8 times more toxic to adult
S. mansoni worms compared with GM07492-A cells [157]. Thymus vulgaris (a plant from the
mint family) is used in traditional medicine as an anthelmintic agent [191], which led to
further studies of its EO in a H. contortus in vivo model [141]. Thymol was found to be the
major constituent responsible for the anthelmintic properties, and the authors concluded
that this may lead to the development of an anthelmintic drug [141].

The EO of Foeniculum vulgare (Apiaceae) is reported in folk medicine as vermifugal [192].
This use in folk medicine led Wakabayashi et al. [159] to study its anthelmintic effects
against S. mansoni; they concluded that the EO of F. vulgare in combination with prazi-
quantel could be considered as an alternative schistosomosis treatment, which can slow
down the development of resistance toward praziquantel [159]. Xanthoxylum bungeanum
(Rutaceae) is another frequently used plant in traditional Chinese medicine to kill intestinal
parasites [193]. Therefore, Qi et al. [178] studied its effects on H. contortus and concluded
that the available information supported the use of this EO as an alternative means to
control gastro-intestinal nematodes [178].

Cymbopogon citratus (Poaceae) is another shrub reported to have anthelmintic activity
in ethnoveterinary practice [194]. Infusions or decoctions of dry leaves are frequently
used during schistosomosis [195]. As the EO displayed auspicious results, its use in folk
medicine was validated [132]. Cyperus articulatus (Poaceae) is used in traditional medicine
by tribes in northwestern Cameroon in various ways, e.g., chopped roots and rhizome,
decoction with boiling water to treat onchocerciasis. This led to further study on the ac-
tivity of its roots and rhizomes against the microfilariae and adult worms of O. ochengi
by Metuge et al. [196], who concluded it to be a potential treatment for onchocerciasis
in humans [196]. Tanacetum vulgare (Asteraceae) is commonly used in folk medicine as a
vermifuge [197], leading to further study on the effects of its EO against S. mansoni. The
bioactive compounds, as well as its mechanism of action, were elucidated, reinforcing
the traditional use of T. vulgare as a vermifuge and an anthelmintic [175]. Another plant
from Asteraceae is Cosmos sulphureus (synonym: Bidens sulphurea), which is used to treat
malaria in Brazil [198]. The EO of B. sulphurea has been evaluated against S. mansoni and
considered a promising source of a new schistosomocidal drug [153]. Another antiparasitic
plant often used in traditional medicine is Mentha × villosa; its EO and EOC (rotundifolone,
limonene, trans-caryophyllene and β-pinene) were tested against adult S. mansoni. Ro-
tundifolone was considered a potential source for the development of a new drug against
S. mansoni [160]. Based on folk medicine use, Moazeni et al. [173] studied the scolicidal
activity of the carvacrol-rich EOs of Satureja khuzistanica. The activity they demonstrated
supports its use in traditional medicine. Another interesting finding supporting the tra-
ditional use of two plants, Zanthoxylum zanthoxyloides and Newbouldia laevis, saw them
being selected based on an ethnopharmacology survey, which documented their use by
small-scale farmers for treating digestive helminths in small ruminants [162]. The EOs of
both plants were active against Strongyloides ratti, both in egg-hatching and larval migration
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inhibition assays, at concentrations comparable to established anthelmintics (thiabendazole,
levamisole) [162]. In Brazilian folk medicine, Croton zehntneri and Lippia sidoides are used for
the treatment of gastro-intestinal diseases [199]. Camurça-Vasconcelos et al. [130] studied
the effects of EOs from both plants on intestinal nematodes of mice (Syphacia obvelata and
Aspiculuris tetraptera), as well as in vitro assays on H. contortus. Both EOs proved effective,
and the authors concluded that further (in vivo) studies are necessary on target species,
such as sheep, after determining the absorption and metabolism of these EOs [130].

8. Clinical Studies with Essential Oils as Anthelmintic Candidates

Complete or ongoing clinical trials of EOs as anthelmintic agents are lacking. A study
by Massoud et al. [200], although too limited to be considered a clinical trial, describes a
formulation consisting of 8 parts of Commiphora molmol resin and 3.5 parts of its volatile oils
being tested on seven individuals exhibiting signs of fasciolosis. The administered dosage
regimen (12 mg/kg per day) reduced common symptoms, such as abdominal pain, fever
and weight loss, and it reduced fecal egg counts to zero three weeks after treatment [200].
Although mice, goats and sheep are popular models for such studies, most anthelmintic EO
research on humans is limited to pre-clinical tests. Several Brazilian studies with EOs from
Eucalyptus citriodora, Eucalyptus staigeriana, Lippia sidoides and Thymus vulgaris [134–139,141]
provide evidence for in vivo efficacy against sheep and goat gastro-intestinal nematodes
similar to ivermectin.

We found two clinical studies with EO components (purchased commercially). Artemether
(6 mg/kg every 3 weeks in 5 cycles) was used for schistosomosis [201]. Artesunate-
amodiaquinea (4 mg/kg artesunate and 10 mg/kg/amodiaquine) cured S. mansoni-infected
children and increased their hemoglobin level [202].

9. Patent Literature with Essential Oils as Anthelmintic Candidates

We searched for patents using the term “essential oil” in their title or abstract, and
the terms “anthelminthic”, “anthelmintic”, “helminth”, “nematode”, “nematocidal” or
“antinematodal” in any field through the European Patent Office’s (EPO) online platform
Espacenet (https://worldwide.Espacenet.com/patent/ (accessed on 31 May 2020)). The
search yielded 187 patents, of which only 18 described anthelminthic treatment methods
using EOs or their components, and only 6 patents were granted (Table 3). This search is
not exhaustive, as patents solely mentioning the names of EO components would not be
included. Nevertheless, this overview provides some insights into the research efforts and
attempts at commercialization of EO (components). Moreover, the extent to which natural
products can be patented is limited, which would lead to fewer patent applications [203].

The therapeutic use of the EOs of Kunzea ambigua against intestinal parasites has been
patented in the EU and Australia [204,205]. Although the patent document describes the
conduction of clinical trials with the EO, we found no evidence to support its anthelmintic
efficacy. Moreover, its efficacy as an insecticide has been disproven [206,207]. On the other
hand, geraniol, patented for agricultural use in South Korea [208], exhibits anthelmintic
activity against C. elegans in vitro [209].

Among the EOs and components listed in patent KR 100960871 B1 [210], Trachysper-
mum ammi EO, thymol and carvacrol have previously demonstrated anthelmintic
activity [141,177,211]. Apart from direct anthelmintic activity, EOs play alternative roles
in half of the patents granted. For example, cinnamon EO has been patented as a syner-
gist of abamectin B2, a known anthelmintic [212]. Additionally, tea-tree EO and the EO
components 1,8-cineole, 1,4-cineole, eugenol, limonene and citronellol are patented as
part of a solvent system for benzimidazole anthelmintics [213–216]. Patent US 8968798 B2
also lists several EOs and EOC as additives to a mixture of isobutyric acid and isobutyric
anhydride produced to combat plant pathogens [217–219]. Although this review focuses
strongly on the direct anthelmintic activity of EOs, their alternative uses as part of solvent
systems or as synergists provide interesting avenues for further research, which may lead
to patentable findings.

https://worldwide.Espacenet.com/patent/
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Table 3. Patented anthelmintic essential oils or essential oil components as of July 2020.

EO/EO Component Role Other Components Publication Number Application Year Title Institution/
Applicant

Cinnamon EO Synergist Abamectin B2 CN 107372644 B 2017 Pesticide for controlling
nematodes Wuhan Kernel Biotech Co., Ltd.

Geraniol Main component Ganghal
extract KR 101862202 B1 2016 Nematicidal composition

containing geraniol
Ecowin Co., Ltd.;
Kyung-Bon, Koo

Basil EO, black pepper EO, (+/−) camphor,
carvacrol, trans-cinnamaldehyde, cinnamon
leaf EO, cinnamon bark EO, citronellol, citral,

(+/−) citronella, clove bud EO, eucalyptol,
eucalyptus EO, eugenol, fennel EO, geraniol,

ginger EO, jojoba EO, lemongrass EO,
limonene, linalool, patchouli EO,

peppermint EO, α-terpinene, rosemary EO,
tea-tree EO and thyme EO

Additional component

isobutyric acid,
isobutyric

anhydride, napthalene and/or
caryophyllene

CA 2757537 C;
EP 2413692 B1;
US 8968798 B2

2010; 2010; 2010; 2013
Compositions of volatile
organic compounds and
methods of use thereof

Synthetic Genomics Inc.

1,8-cineole, 1,4-cineole, eugenol, limonene,
tea-tree EO, citronellol Solvent system

Benzimidazole
(triclabendazole) and a lactone

solvent (γ-hexalactone,
moxidectin)

AU 2009245834 B2;
CA 2737102 C;

CN 102176899 B;
EP 2331068 B1;
JP 5547738 B2;

KR 101318603 B1;
RU 2493825 C2;
US 9283176 B2;

ZA 201103282 B

2009; 2009; 2009; 2009;
2009; 2009; 2009; 2009; 2011

Benzimidazole
anthelmintic
compositions

Zoetis Services LLC (AU, EU,
JP, US)

Wyeth LLC (CA, CN, SK, RU)
Pah W LLC (ZA)

Ajowan EO, styrax EO or ballerina EO;
thymol, carvacrol, trans-

cinnamyl alcohol and cis-asaron
Main component KR 100960871 B1 2008

Composition of
nematocides comprising plant

essential oils

The Republic of Korea (Forestry
Administration Forestry

Research Institute)

Kunzea ambigua EO Main component AU 2008241370 B2;
EP 2192912 B1 2008; 2008 Essential oil of Kunzea ambigua

and methods of use Hood, John James David



Molecules 2022, 27, 8327 20 of 30

10. Future Prospects and Conclusions

Infection, mortality and disability due to nearly 77,000 species of helminthic para-
sites and some 44,000 host species are extremely high in developing countries, and they
form a major share of NTDs. A range of nematodes and trematodes are the major human
helminthic parasites. Moreover, all the vertebrate groups are affected by them with signifi-
cant losses of production, particularly in livestock. The existing anthelmintic assay methods,
such as fecal egg count and others, are also not necessarily predictive of therapeutic efficacy.

The current approach to controll helminthic infections is mostly based on preventive
pharmacotherapies. However, this has disadvantages, such as drug resistance, adverse ef-
fects, undesirable toxicity and recurrence. It is evident plant-derived EOs and some of their
components have considerable potential for safe treatment and prevention of helminthic
disease. The major EO components, such as monoterpenes (limonene—28–73%, gamma-
terpene—10–35%, p-cymene, α-pinene—24–27%), sesquiterpenes (β-caryophyllene—10–
36%, caryophyllene—50.26%), alcohols (citronellol—37.7%, geraniol—53–81%, terpinen-4-
ol, β-linalool—73.2%), EO-phenol (thymol—50–60%, carvacrol—40–94%), phenyl methyl
ethers (eugenol—43–53%), aldehydes (citral, citronellal), esters (linalool acetate, geranyl
acetate), ketones and EO quinones (thymoquinone—42%), which occur in diverse plant
species, have proven effective against a range of helminthic parasites.

However, only limited in vivo studies are available thus far. The cost of clinical
development (USD 50–100 million for animal health products and over USD 2.5 billion
for human drugs) presents a significant hurdle for compounds with poor prospects for
patent protection [220]. Moreover, the low cost of current anthelmintics requires new
drugs to be equally inexpensive, unless they are therapeutically superior. In addition,
the mechanism of action of such components remains largely unknown, which impedes
registration. Resistance is increasing, but in many regions, not yet to the point where
treatment with established anthelmintics has become futile. Moreover, newer drugs to
which no resistance has yet developed risk being kept for the relatively small fraction of
resistant cases, which would further limit their commercial potential considerably. EOs
and their components do not fit well into the classical drug discovery paradigm, since they
are complex mixtures of natural products. Some EO components could, however, serve as
lead compounds to start a more traditional lead optimization effort.

On the other hand, EOs possess some unusual properties, which may prove advan-
tageous for therapy. The lipophilic nature of EOs allows them to cross the membranes of
parasites, as well as the blood–brain barrier. In addition, EOs induce oxidative stress in
parasites, increase the levels of nitric oxide in the infected host, reduce parasite resistance
to reactive oxygen species and increase lipid peroxidation; all these effects ultimately lead
to serious damage to cell membranes.

However, this prospect is hindered due to limited in vivo studies. Moreover, the
mechanism of action of such components remains largely unknown. More in vitro and
in vivo studies on the mechanisms of action are essential to establish the efficacy of EOs.
In addition, most of the studies are focused on the major constituents of EOs, but minor
constituents and the synergy of action among various components will be an exciting
area of future research. Bioassay-guided purification and identification of constituents
using LC-MS and development of authentic standards are promising. Application of
nanotechnology (nano-emulsion preparation with the EOs) may help solve problems, such
as solubility, release and permeation, bio-availability, odor and bio-destruction, which
restrict the therapeutic use of EOs in biological systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238327/s1, Table S1: List of essential oils and their
major constituents with in vitro and in vivo activity.

https://www.mdpi.com/article/10.3390/molecules27238327/s1
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NTDs Neglected tropical diseases
WHO World Health Organization
DALYs Disability-adjusted life years
GluCl Glutamate-gated chloride channels
nAChRs Nicotinic acetylcholine receptors
AAD Amino-acetonitrile derivatives
EOs Essential oils
EOC Essential oil component
Hp Heligosomoides polygyrus polygyrus
SOAT Syphacia obvelata and Aspiculuris tetraptera
GIN Gastro-intestinal nematodes
Hc Haemonchus contortus
Hs Haemonchus spp.
Ts Trichostrongylus spp.
FECRA Fecal egg count reduction assay
WB Worm burden
Sm Schistosoma mansoni
HC Hydatid cyst
ES Echinococcus spp. protoscolices
GINC GI nematodes, cattle
Ts Trichostrongylus spp.
Pp Pheritima posthuman
Sr Strongyloides ratti
As Anisakis simplex
GINS Gastro-intestinal nematodes, sheep
MA Mortality assay
LDA Larval development assay
EHA Egg hatch assay
LMA Larval mortality assay
LMgA Larval migration assay
PVA Protoscolex viability assay
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