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Abstract: Mitochondria play a central role in the survival or death of neuronal cells, and they are
regulators of energy metabolism and cell death pathways. Many studies support the role of mitochon-
drial dysfunction and oxidative damage in the pathogenesis of Alzheimer’s disease. Biatractylolide
(BD) is a kind of internal symmetry double sesquiterpene novel ester compound isolated from the
Chinese medicinal plant Baizhu, has neuroprotective effects in Alzheimer’s disease. We developed a
systematic pharmacological model based on chemical pharmacokinetic and pharmacological data to
identify potential compounds and targets of Baizhu. The neuroprotective effects of BD in PC12 (rat
adrenal pheochromocytoma cells) and SH-SY5Y (human bone marrow neuroblastoma cells) were
evaluated by in vitro experiments. Based on the predicted results, we selected 18 active compounds,
which were associated with 20 potential targets and 22 signaling pathways. Compound-target,
target-disease and target-pathway networks were constructed using Cytoscape 3.2.1. And verified
by in vitro experiments that BD could inhibit Aβ by reducing oxidative stress and decreasing CytC
release induced mPTP opening. This study provides a theoretical basis for the development of BD as
an anti-Alzheimer’s disease drug.

Keywords: traditional Chinese medicine; biatractylolide; neuroprotective; pharmacological model;
network pharmacology

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease in the elderly [1,2].
This disease causes severe cognitive impairment and is accompanied by classic pathological
changes. Such as amyloid beta (Aβ) deposition in the brain parenchyma, blood vessels [3–5],
formation of neurofibrillary tangles [6–9], and loss of neurons [10]. Clinically, the silent period
of the disease may last for decades [11], with some symptoms lasting 5 to 10 years [12,13].

Aβ plaques, or possibly soluble oligomers of Aβ, are neurotoxic and act by disrupting
mitochondrial function, inducing apoptosis, forming ion channels and stimulating stress-
activated protein kinase pathways [14]. It has been shown that Aβ-mediated mitochondrial
dysfunction is due to the activated mitochondrial permeability transition pore (mPTP),
which increases mitochondrial membrane permeability [15,16]. The mPTP is known to
consist of voltage-dependent anion channels, adenine nucleotide transporters and cell cycle
protein D (CypD) [17,18]. CypD is critical in stabilising the mitochondrial permeability
transition which acts to switch on mPTP. Aβ can accumulate in mitochondria, in which it in-
teracts with ABAD and CypD [19–21], this interaction promotes ROS leakage and ultimately
leads to mitochondrial dysfunction [22–25]. Increased permeability of the mitochondrial
membrane after the opening of mPTP [15] leads to the rupture of the outer mitochondrial
membrane, followed by the diffusion of contents such as calcium and CytC from the mito-
chondrial matrix into the cytoplasm, where they eventually trigger cell death [26–28]. Thus
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Aβ impairs mPTP function by disrupting the mitochondrial membrane potential [29] and
increasing ROS production, mitochondrial swelling and CytC release [30–32], ultimately
leading to cell death.

A number of approaches have been explored to protect mitochondria from Aβ-induced
damage, including elimination of ROS [33] enhancement of clearance [34,35] and stabiliza-
tion of calcium homeostasis [36]. Research that block the formation of large amounts of
mPTP are advantageous compared to strategies that focus primarily on injury prevention
by eliminating damage-causing factors [37,38].In the search for more novel therapeutic
agents, the laboratory focused on traditional Chinese herbs.

Baizhu is a traditional Chinese herb with roots possessing various pharmacologi-
cal activities such as antioxidant [39], gastric protection [40], antitumour [41] and anti-
AD [42,43].Biatractylolide (BD) is a novel bisesquiterpene lactone isolated from the Chinese
medicinal plant Atractylodes macrocephala (Baizhu). According to previous studies, BD
has a pronounced effect on reducing acetylcholinesterase activity and improving memory
in mice with aluminium trichloride induced dementia. It could significantly reduce acetyl-
cholinesterase activity in a rat AD model induced by Aβ1-40 and improve behavior and
memory. Therefore, BD showed promising potential to be an effective anti-AD drug [44].

The leading model of “one gene, one target, one disease” has been found to influence
drug discovery [45], with many effective drugs working on multiple targets rather than a
single target. Thus, network pharmacology provides a new network model for multiple
targets, multiple effects, and complicated diseases [46,47].

In the present study, we developed a systems pharmacology-based model to screen
potential compounds and targets and applied compound-target (C-T) and target-disease
(T-D) networks to assess the mechanism of action. The neuroprotective effect of BD against
Aβ-induced oxidative stress was assessed by in vitro experiments using Aβ25-35 [48] pep-
tide in rat adrenal pheochromocytoma cells (PC12) and human myeloid neuroblastoma cell
line (SH-SY5Y) to mimic Aβ-induced neurodegeneration.

2. Results
2.1. MTT Assay

The MTT assay was used in order to investigate the therapeutic effect of BD on Aβ25-35-
induced cell damage (Figure 1). The cell viability treated with Aβ25-35 was significantly
reduced. After pretreatment with different concentrations of BD (5 µM, 10 µM and 20 µM,
respectively) for two hours followed by treatment with Aβ25-35, the cell viability of SH-
SY5Y cells was significantly increased. Cell viability increased to 90.5 ± 0.3% at a BD
concentration of 20 µM. After pretreatment with BD, the cell viability of PC12 cells also
increased significantly, increasing to 82.2 ± 1.4% at a BD concentration of 20 µM.This result
suggests that BD has a significant effect on improving cell viability in both cell.
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In PC12 cells, the MMP increased to 76.7 ± 2.4%, 84.9 ± 1.0%, and 91.6 ± 0.7%, respectively, 
after BD (5 μM, 10 μM and 20 μM, respectively) pretreatment. In SH-SY5Y cells, MMP 
increased to 78.7 ± 2.0%, 81.8 ± 1.0%, 86.8 ± 1.2%, respectively, after BD (5 μM, 10 μM and 
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2.3. Measurement of Intracellular ROS 
The effects of different concentrations of BD on ROS release in cells were investigated 

(Figure 3). With treatment, relative fluorescence of ROS was increased in SH-SY5Y and 
PC12 cells as compared to controls. Pretreatment with BD at 5, 10, 20 μM, however, sig-
nificantly inhibited relative fluorescence intensity of ROS to 149.5 ± 4.5%, 118.5 ± 2.5%, 
112.5 ± 6.5% in PC12 cells as compared with Aβ25-35 treatment (p < 0.01). In addition, BD (5, 
10, and 20 μM) gradually decreased ROS production to 174.5 ± 4.5%, 139 ± 1.0%, 119 ± 
2.0% in SH-SY5Y cells as compared with Aβ25-35 treatment. 
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Figure 1. The protective effect of BD on viability of PC12 and SH-SY5Y cells. BD improved cell
viability in Aβ25-35-treated PC12 and SH-SY5Y cells as revealed by MTT assay. (** p < 0.01,*** p < 0.005
vs. control # p < 0.05,### p < 0.005 vs. treated group).
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2.2. Detection of MMP by Rhodamine 123 Staining

After treatment with 20 µM Aβ25-35, MMP was considerably decreased as compared
with the control (p < 0.001) (Figure 2). Pretreatment with BD (5, 10, and 20 µM) could
significantly protect PC12 and SH-SY5Y cells from the effects of reduced MMP by A25-35. In
PC12 cells, the MMP increased to 76.7 ± 2.4%, 84.9 ± 1.0%, and 91.6 ± 0.7%, respectively,
after BD (5 µM, 10 µM and 20 µM, respectively) pretreatment. In SH-SY5Y cells, MMP
increased to 78.7 ± 2.0%, 81.8 ± 1.0%, 86.8 ± 1.2%, respectively, after BD (5 µM, 10 µM and
20 µM, respectively) pretreatment.
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Figure 2. Effect of Aβ25-35 mitochondrial membrane potential (MMP) in PC12 and SH-SY5Y cell lines
with BD treatment. The two cell lines were treated with low, medium, high, concentrations of BD,
then MMP was examined by rhodamine 123 staining. (** p < 0.01 vs. control, # p < 0.05, ## p < 0.01
vs. treated).

2.3. Measurement of Intracellular ROS

The effects of different concentrations of BD on ROS release in cells were investigated
(Figure 3). With treatment, relative fluorescence of ROS was increased in SH-SY5Y and PC12
cells as compared to controls. Pretreatment with BD at 5, 10, 20 µM, however, significantly
inhibited relative fluorescence intensity of ROS to 149.5 ± 4.5%, 118.5 ± 2.5%, 112.5 ± 6.5%
in PC12 cells as compared with Aβ25-35 treatment (p < 0.01). In addition, BD (5, 10, and
20 µM) gradually decreased ROS production to 174.5 ± 4.5%, 139 ± 1.0%, 119 ± 2.0% in
SH-SY5Y cells as compared with Aβ25-35 treatment.

2.4. Protein Characterization

For mPTP opening, CypD is an important factor that combines with VDAC and ANT
and forms mPTP.The opening of mPTP causes the release of the pro-apoptotic factor CytC
from the mitochondrial matrix to the cytoplasm. To validate the protective effects of BD
on Aβ25-35–induced PC12 and SH-SY5Y cells, we further analyzed protein characteriza-
tion by western blot analysis. BD treatment could reduce Aβ25-35–induced CytC release
(Figure 4). Aβ25-35 treatment significantly increased CytC in cytosol (* p < 0.05) while after
BD treatment the level of CytC was significantly reduced (p < 0.01).
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Figure 3. Fluorescence intensity of reactive oxygen species in PC12 and SH-SY5Y cells treated with
Aβ25-35. Cells were treated with 5 µM, 10 µM and 20 µM BD for 2 h, followed by Aβ25-35 for 24 h.
(a): PC12; (b): SH-SY5Y. The bar chart shows the quantitative data. (c): PC12; (d): SH-SY5Y. (** p < 0.01
vs. control, # p < 0.05,## p < 0.01 vs. treated).
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protein expression in SH-SY5Y cells. CypD and CytC were quantified by treating cells with BD at 
different concentrations for 2 h before treatment with Aβ25-35 for 24 h; (c, e, g): CypD and CytC quan-
tification in PC12 cells; (d, f, h): CypD and CytC quantification in SH-SY5Y cells, which is propor-
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Figure 4. Effects of BD on the expression of CypD and CytC protein in PC12 and SH-SY5Y cells
induced by Aβ25-35. (a): The expression of CypD and CytC protein in PC12 cells; (b): CypD and
CytC protein expression in SH-SY5Y cells. CypD and CytC were quantified by treating cells with
BD at different concentrations for 2 h before treatment with Aβ25-35 for 24 h; (c,e,g): CypD and
CytC quantification in PC12 cells; (d,f,h): CypD and CytC quantification in SH-SY5Y cells, which is
proportional to β-actin level. (* p < 0.05, ** p < 0.01, *** p < 0.005 vs. control. # p < 0.05, ## p < 0.01,
### p < 0.005 vs. treated).
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2.5. Networks
2.5.1. Active Compound Screening

We screened 18 active compounds with their 388 potential targets by using OB ≥ 25%,
DL ≥ 0.1, Caco-2 cell permeability ≥ 0.4. Furthermore, we screened 20 targets that are
related to most compounds (Figure 5).
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2.5.2. Network Construction and Analysis: C-T Network

We build a C-T network based on the candidate compounds of Baizhu and potential
targets. The C-T network included 18 nodes (18 candidate compounds) and 20 edges
(20 latent targets) (Figure 6).
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2.5.3. T-D Network

To better comprehend the diseases modified by Baizhu, we searched the Drug Bank
and TTD databases for latent targets to find corresponding diseases. The 78 diseases were
categorized into 10 groups on the grounds of MeSH Browser (2014 version). And the T-D
network was structured by potential targets and their corresponding diseases. Lots of
defined diseases belong to the diseases of central nervous system (24/78), bone and joint
(14/78) or digestive system (13/78) (Figure 7). For instance, PTGS2, MAPT, and GABRA1
are critical targets of leukodystrophy and are associated with AD, neuropathic pain, and
cognitive impairment in the T-D network (Figure 7).
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2.5.4. Target-Pathway (T-P) Network

To explore the regulation of Baizhu for treating AD, pathways were assembled by using
Cytoscape (Figure 8) based on current knowledge of pathogenesis. The potential human
target proteins were searched in the KEGG pathway and GO databases. KEGG pathways
included oxidative, metabolic, calcium signaling, and PI3K-Akt signaling pathways. These
pathways are related to AD. According to the pathways we found, Baizhu could alleviate
the severity of AD by their inhibition (↓ROS).
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3. Discussion

In this study, we developed a systematic pharmacological model based on chemical,
pharmacokinetic and pharmacological data to identify potential compounds and targets
of the traditional Chinese medicine Atractylodes macrocephala with AD neuroprotective
effects. We selected 18 active compounds associated with 20 potential targets and 22 sig-
naling pathways by OB screening and DL and Caco-2 cell permeability evaluation, and
successfully constructed C-T, T-D and target pathway networks using Cytoscape 3.2.1. We
also demonstrated in cellular experiments that BD can inhibit the effects of Aβ25-35-induced
cell damage and inhibit the reduction of MMP, BD can reduce the production of ROS in SH-
SY5Y cells, and BD treatment can reduce Aβ25-35-induced CytC release by WB experiments.
BD is a promising novel compound for the treatment of Alzheimer’s disease.

At present, due to the aging of the population, the prevalence of AD is increasing,
putting a very high pressure on society and families [49,50]. However, the pathogenesis
of AD has not been clearly interpreted and valid therapy is still lacking. Aβ is one of the
hallmarks [51] of MMP. Aβ itself causes oxidative stress but also increases the oxidative
stress produced by others that leads to mPTP opening. mPTP, when formed, constitutes
a non-selective, highly conductive pore that allows calcium transport and also transport
of any solute below the pore size. This leads to mitochondrial osmotic swelling and MMP
dissipation, impairing the mitochondrial respiratory chain, resulting in decreased adenosine
triphosphate production and increased ROS production. Second, mitochondrial swelling
result in rupture of the outer membrane, allowing the release of apoptogenic factors such
as CytC from the mitochondria to the cell membrane (Figure 9).
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Figure 9. Proposed mechanism of action of biatractylolide (BD). Aβ deposition causes reactive
oxygen species (ROS) production, which leads to a change in mitochondrial membrane potential
(MMP), opening of mitochondrial permeability transition pore (mPTP), allowing release of CytC
(apoptotic factor) into cytosol. BD decreases the production of ROS and inhibits the opening of mPTP.
IMM, inner membrane; OMM, outer membrane.

Many approaches have been investigated to protect mitochondria against Aβ-induced
injury, such as eliminating ROS [33], strengthening Aβ clearance [34,35] and regulating cal-
cium balance [36,37]. Strategies that focus on preventing mitochondrial insult by blocking
large amounts of mPTP formation are advantageous because they can improve mito-
chondrial resistance to existing damage. Mitochondrial targeted therapies that ameliorate
mitochondrial function may hold great promise in preventing and treating AD.

Chinese herbal medicine has been considered one of the most momentous tactics in
complementary and alternative medicine. Also, network pharmacology has become a effec-
tive tool to comprehend drug targeting, particularly for the various components of Chinese
herbal medicine. From Baizhu (Chinese herbal medicine) via ADME prescreening (TCMSP),
we identified 18 candidate compounds with 388 (Swiss Target Prediction) potential targets
possessing favorable pharmacokinetic profiles. Then we focused on 20 targets that are
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related to most compounds. We created three networks: (1) C-T network, with effective
constituent of Baizhu and its corresponding targets used (TCMSP, Swiss Target Prediction);
(2) T-D network, with all targets and their corresponding diseases used (TTD, Drug bank);
and (3) target-pathway network (T-P network), using target information extracted from
the KEGG database and the T-P network constructed from targets and their corresponding
assumed pathways. All visualized network diagrams were built with Cytoscape 3.2.1
(http://www.cytoscape.org/, accessed on 3 November 2022), an open software package
project for visualizing, integrating, modeling and analyzing interaction networks [52].

From the results, the Chinese herbal medicine Baizhu may have a protective effect on
CNS and other systems. BD (M62) is one ingredient of Baizhu that has a protective effect
in AD [43]. It has antioxidant activity, inhibits the opening of mPTP and decreases MPT-
dependent CytC release. So it could have a neuroprotective effect in AD. Furthermore, we
used PC12 and SH-SY5Y cell lines and found increased cell viability by using preliminary
BD against Aβ25-35–damaged cells.

4. Materials and Methods
4.1. Materials

BD was isolated from the ethyl acetate extract of A. macrocephala (Baizhu) by multistep
chromatographic processing (Figure 10). Aβ25-35 and DMSO were from Sigma Chemicals
(USA). Antibodies for the proteins CypD, CytC and β-actin were from Protein Tech.
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Figure 10. Chemical structure of biatractylolide (BD). Molecular formula: C30H38O4, molecular
weight: 462.63 g/mol.

4.2. Data Set Construction

We used the literature published in the previous 32 years available in the Traditional
Chinese Medicine Systems Pharmacology (TCMSP) database and analysis platform (http:
//sm.nwsuaf.edu.cn/lsp/tcmsp.php, accessed on 3 November 2022) and the Swiss Target
Prediction (http://www.swisstargetprediction.ch/, accessed on 3 November 2022). We
searched corresponding targets and A. macrocephala from the TCMSP database.

4.3. Active Compound Screening

Initially we searched the Total-55 compounds for Baizhu drug and their corresponding
targets. Then we used oral bioavailability (OB) screening with drug-likeness (DL) and
Caco-2 cell permeability evaluation to identify the active compounds in Baizhu. We selected
18 compounds with OB ≥ 25%, DL ≥ 0.1, Caco-2 permeability ≥ 0.4 that exhibited exten-
sive [53] pharmacological activities as candidate active compounds for further research.

4.4. Network Construction

Compound-target (C-T) and target-disease (T-D) networks according to Cytoscape
3.2.1 were used to identify potential drugs and their corresponding mechanisms using a
compound-target-disease association approach. The C-T network was generated by linking
screened candidate compounds to potential targets. The T-D network was constructed
by linking relevant targets to diseases. Potential diseases were obtained from the Thera-
peutic Target Database (TTD; http://bidd.nus.edu.sg, accessed on 3 November 2022) and
DrugBank (https://www.drugbank.ca/, accessed on 3 November 2022).

http://www.cytoscape.org/
http://sm.nwsuaf.edu.cn/lsp/tcmsp.php
http://sm.nwsuaf.edu.cn/lsp/tcmsp.php
http://www.swisstargetprediction.ch/
http://bidd.nus.edu.sg
https://www.drugbank.ca/
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4.5. Pathway Analysis

Signaling pathways, as an important component of pharmacology, link receptor ligand
interactions to pharmacodynamics outputs [54]. First, we obtained the details of the human
target proteins and then analyzed their functions and pathways by Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes pathway analysis (KEGG, http://www.
genome.jp/kegg/, accessed on 3 November 2022), respectively. Then based on this basic
information, pathways related to the central nervous system (CNS; AD) pathology were
assembled by using Cytoscape.

4.6. Cell Culture

PC12 (rat adrenal pheochromocytoma cell) and SH-SY5Y (human bone marrow neu-
roblastoma cell line) cells provided by Dr. James R. Woodgett (China Pharmaceutical
University, Nanjing, China) were cultured in DMEM medium in the presence of 10% fetal
bovine serum and 1% double antibody. All cells were cultured at 37 ◦C in a humidified 5%
CO2 incubator.

4.7. Experimental Grouping and Drug Treatment

After adding different concentrations of Aβ25-35 in the preliminary experiment, by
determining dose-response curves, we selected 20 µM (concentration) as the most optimal
damage concentration. The experiment was as follows: (1) blank control group, (2) Aβ

injury model group and (3) drug treatment group (low, medium and high).

4.8. Cell Viability Assay (MTT)

Cells were cultured in 96-well plates for 48 h and then pretreated with different
concentrations of BD (5, 10, 20 µM) for two hours before adding Aβ25-35 and reacting for
24 h. 50 µL of MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazole) was added
to each well and incubated for 5 h at 37 ◦C. Next, the medium was discarded and 150 µL of
DMSO per well was added to dissolve the formazan crystals. Cell viability was measured
by measuring absorbance at 490 nm using a Dynatech MR5000 plate reader.

4.9. Detection of MMP by Rhodamine 123 Staining

The opening of the mPTP in PC12 and SH-SY5Y cells was assessed by using rhodamine
123 staining. PC12 (2 × 105) cells and SH-SY5Y (3 × 105) cells were seeded in 24-well plates
and cultured overnight. Then cells were treated with various concentrations of BD (5,
10, 20 µM) for 2 h before Aβ25-35 treatment for 24 h in an incubator. Treated cells were
harvested and resuspended in the medium, then incubated with rhodamine 123 (10 µg/mL)
at 37 ◦C in a humidified 5% CO2 incubator for 10–15 min at room temperature in the dark,
then observed by fluorescence microscopy.

4.10. Measurement of Intracellular ROS

PC12 cells and SH-SY5Y cells were seeded in 6-well culture plates at 1 × 105/well and
cultured overnight. Then cells were treated with 5, 10, and 20 µM BD for 2 h before Aβ

treatment for 24 h in an incubator. Next, treated cells were washed with cold PBS twice
and fixed with formaldehyde for 30 min according to ROS assay kit instructions (Beyotime
Biotechnology). Intracellular ROS contents were observed by fluorescence microscopy.

4.11. Western Blot Analysis (CYPD, CytC)

Western blot assays were performed as described by Su et al. [55]. Cellular proteins
were extracted, and sample proteins were separated on SDS-polyacrylamide gel elec-
trophoresis and transferred to polyvinylidene difluoride membranes (PVDF). The mem-
branes were incubated with the primary antibody overnight at 4 ◦C and then incubated
with the secondary antibody for 1 h at room temperature. Finally, reaction bands were
observed using Pierce Super Signal Chemiluminescent Substrate (Rockford, IL, USA) and
proteins were quantified using Image J.

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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4.12. Statistical Analysis

All quantitative data are expressed as mean ± SEM. Statistical differences between the
groups were assessed by one-way ANOVA. p < 0.05 was considered statistically significant.
Statistical analysis involved using GraphPad Prism (GraphPad Software, Inc., San Diego,
CA, USA).

5. Conclusions

Mitochondrial oxidative injury plays a crucial role in the pathogenesis of multiple neu-
rodegenerative diseases including AD. Hence, approaches to prevent or decrease oxidative
damage may offer treatment efficacy. We proofed that biatractylolide overexpression inhib-
ited Aβ-induced mPTP opening by reducing oxidative stress and decreased CytC release.
We also used systems pharmacology to understand the pharmacological mechanism and
active substances of traditional Chinese medicine. This study defines possible therapeutic
targets for AD treatment, although further experiments are needed to support this.
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