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Abstract: This study aims to observe the differentiating effect of shikonin on Wilms’ tumor 1 (WT1)-
positive HL-60 cells and investigate the fate of the differentiated leukemia cells. WT1 overexpression
unaffected cell viability but promoted resistance to H2O2-induced DNA injury and cell apoptosis.
The binding of shikonin to the WT1 protein was confirmed by molecular docking and drug affinity
reaction target stability (DARTS). Shikonin at the non-cytotoxic concentration could decrease the
WT1 protein and simultaneously reduced the CD34 protein and increased the CD11b protein in a
dose-dependent manner in normal HL-60 cells but not in WT1-overexpressed HL-60 cells. Shikonin
unaffected HL-60 cell viability in 48 h. However, it lasted for 10 days; could attenuate cell proliferation,
mitochondrial membrane potential (MMP), and self-renewal; prevent the cell cycle; promote cell
apoptosis. In a mouse leukemia model, shikonin could decrease the WT1 protein to prevent leukemia
development in a dose-dependent manner. In this study, we also confirmed preliminarily the protein–
protein interactions between WT1 and CD34 in molecular docking and CO-IP assay. Our results
suggest that: 1. shikonin can down-regulate the WT1 protein level for leukemia differentiation therapy,
and 2. the interaction between WT1 and CD34 proteins may be responsible for granulocyte/monocyte
immaturity in HL-60 cells.

Keywords: shikonin; leukemia; Wilms’ tumor gene 1 (WT1); CD34; cell differentiation

1. Introduction

Acute myeloid leukemia (AML) is the most common type of leukemia, accounting
for 30% of childhood leukemia and 80% of adult leukemia [1]. In the clinic, cytotoxic
chemotherapeutic regimens using anti-proliferative drugs or apoptosis-inducing agents
have been another “golden standard” for AML therapy apart from bone marrow transplan-
tation [2]. Although having certain effects, these cytotoxic regimens have not improved
the low five-year survival rates in AML patents [3]. Comfortingly, all trans-retinoic acid
(ATRA) has initiated a new era—leukemia differentiation therapy, which can induce the
terminal differentiation of acute promyeloid leukemia (APL) cells and may achieve five-
year overall survival rates of approximately 85% in APL patients with the predicted poor
prognosis [4,5]. Unfortunately, this therapeutic utility has only been successful in the
minor AML subtypes [6]. The finding of novel differentiation agents instead of cytotoxic
chemotherapeutic drugs is a great challenge, and the identified oncogenic proteins in AML
samples are just able to provide the potential targets for novel differentiation agents [7].

Wilms’ tumor 1 (WT1) is a transcription regulator and has four DNA-binding zinc-
finger isoforms generated by splicing 17 amino acid (1 A) residues of exons 5 and 3, and
amino acid (KTS) residues of exon 9 in the carboxyl terminal [8]. Although it has been
believed to act as an oncogene [9], WT1 has also been reported to be considered as a tumor
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suppressor in AML [10]. In some studies, WT1 overexpression at the RNA and the protein
level was observed in 90% of AML patients, which correlates to poor outcome, therefore
being believed to function as an oncogenic potential in AML [11]. It was also reported
that WT1 was downregulated in AML patients when the disease was controlled but was
upregulated again upon disease relapse [12]. However, up until now, WT1 displays a
controversial and complex function in hematological malignancies, for example, in the HL-
60 cell line, the elimination of WT1 by RNA interference (RNAi) or antisense oligonucleotide
prevented cell proliferation and cycle progression in Watanabe’s study [13]; however, in
Yao’s study, the same elimination of WT1 did not affect cell viability and even promoted
cell growth [14]. A rational explanation for the WT1 contrary function is that WT1 exerts
different roles in an isoform, cell subtype, and targeted promotor-dependent manner [15].
Therefore, the function of WT1 in AML still remains to be elucidated.

HL-60 cells naturally express high levels of WT1 and are a preferential model for
studying leukemia differentiation [16]. WT1 expression downregulation was considered
a differentiation-linked event in HL-60 cells [17]. It was believed that WT1 expression
was post-transcriptionally regulated because granulocytic/monocytic differentiation of
HL-60 cells only resulted in WT1 protein downregulation but unaffected RNA transcrip-
tion [18]. Currently, there are no small-molecule drugs as WT1 inhibitors. Arnebia
euchroma (Royle) Johnst (AEJ, Zicao) is traditional Chinese medicine (TCM) and has
been used to treat many kinds of illnesses [19,20], particularly blood diseases such as
leukemia [21]. Shikonin as one of the main efficacy components in Zicao could exert
multiple biological functions and demonstrated a promising activity against many cancer
cells both in vitro and in vivo [22,23]. Most importantly, shikonin displayed anti-leukemic
properties in AML primary cell lines [24], and promoted p53 or p21 expression for cancer
prevention [25], implying its potential function as a differentiation agent. Therefore, this
study aims to observe the differentiating effect of shikonin on Wilms’ tumor 1 (WT1)-
positive HL-60 cells and investigate the fate of the differentiated leukemia cells.

2. Results
2.1. WT1 Overexpression Promoted HL-60 Cell Resistance to H2O2

Although WT1 overexpression is a characteristic feature in most AML, it was argued
that WT1 was an oncogene or a tumor suppressor [9,10]. In order to explore the role of
WT1 in AML, WT1-overexpressed HL-60 cells were established by Lentivirus transfection.
As shown in Figure 1, WT1 expression in HL-60O cells was more three times than that in
HL-60 cells (Figure 1A). WT1 overexpression unaffected cell viability (Figure 1B) and dou-
bling time (Figure 1C, 23.98 h (23.09–24.87 h) for HL-60O cells vs. 24.22 h (23.10–25.34 h)
for HL-60 cells, p > 0.05) but promoted cell resistance to H2O2-induced DNA injury
(Figure 1D) and cell apoptosis (Figure 1E), indicating an injury-preventing role of WT1 in a
toxic environment.

WT1 is an important transcription factor in embryonic development and participates
in the regulation of cell differentiation [26]. It is well known that leukemia is characterized
by arrested differentiation. Therefore, we speculated that the WT1 gene may be a key target
for regulating leukemia cell differentiation. CD34 is a biomarker of the most immature
phenotype in clinical leukemia and its expression is progressively lost as the cells mature
and differentiate [27]. To prove this opinion, we examined CD34 expression and cell
differentiation markers. It was shown that CD34 expression was upregulated in WT1-
overexpressed HL-60 cells (Figure 2A), suggesting a role of WT1 in the immature phenotype
in HL-60 cells. We further examined the protein–protein interactions by Zdock CO-IP and
co-localization. As shown in Figure 2B, WT1 could bind to the CD34 protein in Zdock
(Zdock prediction score = 1802.162). The protein–protein interactions between WT1 and
CD34 were confirmed by CO-IP (Figure 2C) and co-localization (Figure 2D), indicating a
correlation between WT1 and CD34 in maintaining the leukemic state.
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Figure 1. WT1 over-expression promotes HL-60 cell resistance to H2O2. (A) WT1-overexpressed HL-
60 cells (HL-60O cells) were established by Lentivirus transfection, and WT1 expression was de-
tected by Western blot (n = 3). The equivalent cells were incubated for 48 h. (B) Cell viability was 
detected by MTT assay (n = 6). (C) Relative cell fold was detected by MTT assay. Cells were treated 
with 100 μM H2O2 for 24 h. (D) DNA injury was indicated by the percentage of tail DNA in total 
DNA in Comet assay (n = 3). (E) Cell apoptosis was tested by Annexin V-FITC/PI dual staining in 
flow cytometry (n = 3). The data were presented as the mean ± SD. ** p < 0.01 compared to the parent 
HL-60 cells. 

Figure 1. WT1 over-expression promotes HL-60 cell resistance to H2O2. (A) WT1-overexpressed
HL-60 cells (HL-60O cells) were established by Lentivirus transfection, and WT1 expression was
detected by Western blot (n = 3). The equivalent cells were incubated for 48 h. (B) Cell viability was
detected by MTT assay (n = 6). (C) Relative cell fold was detected by MTT assay. Cells were treated
with 100 µM H2O2 for 24 h. (D) DNA injury was indicated by the percentage of tail DNA in total
DNA in Comet assay (n = 3). (E) Cell apoptosis was tested by Annexin V-FITC/PI dual staining in
flow cytometry (n = 3). The data were presented as the mean ± SD. ** p < 0.01 compared to the parent
HL-60 cells.
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Figure 2. The protein–protein interactions between WT1 and CD34 protein. (A) CD34 protein
expression was detected by Western blot in HL-60 cells and HL-60O cells (n = 3). The data were
presented as the mean± SD (n = 3). ** p < 0.01 compared to the parent HL-60 cells. The protein–protein
interactions between WT1 and CD34 were indicated by (B) Zdock (the red lines represent Zn finger)
and (C) Western blot in CO-IP experiment, and (D) co-localization in immunofluorescent staining.

2.2. Shikonin Is Screened as a WT1 Inhibitor

Shikonin had a wide anti-tumor effect on solid tumors [28] and also displayed anti-
leukemic properties in AML primary cell lines [25], but the underlying mechanism has
remained unclear. To find a WT1 inhibitor, molecular docking was used to predict the
binding of shikonin to WT1. As shown in Figure 3A, shikonin had a binding ability to WT1
(affinity = −5.62 kcal/mol). This binding ability was verified by a drug affinity reaction
target stability (DARTS) experiment in which the stability of the WT1 protein increased with
the increase in shikonin concentrations (0.1–3.2 µM) due to the formation of shikonin–WT1
complexes (Figure 3B). In addition, we also found that shikonin could promote WT1 protein
degradation compared to the control (0.1% DMSO) group (at 1 h, p < 0.01; at 2 h, p < 0.01;
at 3 h, p < 0.01; at 4 h, p < 0.01) in the protein half-life experiment (Figure 3C). Further,
shikonin was shown to down-regulate significantly the WT1 protein level in HL-60 cells in
a dose-dependent manner, indicating a function of shikonin as a WT1 inhibitor.

2.3. Shikonin Promotes HL-60 Cell Differentiation

Because WT1 expression downregulation was considered as a differentiation-linked
event, we observed the differentiation effect of shikonin on HL-60 cells. First, the effect of
shikonin on leukemia cell viability was evaluated using the MTT assay. Shikonin treatment
(0.00 µM, 0.16 µM, 0.31 µM, 0.63 µM, 1.25 µM, 2.50 µM, 5.00 µM, 10.00 µM, 20.00 µM, and
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40.00 µM) for 48 h could significantly decrease HL-60 cell viability in a dose-dependent
manner (Figure 4A) and its IC50 was 4.89 µM (4.13–5.64 µM). Based on these results,
three nontoxic concentrations of shikonin (0.1 µM, 0.2 µM, and 0.4 µM) was selected as a
WT1 inhibitor to treat Hl-60 cells. As shown in Figure 4B,C, shikonin at the experimental
dose could significantly increase the cell size and volume in a dose-dependent manner in
48 h compared with the control group in Wright Giemsa staining and the Holomonitor
system. Further, we found that shikonin could also down-regulate CD34 expression and in-
crease CD11b expression in a dose-dependent manner in immunofluorescence (Figure 4D),
suggesting an inducing effect of shikonin on HL-60 cells differentiating into mature granu-
locytes/monocytes. However, WT1 overexpression could reblock the differentiation effect
of shikonin on HL-60 cells (Figure 4D), indicating a competition relation between WT1 and
shikonin in HL-60 cell differentiation. This result was confirmed in Western blot (Figure 4E).
Unlike shikonin, ATRA is a typical differentiation agent and also exerted a cytotoxic effect
when it induced cell differentiation independent of WT1 in HL-60 cells (Figure 5A–C).
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Figure 3. Shikonin is screened as a WT1 inhibitor. (A) The chemical structure of shikonin and its
binding affinities to WT1 in molecular docking. (B) The binding of shikonin to WT1 in DARTS
experiment. (C) The effect of shikonin on WT1 protein degradation was detected by the protein
half-life test. (D) Shikonin suppressed WT1 protein expression indicated by Western blot in HL-60
cells (n = 3). Cells were incubated with shikonin for 48 h. The data were presented as the mean ± SD.
* p < 0.05; ** p < 0.01 compared to the untreated control.
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Figure 4. Shikonin promotes leukemia cell differentiation. HL-60 cells were treated with shikonin
for 48 h. (A) Cell viability was detected by MTT assay. (B) Cell morphology was detected by Wright
Giemsa staining. (C) The cell volume distribution was detected by the Holomonitor system. (D) The
expression of CD34 and CD11b was detected by immunofluorescence in HL-60 cells. (E) CD34 and
CD11b protein expression was detected by Western blot. The data were presented as the mean ± SD
(n = 3). * p < 0.05; ** p < 0.01 compared to the untreated control.
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Figure 5. ATAR-induced HL-60 cell differentiation is associated with cytotoxicity. (A) ATAR decreases
cell viability in a dose-dependent manner. (B,C) The expression of CD34 and CD11b was detected by
immunofluorescence in HL-60 cells and in HL-60O cells. The data were presented as the mean ± SD
(n = 3). * p < 0.05; ** p < 0.01 compared to the untreated control.

2.4. Shikonin-Differentiated HL-60 Cells Gradually Lose the Ability of Cell Proliferation
and Self-Renewal

Theoretically, the differentiated and matured cells will finally lose the ability of cell pro-
liferation and self-renewal ability. To explore the characteristics of shikonin-differentiated
leukemia cells, HL-60 cells were treated with shikonin or ATRA for 10 d to detect the
cell proliferation, cell cycle, apoptosis, mitochondrial membrane potential (MMP), and
self-renewal. Compared with the control group, the EdU-positive cells were significantly
reduced in the shikonin group in a dose-dependent manner (Figure 6A), and shikonin-
differentiated HL-60 cells showed a cell cycle arrest at the G0/G1 phase (Figure 6B) and
more cell apoptosis (Figure 6C). Simultaneously, shikonin treatment also significantly
decreased cell MMP (Figure 6D) and soft agar clone formation (Figure 6E), indicating a
progressive loss of cell proliferation and self-renewal ability in shikonin-differentiated
HL-60 cells. ATRA-treated HL-60 cells had a similar fate (Figure 6A–E).

2.5. Shikonin Has Anti-Leukemia Activity In Vivo

To further confirm the anti-leukemia activity of shikonin, a leukemia mouse model
was established in vivo. In this model, model mice showed increased WBC, NEU, and
NEU% and decreased PLT and died one by one (Figure 7A–D). Shikonin could significantly
decrease WBC, NEU, and NEU% and increase PLT in a dose-dependent manner compared
with model mice (Figure 7A–C), and it also prevented mouse death (Figure 7D). Compared
with the model group, shikonin could significantly decrease marrow megakaryocytes in
bone marrow smears in Wright Giemsa staining (Figure 7E,G), and attenuated WT1- and
CD34-positive cells in bone marrow cells in flow cytometry (Figure 7F,H). Arnebia eu-
chroma (Royle) Johnst (AEJ) extract and ATRA (20 mg/kg) had a similar effect to 10 mg/kg
of shikonin against leukemia; however, ATRA showed more toxicity indicated by the lower
WBC, NEU, and marrow megakaryocytes compared to normal mice (Figure 7A–H).
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Figure 6. Shikonin-differentiated HL-60 cells gradually lose the ability of cell proliferation and
self-renewal. HL-60 cells were treated with shikonin for 10 d. (A) Cell proliferation was detected
by EdU incorporation. (B) The cell cycle was detected by PI staining using flow cytometry. (C) Cell
apoptosis was detected by Annexin V-FITC/PI staining using flow cytometry. (D) The mitochondrial
membrane potential (MMP) was detected by JC-1 staining, which forms J-monomers with green
fluorescence to label the low MMP and J-aggregates with red fluorescence to label the high MMP.
(E) Cell self-renewal was detected by soft agar clone formation. The data were presented as the
mean ± SD (n = 3). * p < 0.05; ** p < 0.01 compared to the untreated control.
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Figure 7. Shikonin has anti-leukemia activity in vivo. Leukemia mice were treated for 7 weeks, and
the blood routine was examined. (A) White blood cells (WBCs) and neutrophils (NEUTs) (n = 10).
(B) Percentage of neutrophils (NEU%) (n = 10). (C) Platelet (PLT) detected. (D) Mouse survival curve
(n = 20). (E,G) Marrow megakaryocytes in marrow smears indicated by wright Giemsa staining
(n = 5). (F,H) WT1- and CD34-positive cells in marrow cells detected by flow cytometry (n = 5). The
data were presented as mean ± SD. * p < 0.05; ** p < 0.01 compared to the untreated model.

3. Discussion

Leukemia is characterized by blocked differentiation and abnormal malignant pro-
liferation [29]. Although most studies identified WT1 as an oncogene in AML, WT1
antisense oligonucleotide markedly reduced cell viability in myeloid MM6 cells and ery-
throid K562 cells but not in promyeloid HL-60 cells, although all of them had high WT1
expression [30], indicating a WT1 function dependent on the specific cell background.
WT1 expression downregulation is considered as a differentiation-linked event in HL-60
cells [17]. In this paper, first, we confirmed WT1 protein expression in HL-60 cells. Next,
WT1 was upregulated by Lentivirus transfection and its role was examined in HL-60 cells. It
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was shown that WT1 overexpression unaffected cell viability but could promote HL-60 cell
resistance to H2O2. This result corresponds well with the opinion that WT1 overexpression
only reflects a leukemic state although it is contradictory to the cycle modulating effect
of WT1. WT1 can affect transcription by either its zinc-finger domain binding to DNA or
its amino terminal interacting with other proteins; the balance between the DNA-binding
effect and protein interaction determines WT’s fate as an activator or a repressor of other
proteins in AML [31]. This could explain why WT1 downregulation did not affect cell
viability, although it obviously increased cell differentiation markers.

CD34 is a cell surface sialomucin-like adhesion molecule and its expression is con-
sidered as a convenient marker of cancer stem cells (CSCs) and hematopoietic stem cells
(HSCs), which maintain self-renewal and differentiation capacity [27]. It was reported
that WT1 had a consistent up-regulation with CD34 in acute leukemia cells and also had
a simultaneous down-regulation when leukemia cells were differentiated into mature
cells [32]. Although their precise function remains unknown, we believe that there may be
an interaction between WT1 and CD34. In this paper, we found that CD34 expression was
simultaneously down-regulated in shikonin-treated HL-60 cells, indicating a role of WT1 in
the immature phenotype in HL-60 cells. In Zdock, CO-IP, and co-localization, we confirmed
the protein–protein interactions between WT1 and CD34 proteins, indicating a possible
correlation between WT1 and CD34 in maintaining the leukemic state. A previous study
showed that the cytoplasmic domain region of full-length CD34 was entirely responsible
for stem properties in hematopoietic cells [33]. Scharnhorst’s study showed that the WT1
amino terminal domain is sufficient in modulating myeloid differentiation by interacting
with p73 proteins [34]. In addition, it was verified that WT1 protein peptides could also
be presented on the cell surface to become a cancer-associated antigen [35]. Therefore, we
supposed that it was possible for the protein–protein interactions between WT1 and CD34
to be in charge of the immature cell phenotypes. However, this high hypothesis needs to be
investigated by further studies.

It is well known that leukemia is a malignant clonal disease of HSCs or primitive
progenitor cells; therefore, leukemia stem cells (LSCs) have become the key targets for erad-
icating leukemia [36–38]. Although LSCs are only a small population in AML, they are the
root of initiation, malignant proliferation, and blocked differentiation in leukemia [39,40].
As with normal HSCs, LSCs also have multidirectional differentiation potential [41], and
their cell surface antigens vary with cell differentiation and maturation [42]. According
to the cell surface antigens, different cell types can be accurately identified [43]. It has
been approved widely that CD11b is one of the most important surface antigens in mature
granulocytes/monocytes [44]. In this study, we found that shikonin could significantly
promote CD11b expression when it suppressed WT1 and CD34 expression, suggesting a
preventing effect of WT1 and CD34 on granulocyte/monocyte maturation in HL-60 cells.
In addition, in this study, the untreated HL-60 cells also expressed CD11b to some extent,
indicating its differentiation potential into granulocytes/monocytes; this may explain why
differentiation therapy easily succeeds in AML cells.

Shikonin presents antitumor activity against various type of cancers including hemato-
logical malignancies [45]. To explore whether shikonin can inhibit WT1 to restore leukemia
cell differentiation, we use molecular docking and DARTS to verify the binding of shikonin
to the WT1 protein. Further, the suppressing effect of shikonin on the WT1 protein was
proved by a protein half-life experiment and Western blot. As expected, nontoxic shikonin
as a WT1 inhibitor could decrease the CD34 protein level and simultaneously promoted
CD11b protein expression in normal HL-60 cells in 48 h, whereas WT1 overexpression
could reblock the differentiation effect of shikonin on HL-60 cells, indicating a competition
relation between WT1 and shikonin in HL-60 cell differentiation. It is reported that the
ultimate fate of differentiated cells is natural apoptosis [46]. In order to further observe
whether shikonin-differentiated HL-60 cells finally lose the ability of cell proliferation and
self-renewal, the cell culture was prolonged for 10 d after shikonin addition. We found
that shikonin-differentiated HL-60 cells showed low proliferation and MMP, cell cycle
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arrest, weak self-renewal, and high apoptosis. These results proved our hypothesis and
also indicated a leukemia-preventing effect of shikonin on WT1-expressed leukemia cells.
The preventing activity of shikonin on leukemia was further confirmed in a leukemia
mouse model, in which shikonin could improve WBC and PLT and reduced mortality.
Unlike ATRA suppressing WBC and marrow cells, compared to normal mice, shikonin only
decreased WBC and marrow cells compared to leukemia mice, implying a high selectivity.

This study is the initial WT1-oriented drug design. Our object is to find a WT1
inhibitor to restore leukemia cell differentiation. Although we only used the faster but
less reliable techniques (molecular docking, DARTS experiment, and protein half-life
experiments) to screen shikonin as a WT1 inhibitor, our attention focused on its biological
efficacy but not structure analysis. As for the shikonin–WT1 interaction, limited by the
lack of sophisticated equipment and well-trained specialists, we did not use more precise
methods such as isothermal titration calorimetry (ITC, a method for measuring the binding
event’s thermodynamic parameters) and microscale thermophoresis (MST, a method for
measuring the binding event’s dissociation constants) to characterize the shikonin-WT1
interaction [47,48]. In the future, we will cooperate with biophysicists to address protein–
ligand interactions by those well-established biophysical methods.

The bleeding and fatigue symptoms often occur in AML patients due to therapeutic
toxicity to normal tissues [49]. According to TCM theory, Zicao can cool the blood and
relieve internal heat, whereas shikonin is an active component representing Zicao func-
tions [50]. In this study, shikonin at the selected concentrations could suppress the WT1
protein to restore HL-60 cell differentiation without killing cells, implying a low toxicity to
normal tissues. Although further investigations in a series of AML cells are required, our
results suggested that shikonin could be a lead compound as WT1 inhibitor. The interaction
between shikonin and WT1 will help design more effective and specific WT1 inhibitors
by molecular dynamics calculation and structure drug design. Preclinical studies and
preliminary clinical trials provide the possibility for shikonin-type drugs as anti-cancer
drugs [51,52], and it is expected that shikonin itself and its natural or synthetic derivatives
can be considered as the novel differentiation agents to fight AML being unresponsive to
current chemotherapeutic drugs.

4. Materials and Methods
4.1. Reagents

AEJ was purchased from Zhangzhongjing Pharmacy (Zhengzhou, China) and its
name was reviewed using the Plant List website (http://www.theplantlist.org, accessed on
29 April 2021). Shikonin (purity > 98%, verified by HPLC) was purchased from Manster
Biotechnology Co., Ltd. (A0186, Chengdu, China) and its chemical structure is shown in
Figure 3A. RPMI 1640 medium (R0883), ATRA (PHR1187), and cycloheximide (CHX, C7698)
were purchased from Sigma Biotechnology Co., Ltd. (Saint Louis, MO, USA). Fetal bovine
serum (FBS) was bought from Zhejiang Tianhang Biotechnology Co., Ltd. (11011-8611,
Zhejiang, China). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)
was bought from Saiguo Biotechnology Co., Ltd. (298-93-1, Guangzhou, China). The
Wright Giemsa staining kit was purchased from Beijing Reagan Biotechnology Co., Ltd.
(DM0007, Beijing, China). Primary antibodies WT1 (sc-7385) and β-actin (66009-1-Ig)
were purchased from Santa Cruz Biotechnology Co., Ltd. (Santa Cruz, CA, USA). APC-
labeled anti-CD34 (14486-1-AP) and FITC-labeled anti-CD11b (sc-1186) were purchased
from Proteintech Group, Inc. (Wuhan, China). The 5-ethynyl-2′-deox-yuridine (EdU) kit
(C10310-3) was purchased from RiboBio Co., Ltd. (Guangzhou, China). The RT-PCR kit
was purchased from Accurate Technology Co., Ltd. (AG11701, Hunan, China). M-PER lysis
reagents (78501) and the Co-IP Kit (88804) were purchased from Thermo Fisher Scientific
Biotechnology Co., Ltd. (Waltham, MA, USA). The Cell Cycle Assay Kit (PI/RNase Staining)
was purchased from Dojindo Chemical Technology Co., Ltd. (C543, Shanghai, China).
Streptomycin/penicillin (P1400), the cell apoptosis assay kit (Annexin V-FITC/PI, CA1020),
and agarose (A8350 and A8201) were purchased from Solarbio science and technology

http://www.theplantlist.org
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Co., Ltd. (Beijing, China). The JC-1 staining kit (C2005) and X-Gal staining (ST912) were
purchased from Beyotime Biotechnology Co., Ltd. (Beijing, China). Anti-Mouse (CTS002)
and Anti-Rabbit HRP-DAB cell staining kits (CTS005) were purchased from R&D Systems
Inc. (Minneapolis, MN, USA). All other chemicals and solvents were of analytical grade or
better. AEJ extract was produced by a previous method [23].

4.2. Cell Culture

HL-60 cells, an acute myeloid leukemia cell line, were purchased from ATCC (Man-
assas, VA, USA). The cells were cultured in RPMI 1640 medium (containing 10% FBS,
100 µg/mL of streptomycin, and 100 U/mL of penicillin). WT1 normally expressed or
highly expressed HL-60 cells were in a humidified atmosphere with 5% CO2 at 37 °C.

4.3. Lentivirus Transfection

WT1 overexpression lentivirus plasmid was prepared according to the GenePharma
instruction. HL-60 cells at 4 × 103 cells/mL were transfected by virus and Polybrene
(5 µg/mL) in 96-well plates. Fluorescence expression was used to test the transfected
efficiency in 72–96 h after infection. The transfected cells were screened by 0.7 µg/mL of
puromycin, cloned via limited dilution and amplified as HL-60O cells. Western blot was
used to test WT1 expression.

4.4. Western Blot

Western blot was performed as in the previous study [53]. In short, a RIPA lysis
buffer containing mixed protease and phosphatase inhibitors (100:1) was used for total
protein extraction, and the protein concentration was determined by the BCA method. The
extracted protein was used to prepare the sample for SDS gel electrophoresis. The target
protein and the loading control were run on the same gel. Finally, the optical density of the
band on the film was quantified by one 4.0.26 software.

4.5. DNA Injury

Cells were treated with 100 µM H2O2 for 24 h based on a trial test in which cells
exhibited the obvious apoptosis and DNA injury. For DNA injury assay, 20 µL of cells
(5 × 103) were embedded in 80 µL of 0.75% low-melting point agarose on slides pre-coated
with 100 µL of 1% normal melting point agarose. After incubated in lysis solution for 1 h at
4 ◦C in the dark, the slides were placed on an electrophoresis box containing an alkaline
solution and exposed to the alkali for 40 min for DNA unwinding. Electrophoresis was
performed for 15 min and the slides were stained with 20 µg/µL of PI. The comets were
visualized under an Olympus fluorescence microscope, and Comet 5.0 was used to analyze
the percentage of tail DNA in total DNA in every 100 cells. For the cell apoptosis assay,
cells were collected, stained by the Annexin V-FITC/PI dual staining kit, and measured
using flow cytometry.

4.6. The Assays of Cell Viability, Morphology, and Differentiation Markers

MTT: HL-60 cells were collected in the logarithmic growth stage, and the cell density
was adjusted to 106 cells/mL and inoculated in 96-well plates for 0, 6, 12, 18, 24, 30, 36, 42,
and 48 h to calculate the doubling time by the least squares fit using graphpad prism 5.0.
The cells were treated with different concentrations of shikonin or ATRA for 48 h. After
20 µL of MTT was added, cells continued to incubate for 4 h. An amount of 150 µL of
dimethyl sulfoxide was added, the absorbance was detected by a full-wavelength reader,
and the cell viability in the treated group was compared to the untreated group.

Wright Giemsa staining: HL-60 cells were treated with 0.1 µM, 0.2 µM, and 0.4 µM
shikonin for 48 h. After incubation, cells were collected for preparation of cell smears. For
bone marrow cells, after 43 days of treatment, the mice were killed, the bone marrow was
dissected, and the bone marrow smear was prepared through a 70-mesh sieve. Finally, the
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smears were cooled, dried, and fixed in methanol for 5 min. Wright Giemsa staining was
performed, and picture information was observed under a microscope (Olympus, Japan).

HoloMonitor system: The Holomonitor system was used to monitor the cell mor-
phological changes. HL-60 cells were cultured as in the Wright Giemsa staining assay.
After incubation, the cell size was observed and recorded in a 3D level by the M4 laser
holographic cell imaging and analysis system Holomonitor system (Holomonitor, Phiab,
Sweden). Holostudio™ 2.3 software (Elastic Compute Service, Beijing, China) was used for
data analysis.

Immunofluorescence: HL-60 cells treated with shikonin or ATRA for 48 h were col-
lected for cell smear. The smears were immersed in 4% paraformaldehyde for 15 min,
infiltrated with 0.1% Triton X-100 for 10 min, and blocked with 5% bovine serum albumin
(BSA) for 2 h. Then, the cell smears were incubated with APC-labeled anti-CD34 (1:100)
and FITC-labeled anti-CD11B (1:100) at 37 ◦C in the dark for 30 min. The fluorescence
signal was detected by a Leica fluorescence microscope. The relative fluorescence intensity
of cell target proteins was analyzed by Image J software (OLYMPUS, Japan).

4.7. The Interactions of CD34 Protein–WT1 Protein and Shikonin–WT1 Protein

Zdock predicts: The protein–protein interaction between CD34 and WT1 was predicted by
Zdock software (version 3.0.3, http://zdock.umass34med.edu/, accessed on 12 March 2021) [54].
The binding ability of protein to protein was evaluated by the prediction score.

Molecular docking: The interaction between shikonin and the WT1 protein was
predicted by molecular docking. The mol2 molecular structure file of shikonin was ob-
tained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on
12 March 2021). The 3D structure file of the WT1 protein was downloaded from the RCSB
PDB database (https://www.rcsb.org, accessed on 12 March 2021). The ligand within the
crystal structure complex was extracted by PyMOL software. Then, Autodock 4.2 software
was used for molecular docking according to the structure files of small-molecule drugs
and proteins. The results with high docking score and stable conformation were trans-
formed into PDB format, and the visual analysis of molecular docking was carried out
using PyMOL 2.3.2 software.

4.8. Co-Immunoprecipitation

HL-60 cells were collected and rinsed twice with PBS. M-PER protein lysis solution was
added to the sample tube and incubated on ice for 1 h. The total protein was incubated with
anti-WT1 antibody or IgG (as negative control) overnight at 4 ◦C to form an antigen sample–
antibody mixture. A/G magnetic beads were added into an EP tube, and the magnetic
beads were rinsed twice with immunoprecipitation rinsing buffer. The antigen sample–
antibody mixture was incubated with magnetic beads. Immunoprecipitation rinsing buffer
was added, the magnetic beads were rinsed twice, and supernatant was discarded. The
magnetic beads were rinsed once with ultrapure water. Loading buffer was added into the
magnetic beads to prepare samples for Western blot analysis. For co-localization, HL-60
cells were incubated with APC-labeled anti-WT1 (1:100) and FITC-labeled anti-CD34 (1:100)
at 37 ◦C in the dark for 30 min, and confocal microscopy (Nikon) was used to observe
co-localization between CD34 and WT1.

4.9. Drug Affinity Responsive Target Stability (DARTS)

The principle of DARTS technology is that the stability of proteins will be enhanced if
small molecules can combine with the target protein [55]. A quantity of 1 × 107 HL-60 cells
were placed in a 1.5 mL EP tube. M-PER protein lysis solution was added to each sample
tube and incubated on ice for 1 h. The cell lysis was centrifuged at 14,000 rpm for 10 min
and the protein was quantified by the BCA quantitative method. Total protein and different
concentrations of shikonin (0 mM, 0.1 µM, 0.2 µM, 0.4 µM, 0.8 µM, 1.6 µM, and 3.2 µM)
were mixed and incubated at 4 °C for 1 h. After incubation, streptomyces protease was
added to each sample tube and incubated at 25 ◦C for 15 min. Finally, 1× loading buffer
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was added into each sample tube and the sample tube was boiled at 100 ◦C for 5 min to
terminate the reaction. The samples were analyzed by Western blot.

4.10. Protein Half-Life Assay

HL-60 cells were seeded at a density of 1 × 106/ mL in 25 cm2 cell culture flasks and
treated with 10 µM cycloheximide (CHX) plus 0.2 µM shikonin or 0.1% DMSO for 0, 1, 2, 3,
and 4 h. Finally, the proteins were analyzed by Western blot.

4.11. Cell Proliferation and Mitochondrial Membrane Potential (MMP) Assays

HL-60 cells were treated with shikonin (0.1 µM, 0.2 µM, and 0.4 µM) or ATRA (5 µM)
for 10 d to maintain the differentiation state, and the medium was changed every other
day. Cell proliferation and MMP were assessed, respectively, using the Cell-Light EdU
Apollo488 Kit and JC-1 staining kit following manufacturer’s instructions. Images were
captured using an Olympus fluorescence microscope (Olympus, Japan), and the percentage
of Edu-positive cells or JC-1 staining intensity was calculated from 6 random fields using
Image J software.

4.12. Cell Cycle and Apoptosis Assays

Shikonin or ATRA-treated HL-60 cells were cultured as in cell proliferation and MMP
assays. After cells were cultured, the cell cycle and apoptosis were assessed by a cell
cycle assay kit and Annexin V-FITC/PI dual staining kit using flow cytometry following
manufacturer’s instructions.

4.13. Cell Self-Renewal Assay

Shikonin or ATRA-treated HL-60 cells were suspended in 0.5 mL of RPMI 1640 Medium
containing 20% FBS and 0.5 mL of top agar (0.7%) and transported to 6-well plates precoated
with 0.5 mL of bottom agar (1.2%). After being inoculated for 10 d, cells were stained with
crystal violet, images were captured using an Olympus microscope (Olympus, Japan), and
six random regions were selected in every well to count the number of colonies.

4.14. Mouse Leukemia Model

A mouse leukemia model was developed according to the method of Ma et al. [56].
Six-week-old female NOD/SCID mice, weighing 22–24 g, were obtained from Charles
River Laboratory Animal Technology Co., Ltd. (Beijing, China; license: SCXK (jing)
2016-0011). The mice were irradiated by a medical linear accelerator with 2.4 Gy. At
24 h after mice were irradiated, HL-60 cells at a density of 2.5 × 107/mL were injected into
the tail vein (0.2 mL/mouse, n = 20/group). The next day, mice received shikonin (20, 10,
and 5 mg/kg/day) or AEJ extract (equal to AEJ 2.0 g/kg/day or shikonin 10 mg/kg/day)
via intragastric administration once a day, or ATRA (20 mg/kg/day) via intraperitoneal
injection once every two days until the experiment ended (7 weeks). All mice were kept in a
standard, specific-pathogen-free (SPF) facility of the animal laboratory with 12 h dark/light
cycle, controlled temperature (24 ◦C–25 ◦C), and relative humidity (40–70%) conditions. All
animal treatments were approved by the Henan University Animal Care and Use Commit-
tee (Permission number: HUSAM 2021-069, 20210309), and conducted in accordance with
the ethical standards and national guidelines. Mice were sacrificed when half of the mice
in the model group died, routine blood analysis was carried out by an automatic blood
cell analyzer (Mindray, Nanjing, China), and the bone marrow cells were extracted for cell
smears and flow cytometry analysis. The survival curves were recorded.

4.15. Data Statistical Analysis

The data were presented as mean ± standard deviation (SD) and statistically analyzed
using GraphPad Prism 9.0 (San Diego, CA, USA). Groups were compared using a two-tailed
unpaired Student’s t-test or one-way analysis of variance (ANOVA) with the Bonferroni
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Multiple Comparison Test or Dunnett’s Multiple Comparison Test. Differences with a
p value less than 0.05 were considered statistically significant.

5. Conclusions

This study proved the suppressing effect of shikonin on WT1 in protein expression
and function and suggested that: (1) shikonin can down-regulate the WT1 protein level for
leukemia differentiation therapy, and (2) the interaction between WT1 and CD34 proteins
may be responsible for granulocyte/monocyte immaturity in HL-60 cells.
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