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Abstract: Lead-free all-inorganic halide materials with different Mn2+-based crystal structures
(Cs3MnBr5 and CsMnBr3) were obtained using a convenient synthetic method. Cs3MnBr5 had
a bright green emission (522 nm), with a unique single-exponential lifetime (τavg = 236 µs) and a
high photoluminescence quantum yield (82 ± 5%). A red emission was observed in the case of the
CsMnBr3 structure with a two-exponential fluorescence decay curve, and the lifetime was 1.418 µs
(93%) and 18.328 µs (7%), respectively. By a judicious tuning of the synthetic conditions, a mixed
phase of Cs3MnBr5/CsMnBr3 was also produced that emitted white light, covering almost the entire
visible spectrum. White-light-emitting diodes (WLEDs) with color coordinates (0.4269, 0.4955), a color
temperature of (3773 K), and a color rendering index (68) were then fabricated using the as-prepared
powder of mixed phases of Cs3MnBr5/CsMnBr3 with a commercial UV LED chip (365 nm).

Keywords: perovskite; Cs3MnBr5; manganese halide; phosphor; white LEDs

1. Introduction

White LEDs garner a great deal of attention, and their commercialization has expanded
over the years for high-volume applications, including general lighting and backlight
displays [1–6]. In reality, the desirable properties of LEDs, such as their high efficiency,
slimmer profile, fast switching time, and low contamination, make them valuable for use
in modern liquid-crystal display (LCD)-based devices compared to a conventional cold
cathode fluorescent lamp (CCFL) [7–10]. Traditional phosphor materials used in LEDs are
mainly composed of nitride-based phosphors and rare-earth-metal-doped oxides, their
synthesis always requiring high-temperature annealing and the use of costly rare earth
metals, which, in turn, severely increases the commercialization costs [11–14]. In view
of this, organic or inorganic–organic hybrid phosphor materials were then used in an
attempt to reduce the reliance on rare earth metals, but their relatively low thermal and
chemical stability limit their practical applications [15,16]. In addition, white LEDs are
normally composed of two or more different phosphor to broaden the emission band, which
always involved complicated synthetic techniques. Given the above-mentioned issues, the
development of materials that feature brilliant backlighting in high-gamut displays, are
easy to prepare, have a low cost, have high photoluminescence quantum yields (PLQYs),
and have a brilliant thermal stability is highly desirable.

Recently, metal halide perovskites have gained enormous attention as luminescent
materials for lighting and displays, owing to their high quantum yield, color tunability,
and narrow emission features [17–21]. Despite these fascinating characteristics, nearly all
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high-performance perovskites contain heavy metal lead, which poses a great threat to the
ecological environment and human health. It is of great interest to search for ecofriendly
alternatives through the partial or complete replacement of lead. Transition metal ion
doping is considered as a viable solution, owing to the fact that the transition metal ligand-
field excited states usually reside within the band gap of the host semiconductors [22–25].
In particular, the doping of halide perovskites with Mn2+ has been widely studied because
it potentially imparts novel optical, electronic, and magnetic functionalities. This objective
has been recently achieved in the case of organic halide perovskite, wherein 90% of lead
was replaced, simultaneously retaining its unique optoelectronic properties of excitonic
and Mn2+-associated emissions [26–28].

Recent investigations have also shown that many Mn(II) compounds, especially
inorganic–organic hybrid materials, often exhibit excellent optical properties (emit strong
tunable fluorescence). The high fluorescence quantum yields and convenient and econom-
ical fabrication protocols make them potential candidates as emitting materials. Xiong
and coworkers reported a hexagonal stacking manganese halide perovskite of (pyrroli-
dinium) MnCl3 that exhibited an intense red luminescence, and tetrahedrally coordinated
[N-methylpyrrolid inium] 2MnBr4 showed an intense green emission [29,30]. In another
effort, the Deng group prepared a pyridine manganese halide perovskite (C5H6N)2MnBr4
with a strong green light emission and C5H6NMnCl3 with a red emission, and used the
resulting materials for the fabrication of white-light-emitting diodes (WLEDs) [31]. In
the previous reports, the inherent instability obstacle of the materials due to the organic
component still need to be solved. Herein, we presented a facile synthetic approach used to
produce all inorganic manganese-based perovskites (CsxMnBrx+2). We obtained Cs3MnBr5
and CsMnBr3 with varied structures by controlling the Cs/Mn ratio. The as-fabricated
Cs3MnBr5 showed a d-d transition of Mn ions at 522 nm, whereas the CsMnBr3 produced
an emission band at 655 nm corresponding to Mn clusters. A manganese halide compound
with a Cs/Mn ratio of 1.4:1 generated a photon emission covering almost the entire visible
spectrum. Cs3MnBr5 and CsMnBr3 were successfully synthesized by a one-pot sonica-
tion method at room temperature, and the detailed synthetic procedure is schematically
illustrated in Figure 1.
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2. Results and Discussion
2.1. The Structure Morphology and Compositional Analysis of CsxMnBrx+2

The crystal structures of Cs3MnBr5 and CsMnBr3 are shown in Figure 2a,b,e,f, the
crystal structures of the as-prepared samples were confirmed by powder X-ray diffraction
(XRD). XRD data indicated that the crystal structure of Cs3MnBr5 was tetragonal (I 4/mcm)
with lattice parameters a = b = 9.596 Å, c = 15.57 Å, and the obvious diffraction peaks at
2θ = 21.8, 22.9, 26.3, 27.0, 29.5, and 42.1◦ correspond to diffractions from the {202}, {004},
{114}, {213}, {310}, and {420} planes (Figure 2b). CsMnBr3 crystallized with a hexagonal
structure (P63/mmc) with a = b = 7.618 Å, c = 6.519 Å, and the obvious diffraction peaks
at 2θ = 13.4, 23.4, 27.0, 30.4, and 47.7 corresponded to diffractions from the {100}, {110},
{200}, {201}, and {220} planes (Figure 2f). No detectable impurity was observed in the
above samples. In Figure 2c,d, scanning electron microscopy (SEM) images showed rod-
like crystals of Cs3MnBr5 with a diameter of 1µm and length of 10 µm, and CsMnBr3
(Figure 2g–f) was observed with a sphere shape with average sizes of 500 nm. The large
size of the two crystals also indicated a good degree of crystallinity. EDS mapping suggested
(Figure S1), in Cs3MnBr5, Cs, Mn, and Br, an atom ratio of 3.9:1:5.6, and in CsMnBr3, Cs,
Mn, and Br, an atom ratio of 1:1:2.8.
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Figure 2. (a,e) Crystal structure of Cs3MnBr5 (tetragonal, space group I4/mcm, a = 9.596 Å) and
CsMnBr3 (hexagonal, space group P 63/mmc, a = 7.618 Å); (b,f) XRD patterns of Cs3MnBr5 and
CsMnBr3 (black) measured under ambient conditions, where the red columns at bottom are the
standard patterns related to tetragonal Cs3MnBr5 and hexagonal CsMnBr3; low- and high-resolution
SEM images of (c,d) Cs3MnBr5 and (g,h) CsMnBr3.

2.2. Optical Properties of Cs3MnBr5 and CsMnBr3

Figure 3a,b,d,e show the absorption and associated emission spectra of Cs3MnBr5 and
CsMnBr3 at ambient conditions. The absorption peaks ranging from the visible to UV region
correspond to an electronic transition from the 6A1 ground state of Mn2+ to different excited
states of MnBrχ in Cs3MnBr5 and CsMnBr3. In the absorption spectra of Cs3MnBr5, the in-
tense absorption bands at 368, 380, 442, 458, and 544 nm belong to 6A1→4E(D), 6A1→4T2(D),
6A1→4A1,4E(G), 6A1→4T2(G), and 6A1→4T1(G), respectively (Figure 3a). Similarly, in the
case of the absorption of CsMnBr3, intense absorption bands associated with 6A1→4Eg(D)
(368 nm), 6A1→4T2g(D) (381 nm), 6A1→4Ag,4Eg(G) (437 nm), 6A1→4T2g(G) (458 nm),
and 6A1→4T1g(G) (544 nm), respectively, were observed (Figure 3d). Correspondingly,
Cs3MnBr5 exhibited a green emission (522 nm) (Figure 3b) with very high photolumines-
cence quantum efficiencies (PLQYs) of 82 ± 5%, the PL peak position of CsMnBr3 was
at 655 nm (Figure 3e), and PLQYs were as low as 11%. The emission at 522 and 655 nm
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could be ascribed to the 4T1→6A1 transition of the tetrahedrally coordinated Mn2+ ion from
the [MnBr4]2− anion and the 4T1g→6A1 transition of the octahedrally coordinated Mn2+

ion from the [MnBr6]4− chain, respectively [32]. Obviously, it is important to understand
the distinguishable differences in the PL spectra of these two compounds with similar
absorption profiles. As they have the same Cs site, the MnBrχ cluster separation could
actually play an important role in influencing their optical transition. As reported, com-
pounds with Mn2+ in a tetrahedral environment usually emit in the green region, whereas
those with octahedral coordinated Mn2+ ions tend to have orange to red emissions [33].
Mn2+ is fourfold coordinated by Br− to form a [MnBr4]2− tetrahedron in Cs3MnBr5, while
the Mn-Mn distance (3.26 Å) in CsMnBr3 forms linear chains of a face-sharing [MnBr6]4−

octahedron [34]. The latter is conducive to the formation of a linear Mn–Mn chain, and the
interchain Mn–Mn interaction is several orders of magnitude larger than that of Cs3MnBr5,
which is almost negligible due to the larger Mn–Mn distance of 6.785 Å. In the case of
magnetic coupling between neighbouring manganese ions in CsMnBr3, their d–d emis-
sion band likely shows a red shift [35–37]. Time-resolved PL decays and fitting curves of
Cs3MnBr5 and CsMnBr3 are shown in Figure 3c,f. A longer lifetime of 236 µs was found
in Cs3MnBr5, which is consistent with the long durations of the self-trapped excited state
present in the Mn complex as reported in the literature [38]. The time-resolved PL curve fit
well to the single exponential decay function, which suggested that the PL decay route is
related to little-to-no non-radiative processes, consistent with the relatively higher PLQY
achieved in Cs3MnBr5. However, the time-resolved PL decay of CsMnBr3 was fitted to
a two-exponential decay equation, and the average lifetime of PL decay was found to
be 9.546 µs. After two-exponential fitting, we estimated the PL decay for CsMnBr3 and
had two components, 1.418 µs (93%) and 18.328 µs (7%); the former originates from the
surface-state recombination, and the latter can be attributed to the intrinsic recombination.
Taken together, the fluorescence quantum yield of CsMnBr3 was found to be lower than
that of Cs3MnBr5.
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2.3. Controllable Photoluminescence and Crystal Structures of CsxMnBrx+2 

Figure 3. Absorption and corresponding emission spectra of Cs3MnBr5 (a,b) and CsMnBr3 (d,e)
at ambient conditions. Inset: photographs of Cs3MnBr5 and CsMnBr3 under room and UV light
(385 nm). Time-resolved PL decays and fitting curves at 522 nm in Cs3MnBr5 (c) and 655 nm in
CsMnBr3 (f), and the excitation wavelength was 375 nm.
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2.3. Controllable Photoluminescence and Crystal Structures of CsxMnBrx+2

Figure 4a shows the images of the as-prepared CsxMnBrx+2 samples with different
Cs/Mn ratios under ambient light and UV lamp irradiation (365 nm). The relationship
between the intensity/position of the dominant emission and Cs/Mn ratios can be evi-
dently seen (Figure 4b). It is clearly noticed that the green emission band appears and
gradually suppresses the red emission with increasing Cs/Mn ratios. When the nominal
Cs/Mn ratios is 0.5 or 1, there is only one red emission peak (655 nm) corresponding to
hexagonal CsMnBr3; however, with increasing Cs/Mn ratios, the CsxMnBrx+2 samples
underwent a phase transition (Figure 4c). When the Cs/Mn ratios increased from 2 to 3.5,
the host diffraction peaks of tetragonal Cs3MnBr5 experienced an increase, and the addi-
tional orthorhombic phase of the sample (Cs2MnBr4) gradually decreased and eventually
disappeared. Correspondingly, the intensity of the green emission increased, whereas the
red emission intensity dramatically reduced. When the nominal Cs/Mn ratios increased to
3.5 or greater, the sample transformed into a CsBr phase in addition to tetragonal Cs3MnBr5
due to the excessive presence of Cs in the precursors. Notably, only one green emission peak
(522 nm) remained in the sample, whose intensity gradually decreased as the Cs/Mn ratios
increased, and the red emission was gradually suppressed to an almost undetectable level.
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2.4. Application in UV Pumped White LEDs

As mentioned before, we can tune different Cs/Mn feed ratios to obtain various
emission wavelengths. We fabricated two types of light-emitting diode (LED) devices using
pure Cs3MnBr5 (Cs/Mn = 3.5:1) and the mixture of Cs3MnBr5 and CsMnBr3 (Cs/Mn =
1.4:1) as light emitters. Figure 5a,b show the color stability of the as-fabricated LEDs at
different driving voltages. The light intensity curves increase steadily without distortion
when the voltage increases from 4.5 V to 12 V. Taken together, we envision CsXMnBrX+2 as
potential green and near-warm white phosphors for display backlight applications. The
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color coordinates of the former were calculated to be (0.2407, 0.6699) (Figure 5c), implying
that this phosphor can be used for green LED applications. The inset in Figure 5a shows the
digital photograph of the as-fabricated UV (365 nm) pumped LED devices with a powder
input, and an intense green emission can be observed. In a similar situation, the color
coordinates of the latter were calculated to be (0.4269, 0.4955) (Figure 5c). As observed
in the inset of Figure 5a,b, the constructed LED shows a strong green and near-warm
white emission, indicating that this phosphor can be used for green and warm white
LED application.
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2.5. Magnetic and Thermostability

Regarding the investigation of the Mn−Mn coupling effect on luminescence in our
sample, Figure 6a shows M–H curves of Cs3MnBr5 and CsMnBr3 obtained by a vibrating
sample magnetometer (VSM) at room temperature. Both of them show clearly paramagnetic
behavior, which demonstrates that the red emission band was caused by the ferromagnetic
coupling of Mn-Mn in CsMnBr3, and not by the crystal field and crystal structure [39]. In
order to investigate the thermal stability of Cs3MnBr5 and CsMnBr3, thermo-gravimetric
analysis (TGA) was carried out from room temperature to 600 ◦C. As displayed in Figure 6b,
both of them have a perfect thermal stability up to T = 425 ◦C.
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3. Materials and Methods
3.1. Chemicals

Cesium acetate (CH3COOCs, 99%), manganese(II) acetate Mn (CH3CO2)2, AR, 99%,
trimethylbromosilane (TMBS, 98 wt% in water), and isopropanol (IPA, 98 %)) were used.
All chemicals were purchased from China Shanghai Aladdin Reagent Company.

3.2. Synthesis of Cs3MnBr5 and CsMnBr3

For the typical synthesis of rod-like crystals, Cs3MnBr5, Mn(CH3COO)2 (0.4 mmol)
and CH3COOCs (1.4 mmol) used as manganese and cesium sources, respectively, were
dissolved in isopropanol (10 mL) by sonication until all Mn (CH3COO)2 and CH3COOCs
salt was dissolved. Then, TMBS used as the bromide source (4 mmol) was added to the
above precursor solution and a whiteish precipitation was formed immediately under
strong sonication. After another 30 min sonication, the reaction mixture was filtered and a
white product was obtained.

The synthetic process for CsMnBr3 was identical to the one mentioned above, but the
molar concentrations of Mn (CH3COO)2 and CH3COOCs were changed to a stoichiometric
ratio of 1:1.

White-light-emitting samples of Cs3MnBr5/CsMnBr3 mixed phases were obtained by
tuning the Cs/Mn precursor ratio to 1:4:1.

3.3. LEDs Lamp Fabrication

Various as-synthesized phosphor powders were blended well with 25% PS
dichloromethane solution. The blended phosphors of PS paste were dropped on top
of the UV LED chips (365 nm) and dried in air to form LED lamp.

3.4. Characterization

Powder X-ray diffraction (PXRD): PXRD was measured with a Bruker AXS D8 X-
ray diffractometer equipped with monochromatized Cu Kα radiation (λ = 1.5418 Å). The
diffraction pattern was scanned over the angular range of 5–50◦ (2θ) with a step size of 0.01
at room temperature. Scanning electron microscopy (SEM): SEM was performed on a Japan
Hitachi (S-3400N) operating at 20 kV, equipped with energy-dispersive X-ray spectroscopy
(EDS) detector. Ultraviolet and visible (UV–vis) absorption spectroscopy for solid samples:
UV–vis spectra were recorded with a Shimadzu UV-3600 plus spectrophotometer equipped
with an integrating sphere under ambient conditions. Photoluminescence (PL) spectra
were obtained with a Horiba PTI QuantaMaster 400 steady-state fluorescence system.
Absolute photoluminescence quantum yield (PLQY) measurements for solid samples: The
absolute fluorescence quantum yields were measured using a Horiba PTI QuantaMaster
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400 steady-state fluorescence system with an integrated sphere and double-checked with
a Hamamatsu Photonics Quantaurus-QY (model: C11347-11) under ambient conditions.
Time-resolved photoluminescence lifetime measurements for solid samples: Time-resolved
PL emission decay curves were collected at room temperature and detected by a Nikon
Ni-U Microfluorescence Lifetime System (Confotec MR200, SOL, Belarus) with a 375 nm
picosecond laser.

4. Conclusions

In this work, we presented a rapid and mild synthetic protocol for the synthesis of
Mn(II) halide-based all-inorganic lead-free perovskite with a high PLQY. By a simple tuning
of the feed ratios, two different crystals structures (Cs3MnBr5 and CsMnBr3) with tunable
fluorescence characteristics were obtained. The as-prepared Cs3MnBr5 displayed a green
emission, with the highest PLQY of up to 82 ± 5% and with a long lifetime of 236 µs.
When the feeding ratio of Cs/Mn was tuned to 1.4:1, the resulting mixture of Cs3MnBr5
and CsMnBr3 emitted a white light covering almost the entire visible spectrum. Based on
the high optical quality of the products, UV pumped green and warm white LEDs were
fabricated using the as-prepared Cs3MnBr5 and a mixture of Cs3MnBr5/CsMnBr3 as light
emitters. Overall, as an intriguing prototype, this work not only paves the way for the
simple synthesis of highly emissive, low-cost, environmentally benign halide materials,
but also implies a great potential for optoelectronic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1, Figure S1: EDS spectrum.
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