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Abstract: Molecular docking, molecular dynamics (MD) simulations and the linear interaction
energy (LIE) method were used here to predict binding modes and free energy for a set of 1,2,3-
triazole-based KA analogs as potent inhibitors of Tyrosinase (TYR), a key metalloenzyme of the
melanogenesis process. Initially, molecular docking calculations satisfactorily predicted the binding
mode of evaluated KA analogs, where the KA part overlays the crystal conformation of the KA
inhibitor into the catalytic site of TYR. The MD simulations were followed by the LIE method, which
reproduced the experimental binding free energies for KA analogs with an r2 equal to 0.97, suggesting
the robustness of our theoretical model. Moreover, the van der Waals contributions performed by
some residues such as Phe197, Pro201, Arg209, Met215 and Val218 are responsible for the binding
recognition of 1,2,3-triazole-based KA analogs in TYR catalytic site. Finally, our calculations provide
suitable validation of the combination of molecular docking, MD, and LIE approaches as a powerful
tool in the structure-based drug design of new and potent TYR inhibitors.

Keywords: MD simulations; binding free energy; LIE; kojic acid analog; triazoles; tyrosinase

1. Introduction

Melanin is a general name for a class of natural pigments derived from tyrosine that is
found in many species of living organisms and microorganisms such as plants, animals,
bacteria and fungi. It has many key functions including thermoregulation, photoprotection
and healing process [1]. In plants, it is related to the browning of vegetables and fruits,
which is an important aspect of the agriculture industry [2]. In mammals, melanin is crucial
for the protection of skin and eyes against UV light [3]. Due to playing key roles in cell
protection, its abnormal production is related to several hyperpigmentation disorders, such
as senile lentigines, freckles and melasma [4], which provides evidence for the development
of skin-whitening and depigmenting compounds based on melanin inhibition, which is
important to the cosmetic industry [5]. Moreover, there is some evidence relating to
neuromelanin and Parkinson’s disease [6].

The biosynthetic path of melanin involves several steps including the hydroxylation
of L-Tyrosine (L-Tyr) to L-3,4-dihydroxyphenylalanine (L-DOPA), a monophenolase stage
(1), followed by the subsequent oxidation of L-DOPA to O-dopaquinone, a diphenolase
stage (2) [7] (Figure 1). Both reactions are catalyzed by a type-3 copper metalloenzyme
called Tyrosinase (TYR), which contains a binuclear copper active site in which each Cu2+

ion chelates with three histidine (His) amino acid residues [8].
Despite the critical role of TYR in the melanogenesis and browning process, sev-

eral studies have involved the design, synthesis and biological evaluation of TYR in-
hibitors [9,10], among which arbutin [11], hydroquinone [12], azelaic acid [13] and kojic
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acid (KA) [14] can be highlighted. Particularly, KA is used as a positive control for TYR inhi-
bition, but it has shown side effects related to a high-sensitizing potential and considerable
toxicity [15,16], which compromise its use in the cosmetical and pharmaceutical industries.
Moreover, studies highlight the urgency for the development of new TYR inhibitors [7,10].
Recently, Ashooriha et al. [17] synthesized a set of KA analogs with high anti-TYR activity.
They applied a click chemistry reaction and the formation of a 1,2,3-triazole ring to synthe-
size these new and potent TYR inhibitors [17]. Particularly, the most potent compounds (6o
and 6p) show lower cytotoxic activity than KA. Furthermore, the synthesized compounds
can be added to the group of products of click chemistry application related to the Nobel
Prize in Chemistry 2022.
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Here, we reported a powerful computational analysis of 1,2,3-triazole-based KA
analogs, synthesized and evaluated by Ashooriha et al. [17], by applying molecular docking,
molecular dynamics (MD) simulations and binding free energy calculations. This study
shines a light on the TYR inhibition mechanism by providing structural and energetic
information that agrees with experimental proposals. Moreover, all applied computational
procedures here have been successfully validated by our research group [18–21].

2. Results and Discussion
2.1. Molecular Docking and MD Simulations

Initially, it should be highlighted that our molecular docking results using the Virtual
Docker (MVD) package and MOLDOCK method [22] have been successfully applied for
TYR systems [18–21]. In Figure 2, the docked conformation of the weakest and strongest
potent 1,2,3-triazole-based KA inhibitor (6h and 6o, respectively) show suitable conforma-
tions into the TYR catalytic site where the KA ring is close to the crystallographic structure
of the KA complex. The main difference between the two structures is the orientation of the
1,2,3-triazole part of the KA analog, which also could not be resolved from the experimental
electron density and is exposed to solvent. From the docking calculations, a MOLDOCK
scoring function for each KA analog could be extracted and compared to experimental
binding data (Table 1). There is no correlation (r2 = −0.23) between MOLDOCK scoring
and the experimental data (IC50, µM) (see Figure S1). These results are not a surprise for
molecular docking calculations, where docking algorithms in many cases can provide a
suitable binding mode but cannot rank different ligands by affinity [23].

In particular, the hydroxyl groups of the KA part of 1,2,3-triazole-based KA inhibitors
(6a–6p) interact with Cu2+(B) (Figure 2), producing distances of about 3.30 Å. Furthermore,
the KA ring of 1,2,3-triazole compounds is involved in a hydrophobic pocket created by
Met215, Gly216, Val217, Val218 and Ala224, as found in the KA inhibitor. Among the most
important interactions, we can highlight the interaction with a key residue Arg209 through
the π–cation stacking interaction with 1,2,3-triazole ring present in all KA analogs, for the
natural substrates, this residue is responsible to form hydrogen bonds with the carboxylic
group of substrates (L-Tyr and L-DOPA) [24,25].

As successfully shown by previous studies [26–31], MD simulations are an excellent
technique to improve molecular docking results. Here, as described in the Materials
and Methods section, five random replicas of 2 ns each were performed by using the Q
program [32] version 6.0 [33] to provide ensembles for an improved binding process of
1,2,3-triazole-based KA into TYR. According to our MD results, all KA analogs are stable in
the catalytic site of TYRBm (Table 2), and the structural features of the TYR part are similar
to the previous computational studies [19]. The root-mean-square deviation (RMSD) values
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of protein and ligand atoms are summarized in Table 2. As can be observed, these values
range from 0.39 ± 0.04 Å (TYR-6o system) to 0.50 ± 0.04 Å (TYR-6b) for the protein part
and from 0.47 ± 0.12 Å (TYR-6j system) to 0.81 ± 0.24 Å (TYR-6f system) for the ligand
part. These results suggest a suitable stabilization of all KA analogs into the TYR catalytic
site in all simulated complexes. Interestingly, all inhibitors maintained the interaction
between the O atom of the carbonyl group of the KA part and Cu2+ ion (Cu2(B)) present in
the TYR catalytic site, as observed for natural substrates (L-Tyr and L-DOPA) and the KA
inhibitor [14]. Moreover, as previously evaluated [19], the CuDum model [34] applied for
the description of Cu2+ ions appropriately described all important structural features. An
RMSD plot of the protein and ligands with respect to the first snapshot of each system is
provided as Supplementary Materials (Figure S2).
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Table 1. Molecular docking results (MOLDOCK scoring, Kcal/mol) and experimental activity (IC50,
µM) of KA analogs in complex with TYRBm.

KA Analog MOLDOCK Scoring IC50 *
6a −120.78 1.33
6b −132.33 0.88
6c −132.03 0.69
6d −128.15 6.80
6e −125.68 1.07
6f −136.38 0.99
6g −129.55 1.12
6h −139.06 6.29
6i −132.92 0.52
6j −135.60 2.64
6k −132.85 1.32
6l −125.93 1.24

6m −130.46 0.87
6n −130.17 0.74
6o −130.15 0.06
6p −131.51 0.30

* Values obtained from Ashooriha et al. [17].
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Table 2. RMSD values (in Å) for protein and ligand atoms from TYR systems.

System Protein RMSD Ligand RMSD

TYR-6a 0.44 ± 0.05 0.47 ± 0.15
TYR-6b 0.50 ± 0.04 0.80 ± 0.20
TYR-6c 0.46 ± 0.07 0.53 ± 0.14
TYR-6d 0.40 ± 0.03 0.51 ± 0.16
TYR-6e 0.40 ± 0.05 0.60 ± 0.20
TYR-6f 0.44 ± 0.04 0.81 ± 0.24
TYR-6g 0.45 ± 0.03 0.79 ± 0.21
TYR-6h 0.43 ± 0.04 0.54 ± 0.13
TYR-6i 0.44 ± 0.05 0.51 ± 0.13
TYR-6j 0.43 ± 0.03 0.47 ± 0.12
TYR-6k 0.44 ± 0.04 0.62 ± 0.16
TYR-6l 0.43 ± 0.05 0.57 ± 0.13

TYR-6m 0.49 ± 0.06 0.55 ± 0.13
TYR-6n 0.47 ± 0.04 0.79 ± 0.19
TYR-6o 0.39 ± 0.04 0.49 ± 0.13
TYR-6p 0.46 ± 0.06 0.50 ± 0.13

2.2. Binding Free Energy and Per-Residual Analysis

Due to the protein flexibility being not explicitly considered during the docking
calculations, the prediction of accurate binding free energies can be difficult, and in this
case, MD simulations can overcome it [35]. However, a suitable ensemble obtained from MD
simulations should be evaluated to better describe the binding affinity of protein–inhibitor
during molecular recognition. Combined with this feature, accurate and efficient methods
to compute binding free energy (∆Gbind) are essential in computer-aided drug design [36].
Among these free energy methods, Linear Interaction Energy (LIE) [37] was selected for the
prediction of experimental (∆GEXP) binding free energies of KA analogs complexed into
TYRBm. This approach has been applied successfully for TYR systems [18,19].

In Table 3, it can be observed all ligand-surrounding energies for KA analogs computed
from MD simulations. Here, a total of 10 ns of MD simulations for each TYR system was
chosen to compute LIE free energy (∆GLIE) values. The empirical parameters α and β

were chosen directly from the literature [38], see Table S1 for details. Particularly, the
optimized value of γ (equal to 17.33) of LIE equation (Equation (1)) was calculated from the
linear fitting with ∆GEXP in order to include the Jahn–Teller effect included in the CuDum
model for the bound models [34]. Particularly, it was found that excluding 6d, 6g and
6k inhibitors resulted in a significantly better correlation with the ∆GEXP, so in all LIE
discussions presented below, these KA analogs were excluded from the analysis, and a
similar strategy was used by Carlsson et al. [27] and Vanga et al. [39].

Table 3. LIE-calculated (∆GLIE) and experimental (∆GEXP) binding free energies of KA analogs in
complex with TYRBm. All values are reported in Kcal/mol.

KA Analog 〈UvdW〉free 〈Uele〉free 〈UvdW〉bound 〈Uele〉bound ∆GLIE ∆GEXP

6a −26.21 ± 0.01 −26.70 ± 0.49 −49.16 ± 0.98 −84.09 ± 0.24 −8.03 ± 0.45 −8.07
6b −26.31 ± 0.06 −26.91 ± 0.10 −46.90 ± 0.34 −85.71 ± 0.63 −8.13 ± 0.34 −8.31
6c −27.77 ± 0.02 −25.57 ± 0.17 −49.79 ± 0.41 −84.45 ± 0.70 −8.41 ± 0.40 −8.46
6e −26.24 ± 0.03 −26.97 ± 0.31 −46.53 ± 0.21 −85.27 ± 0.76 −7.89 ± 0.44 −8.20
6f −27.61 ± 0.02 −25.32 ± 0.18 −50.79 ± 0.90 −82.86 ± 0.89 −8.13 ± 0.56 −8.24
6h −28.48 ± 0.08 −30.39 ± 0.45 −51.28 ± 0.29 −89.28 ± 0.78 −6.20 ± 0.47 −7.14
6i −29.42 ± 0.04 −29.93 ± 0.02 −55.29 ± 0.51 −89.10 ± 0.26 −9.21 ± 0.20 −8.63
6j −30.14 ± 0.08 −42.95 ± 0.30 −55.83 ± 0.37 −99.47 ± 0.97 −7.07 ± 0.53 −7.66
6l −28.59 ± 0.03 −28.16 ± 0.16 −50.52 ± 0.68 −86.78 ± 1.01 −8.30 ± 0.56 −8.11

6m −31.90 ± 0.10 −33.77 ± 0.61 −57.72 ± 0.40 −90.52 ± 0.99 −8.31 ± 0.68 −8.32
6n −28.72 ± 0.09 −29.18 ± 0.74 −49.41 ± 0.79 −88.77 ± 0.90 −8.44 ± 0.76 −8.42
6o −29.99 ± 0.30 −27.33 ± 0.05 −61.99 ± 0.37 −87.15 ± 0.24 −10.56 ± 0.23 −9.91
6p −30.01 ± 0.20 −27.97 ± 0.43 −61.40 ± 0.91 −86.21 ± 0.22 −9.80 ± 0.44 −8.95
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The absolute binding free values for the 1,2,3-triazole-based KA inhibitors in the
experimental data set are quite well-reproduced by the LIE approach (r2 = 0.97) (Figure 3).
As all KA analogs are more potent TYR than KA inhibitors, our discussion is focused on
considering the weakest (6h) and strongest (6o) TYR inhibitors, suggesting key features that
explain their binding differences. Particularly, the ∆GLIE value for 6h is about 0.47 Kcal/mol
higher than its experimental data (−7.14 Kcal/mol), while the ∆GLIE value for 6o is about
0.42 Kcal/mol lower than its experimental value (−9.91 Kcal/mol). As suggested by
Ashooriha et al. [39], the good TYR activity shown by these KA analogs is explained by
the presence of a 1,2,3-triazole ring. Therefore, new interactions found in that part of
TYR inhibitors can provide insights about their inhibitory action. Therefore, to elucidate
the energetic contributions of amino acid residues around the catalytic site of TYR, a
residual decomposition analysis was carried out considering both van der Waals (vdW)
and electrostatic (ele) contributions from the LIE equation.
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The average vdW and ele interaction energies, overall KA analogs, for the TYR amino
acid residues that contribute significantly to the ∆GLIE are shown in Figure 4. As observed,
in general, the ele contributions from TYR residues do not differ significantly for 6h and
6o systems (Figure 4B). Particularly, the interaction with Cu2+(B) is the most important
contribution to the binding of KA analogs. Furthermore, the vdW contributions change sig-
nificantly from 6h to 6o inhibitors (Figure 4A). The most evident difference can be observed
for Phe197, Pro201, Arg209, Met215 and Val218, where the values change about 0.79, −0.54,
−0.48, −0.56 and −1.48 Kcal/mol from 6h to 6o inhibitors, respectively (Figure 4). Inter-
estingly, the interaction found between KA analogs and Arg209 occurs through π–cation
stacking contact with the amino acid sidechain and 1,2,3-triazole ring of the KA analog
(Figure 5). In the TYR–KA system, this residue interacts by an H bond with the carboxylic
group of KA [14]. Finally, the 6o inhibitor shows a strong vdW interaction with the Cu2+(B)
ion of TYR, about 7.37 Kcal/mol lower than the 6h inhibitor (Figure 4A).
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3. Materials and Methods
3.1. System Setup for Molecular Docking and MD Simulations

Initially, the 2D structures of KA analogs studied (Figure 6) were built into MAR-
VINSKETCH (v. 22.18) program [40] and then optimized at the PM6 level [41] using
GAUSSIAN09 [42] package.

The 3D structure of TYR from Bacillus megaterium (TYRBm) with KA bound into the
enzyme catalytic site was extracted from the Protein Data Bank (PDB code 5I38 [14]) as
previously performed. The molecular docking calculations were carried out into Molegro
Virtual Docker (MVD) version 5.5 [43], which has been applied successfully for TYR
systems [18–21]. Particularly, for docking procedures, Cu2+ ions were included as van der
Waals spheres at the catalytic site of TYRBm. Our group has applied the MVD program
successfully to describe the binding mode of TYR inhibitors [18,19,21]. Therefore, the
same computational procedures were used for TYR-1,2,3-triazole-based KA systems. The
MOLDOCK equations are detailed elsewhere [22].

For MD simulations, the best-ranked conformations of KA analogs were selected as
starting points. The OPLS-AA [44] and TIP3P [45] force fields were used as parameters set
to solute (TYR amino acids and KA analogs) and solvent subsystems, respectively. The
OPLSA-AA parameters for KA analogs were computed by using the MACROMODEL
package [46]. Particularly, a set of classical parameters proposed by Liao et al. [34], named
the Cu2+ dummy model (CuDum), was used to describe the metal center of TYRBm. The
PROPKA approach [47] was used to set pKa values of all ionizable amino acid (AA) residues
at neutral pH.

Each TYR-1,2,3-triazole-based KA system was solvated by a 20 Å radius simulation
sphere of the TIP3P molecules [45] centered into the center of mass of the respective KA
analog. The surface-constrained all-atom solvent (SCAAS) method [48] was used for polar-
ization and radial constraints at the simulation sphere surface. All ionizable AA residues
close to the sphere boundary were neutralized to account for dielectric screening [32]. A
10 Å cutoff was applied for computing non-bonded interaction energies, excluding only
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the atoms of KA analogs. The long-range electrostatic interactions were calculated using
the local reaction field (LRF) multiple expansion method [49]. All atoms outside of the 20
Å radius simulation sphere were frozen to reduce computational costs [32]. The SHAKE
algorithm [50] was used for solvent hydrogen bonds.
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The MD equilibration and production procedures for the bound (enzyme) and free
(water) states are detailed in our previous study [19] using the Q6 program [50]. Each
equilibrated system was submitted to a total of 10 ns of MD simulations from 5 randomized
replicas of 2 ns each, where a time step of 1 fs was used and no positional restraints were
applied. Particularly, for the free state, a weak harmonic restraint was used to maintain KA
analogs in the respective center of their water simulation sphere.
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3.2. Binding Free Energy Calculations: LIE Method

A total of 10 ns of MD simulations from the production stage was used for binding
free energy calculations according to the Linear Interaction Energy (LIE) method [37]. It
uses the ensembles of the bound and free states of a respective ligand to compute their free
energy difference [37]. The binding free energy (∆GLIE) value of each TYRBm system was
computed using the LIE equation (Equation (1)):

∆GLIE = α
(
〈UvdW〉bound − 〈UvdW〉 f ree

)
+ β

(
〈Uele〉bound − 〈Uele〉 f ree

)
+ γ (1)

The α and β parameters are empirically scaling for the non-polar (UvdW) and the
polar (Uele) terms, which are dependent on the chemical nature of the ligand [38]. These
parameters can be obtained from the previous studies (α = 0.181 and β = 0.33−0.50) [38]
or by linear fitting using experimental binding free energies (∆GEXP) (Equation (2)). The
average, 〈 〉, of van der Waals (“vdW”) and electrostatic (“ele”) interactions of “bound” and
“free” states are computed using ensembles from MD production.

∆GEXP = RT ln IC50 + c (2)

where the assay-specific constant (c) depends on the substrate concentration and the
Michaelis–Menten constant (Km) [51]. As this constant value does not affect the relative
free energies, it can be implicitly included in the optimized value of γ (Equation (1)).

4. Conclusions

The present study investigated the accuracy of molecular docking and MD simulations
in combination with the LIE method on a set of 1,2,3-triazole-based KA analogs, synthesized
by click chemistry reactions as potent inhibitors of TYR enzyme. The TYR–inhibitor
interactions were analyzed in detail, and it was found that the binding affinities of the
selected KA analogs are driven mainly by van der Waals interactions. Particularly, a new
π–cation stacking contact occurs between the Arg209 sidechain and 1,2,3-triazole ring of all
KA analogs and may be related to their improved TYR activity. Our LIE analysis also agrees
very well with experiments on TYR enzyme, providing a useful strategy for obtaining more
potent TYR inhibitors and accurate predictions of TYR–inhibitor binding free energies.
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