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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronaviruses
that emerged in China at Wuhan city, Hubei province during December 2019. Subsequently, SARS-
CoV-2 has spread worldwide and caused millions of deaths around the globe. Several compounds
and vaccines have been proposed to tackle this crisis. Novel recommended in silico approaches have
been commonly used to screen for specific SARS-CoV-2 inhibitors of different types. Herein, the
phytochemicals of Pakistani medicinal plants (especially Artemisia annua) were virtually screened to
identify potential inhibitors of the SARS-CoV-2 main protease enzyme. The X-ray crystal structure
of the main protease of SARS-CoV-2 with an N3 inhibitor was obtained from the protein data bank
while A. annua phytochemicals were retrieved from different drug databases. The docking technique
was carried out to assess the binding efficacy of the retrieved phytochemicals; the docking results
revealed that several phytochemicals have potential to inhibit the SARS-CoV-2 main protease enzyme.
Among the total docked compounds, the top-10 docked complexes were considered for further study
and evaluated for their physiochemical and pharmacokinetic properties. The top-3 docked complexes
with the best binding energies were as follows: the top-1 docked complex with a −7 kcal/mol binding
energy score, the top-2 docked complex with a −6.9 kcal/mol binding energy score, and the top-3
docked complex with a −6.8 kcal/mol binding energy score. These complexes were subjected to a
molecular dynamic simulation analysis for further validation to check the dynamic behavior of the
selected top-complexes. During the whole simulation time, no major changes were observed in the
docked complexes, which indicated complex stability. Additionally, the free binding energies for
the selected docked complexes were also estimated via the MM-GB/PBSA approach, and the results
revealed that the total delta energies of MMGBSA were −24.23 kcal/mol, −26.38 kcal/mol, and
−25 kcal/mol for top-1, top-2, and top-3, respectively. MMPBSA calculated the delta total energy
as −17.23 kcal/mol (top-1 complex), −24.75 kcal/mol (top-2 complex), and −24.86 kcal/mol (top-3
complex). This study explored in silico screened phytochemicals against the main protease of the
SARS-CoV-2 virus; however, the findings require an experimentally based study to further validate
the obtained results.

Keywords: Middle East respiratory syndrome coronavirus; main protease enzyme; molecular docking;
molecular dynamic simulation; binding free energy estimation

1. Introduction

Coronaviruses have been a prominent cause for the spread of deadly pneumonia in
humans since the inception of the twentieth century. In 2003, an eruption of the severe
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acute respiratory syndrome coronavirus (SARS-CoV) was accompanied by a rise in the
Middle East respiratory syndrome coronavirus (MERS-CoV), which killed 10% and 35% of
infected humans, respectively [1,2]. SARS-CoV and MERS-CoV are zoonotic viruses that
infect bats/civets and dromedaries, respectively [1]. In late December 2019, an emergence
of an unusual pneumonia disease from an unidentified source appeared in Wuhan, China.
The Chinese public health, clinical, and scientific communities acted quickly to achieve the
rapid identification of the responsible virus, and conveyed the viral gene sequence to the
rest of the globe [2].

Many laboratories recognized a new coronavirus (nCoV) as the causative agent of
this unusual pneumonia. Coronaviruses (CoVs) are a distinct class with encapsulated
single-stranded RNA [3]. They cause many diseases in humans and animals that affect the
liver, respiratory, digestive, and nervous systems. Fever, coughing, sore throat, dyspnea,
tiredness, and malaise are common symptoms. The WHO has provisionally named the
causative virus as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the
infection it caused was termed coronavirus disease 2019 (COVID-19) [4].

SARS-CoV-2 is a new virus in the CoV family that gives rise to the COVID-19 disease
in humans. The CoV contains an RNA genome and belongs to the Coronaviridae family
of the order Nidovirales. These are categorized into four genera, α, β, γ, and δ. There
are numerous serotypes for each subtype of coronavirus. Pigs, birds, cats, mice, and dogs
are among the animals affected by some of these subtypes. Birds are primarily affected
by the γ and δ coronaviruses, whereas mammals are primarily affected by the α and β

coronaviruses [5]. Humans are affected by seven different coronavirus forms, including two
common species of α coronaviruses (HCoV-229E and HCoV-NL63), two β coronaviruses
(HCoV-OC43 and CoV-HKU1), and three more pathogenic species of β coronaviruses
(SARS-CoV, MERS-CoV, and SARS-CoV-2). SARS-CoV-2 attaches a spike protein (S-protein)
to the angiotensin-converting enzyme 2 (ACE-2) receptor on a human cell surface and
enters into the human cell. The spikes on the virus’s surface resemble keys. At the surface
of our cells, there are particular locks. If the key fits the lock, then the virus invades, hijacks
our construction workforce, and duplicates [6]. The search for a COVID-19 treatment is
a prominent topic right now. The SARS (severe acute respiratory syndrome)-CoV-2 main
protease (Mpro) is one target that has gained a lot of attention from researchers. Several
COVID-19 treatment options have been proposed but the search for viable medications
to stop the infection is essential. Drugs that target conserved enzymes such as the main
protease (Mpro), papain-like protease (PLpro), nonstructural protein 12 (nsp12), and RNA-
dependent RNA polymerase (RdRP) could be wide-ranging and efficacious. The protease
enzyme is important for viral biology [7]. Consequently, the viral protease is frequently
used as a possible drug target. The Mpro is highly comparable to other proteins, so it
could be considered an effective and suitable drug target for targeting coronaviruses [8].
This protein is also involved in the regulation of transcription and translation processes;
hence, this is another reason for selecting the protein for structure-based drug designing [9].
Mpro is a homodimer protein consisting of two subunits. Each contains three domains,
termed domains I, II, and III. Domains I and II range from residue 8 to 101 and 102 to 184,
respectively, and are made up of six antiparallel β-barrels and an antiparallel globular
cluster of five alpha helices [10]. At the cleft formed by domains I and II, there is a cysteine–
histidine dyad, which, together with the N-terminal residues, runs from residue 1 to 70 [11].
Mpro has been previously targeted for designing drugs that could tackle new SARS-CoV-2
variants [12].

Furthermore, formulating antiviral medicines that hinder the SARS-CoV-2 Mpro is
possible and could prove useful. Plants generate phytochemicals that assist them in fighting
diseases caused by fungi, bacteria, and plant viruses, as well as protecting themselves from
consumption by insects and other animals [13]. The phytochemicals in plants typically have
positive health impacts when consumed [14]. Fruits, vegetables, grains, and other plant
foods may contain these bioactive nutritious molecules, which prove beneficial for human
health by lowering the chance of major chronic diseases. According to preclinical, clinical,
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and epidemiological investigations, phytochemicals may be effective for the treatment of a
number of diseases due to their antioxidant and anti-inflammatory characteristics [15].

In medical sciences, computer-aided drug-designing methods are acquiring popularity
all over the globe as a result of their sophisticated approach and successful methodolo-
gies [16]. They provide a working platform for scientists to investigate a variety of biological
phenomena, processes, and molecular interactions [17]. These procedures are primarily
cost-effective, and they comprise authentic methods that accurately forecast results [18].

Pakistani plant-based phytochemicals have not been much explored against SARS-
CoV-2. Therefore, in this study, a virtual screening of phytochemicals from Pakistani plants
was carried out to identify potential inhibitors against the SARS-CoV-2 main protease
enzyme. For this purpose, phytochemicals from Pakistani plants that possess antiviral
activities were searched for in the literature. After that, a receptor target was chosen. In our
case, the inhibitor was derived from phytochemicals while the target was the SARS-CoV-2
main protease enzyme. After these two steps, the virtual screening was performed through
a molecular dynamic simulation. Through this simulation, the pharmacokinetic properties
and toxicity of the phytochemicals as inhibitors were assessed.

Furthermore, it is significant that the computational screening of drug libraries against
a given biological macromolecule can ease experimental analyses as well as speed up new
drug discovery against SARS-CoV-2. This study will open new avenues for testing the
inhibitory potential of phytochemicals from Pakistani plants against SARS-CoV-2. Further,
the shortlisted biological potential leads may be used as parent compounds for further
derivative investigations.

2. Results
2.1. Active Site of the SARS-CoV-2 Mpro

The current research study was carried out to virtually screen phytochemicals from
Pakistani plants to identify potential inhibitors against the SARS-CoV-2 main protease
enzyme. The structure of the main protease consists of three domains, with the first two
consisting of antiparallel beta turns and the third consisting of an alpha helix arrange-
ment. Test results for the conserved domain sequences show that the SARS-CoV-2 catalytic
residues are found in a cleft between the first two domains, and the top-3 docked com-
plexes are graphically displayed in Figures 1–3. The binding energy values of top-1, top-2,
top-3, and the control N3 molecule were −7.1 kcal/mol, −7 kcal/mol, −7 kcal/mol, and
−6.9 kcal/mol, respectively. All three compounds could be seen well docked deep inside
the Mpro pocket. The size of the docked molecules was observed to be vital for adjusting
themselves in the pocket and forming a wide range of hydrophilic and hydrophobic interac-
tions. From around the pocket, the majority of the residues were seen to be in close contact
with the compound atoms. The important active pocket residues involved in interactions
with the compounds were His41, Leu141, Gly143, Ser144, Cys145, His163, His164, Glu166,
and Gln192. The bond distance of these residues with the compounds ranged from 1.5
to 3 Å. The control N3 molecule was also seen to form strong hydrogen bonding with
Phe140, Gly143, His164, Gly166, Gln189, and Thr190. The Mpro residues that were seen in
interactions with the compounds are presented in Table 1.

Table 1. Mpro amino acids seen in interactions with compounds.

S. No Compound Interactive Amino Acids

1 Top-1 His41, Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, Met149, His163, Met165, Glu166, Asp187,
Arg188, Gln189

2 Top-2 His41, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188

3 Top-3 Met49, Tyr54, Phe140, Gly143, Ser144, Cys145, Met165, His164, His172, Asp187, Gln189

4 Control
(N3)

Leu14, Thr24, Thr26, Tyr54, Phe140, Asn142, Gly143, Ser144, Cys145, His163, His164, Glu166, His172,
Gln189, Thr190, Gln192
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Figure 1. Mpro (shown by cartoon and colored by secondary structure elements) with docked top-1
compound (shown by stick).

Figure 2. Mpro (shown by cartoon and colored by secondary structure elements) with docked top-2
compound (shown by stick).

2.2. Molecular Docking of the Retrieved Phytochemical with SARS-CoV Mpro

A molecular docking analysis of the phytochemicals with the SARS-CoV-2 Mpro was
performed in order to identify potential binders against the SARS-CoV-2 main protease
enzyme. Top-10 docked compounds, along with their structure and binding free energies,
were obtained from the docking results (Table 2). Among the top-10 docked complexes, the
top-3 compounds were prioritized for further study based on the lowest binding affinity.
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Figure 3. Mpro (shown by cartoon and colored by secondary structure elements) with docked top-3
compound (shown by stick).

Table 2. Top-10 docked complexes obtained from docking results; binding energies are shown in kcal/mol.

S. No Compounds Structure Binding Energy Score
(kcal/mol)

1 BBB_26580140
(top-1) −7.2

2 BBB_26580153
(top-2) −7

3 BBB_26580155
(top-3) −7

4 BBB_26580162
(top-4) −6.9

5 BBB_265801565
(top-5) −6.8
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Table 2. Cont.

S. No Compounds Structure Binding Energy Score
(kcal/mol)

6 BBB_26580166
(top-6) −6.3

7 BBB_26580172
(top-7) −6

8 BBB_26580189
(top-8) −5.6

9 BBB_26580191
(top-9) −5.2

10 BBB_29843330
(top-10) −5.1

2.3. Selection of Top Compounds for Simulation

Among the top-10 docked compounds, three top docked complexes (top-1 (BBB_26580140),
top-2 (BBB_26580153), and top-3 (BBB_26580155)) were considered for a further molecular
dynamic study. The docked complexes were prioritized on the base of lower energy scores,
which were obtained from the docking results.

2.4. Physiochemical Properties of the Selected Compounds

The physiochemical properties of the selected compounds were also assessed. The
chemical formula, molecular weight, number of aromatic heavy atoms, fraction Csp3,
number of rotatable bonds, number of H-bond acceptors, number of H-bond donors, molar
refractivity, and TPSA were the physiochemical properties analyzed for each compound.
Additionally, lipophilicity, water solubility, and pharmacokinetic analyses of the com-
pounds were performed. Subsequently, in the pharmacokinetic analysis, the GI absorption,
BBB permeant, P-gp substrate, drug-likeness, and medicinal chemistry properties of the
selected compounds were also checked. All these details can be found in Table S1. The
compounds were found to have suitable physiochemical properties and were classified as
drug-like molecules. The compounds were also reported to show good pharmacokinetics
by having a high gastrointestinal absorption and a good oral bioavailability. The com-
pounds can be easily synthesized due to a good synthetic accessibility score. Similarly, the
compounds had no pan-assay interference (PAINS) chemical moieties, and were therefore
selective in their action.
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2.5. Molecular Dynamic Simulation Assay for the Selected Compounds

The top-docked complexes were subjected to a 500 ns MD simulation using the
“AMBER20 software” and the results obtained from the simulation trajectories consisted of
(i) the root mean square fluctuation (RMSF), (ii) the root mean square deviation (RMSD),
and (iii) the radius of gyration (RoG). In molecular dynamic simulations, peaks in the
RMSD represent the movement of the ligand within the binding pocket of the receptor,
while the RMSF analyzes how much the structure of the protein deviates from a reference
place over the whole simulation time. Additionally, the RoG represents how much the
docked complex is compact or relaxed throughout the simulation time. In Figure 4A,
the RMSD graph of the top-3 complexes are shown. The top-1 complex showed stability
throughout the simulation with a maximum RMSD of 1.8 Å. A very low deviation in the
start was due to several loops present in the protein’s structure. The RMSD of top-2 showed
a continue rise in the peak until 380 ns, and showed stability over the rest of the simulation
time with an average deviation of 4.8 Å. Despite these rising peaks, no major changes in
the ligand binding pose were observed; however, the loop region in the receptor may have
resulted in these peaks. Likewise, the RMSD of the top-3 complex showed stability after
100 ns until the end of the simulations, with an average RMSD of 2.2 Å. The average RMSF
of the top-3 complexes were noted as 1.1 Å, 1.9 Å, and 2 Å, respectively. Figure 4B shows
straight graphs for each complex, showing no major changes in the backbone structure
of the receptors. However, the top-2 complex showed few deviations at 50–70 ns and
at 250 ns, which could be due to the contact of the surface loop region with the solvent.
Additionally, the radius of gyration (RoG) graph analyzed the competence and relaxation
of the complexes. It can be seen that each complex remained compact and no major changes
were indicated throughout the simulation time, as shown in Figure 4C. The MDs results
verified that all the predicted compounds remained intact with the receptor and could
act as modulators; additionally, these results serve as strong evidence that the predicted
compounds may have inhibitory effects on the receptor in experiments.

2.6. Binding Free Energy Calculation

The binding free energies for the top-1, top-2, and top-3 docked complexes were
calculated using the MM-GBSA and MM-PBSA modules of AMBER20. The MM-GBSA
calculated a total energy of −24.23 kcal/mol for the top-1 docked complex, −26.38 kcal/mol
for the top-2 complex, and −25 kcal/mol for the top-3 docked complex. In the MM-PBSA
results, the estimated net free energy was −17.23 kcal/mol, −24.75 kcal/mol, and −24.86
kcal/mol for the top-1 complex, top-2 complex, and top-3 complex, respectively (Table 3).
The low net binding energy scores predict that the complexes form stable and strong
intermolecular interactions.

Table 3. Free binding energy estimation for selected docked complexes.

Energy Parameter Top-1 Complex Top-2 Complex Top-3 Complex

MM-GBSA

VDWAALS −27.11 −22.66 −24.69

EEL −15.90 −15.85 −12.97

EGB 22.77 15.62 18.64

ESURF −3.99 −3.49 −5.98

Delta G gas −43.01 −38.51 −37.66

Delta G solv 18.78 12.13 12.66

Delta total −24.23 −26.38 −25

MM-PBSA

VDWAALS −27.11 −22.66 −24.69

EEL −15.90 −15.85 −12.97
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Table 3. Cont.

Energy Parameter Top-1 Complex Top-2 Complex Top-3 Complex

EPB 29.11 18.12 16.44

ENPOLAR −3.33 −4.36 −3.64

Delta G gas −43.01 −38.51 −37.66

Delta G solv 25.78 13.76 12.8

Delta total −17.23 −24.75 −24.86
Key: VDWAALS (van der Waals), EEL (electrostatic), EGB (polar solvation energy of MM-GBSA), ESURF (non-
polar solvation energy), delta G gas (net gas phase energy), delta G solv (net solvation energy), delta total (net
energy of system).

Figure 4. Statistical analysis of simulation trajectories; (A) RMSD, (B) RMSF, and (C) RoG analyses.
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3. Discussion

This study was conducted with the aim of performing a screening of phytochemicals
from A. annua as potential inhibitors against the SARS COV-2 main protease enzyme
(Mpro). Several previous studies have reported the use of different types of compounds
for their affinity against SARS-CoV-2 proteins [19]. Several SARS-CoV-2 protein crystal
structures are available and might be used as potent drug targets; among them, we used the
Mpro. The Mpro of SARS-CoV-2 is a well-known potential drug target for drug designing
due to its vital role in the replication and maturation of the virus [20]. Past studies have
shown that vasicine, vasicinone, vasicinolone, vasicol, aniflorine, anisotine, vasnetine, and
orientin from Adhatoda vasica show a significant binding affinity for the Mpro [21]. Other
studies have shown GC376 as a broad-spectrum dipeptidyl inhibitor that could inhibit
the function of the Mpro [22]. The N3 crystal structure with the Mpro, evaluated by both
experimental and computational studies, has been reported to have a similar sort of results
and interact with the same set of Mpro active site residues [21]. Herein, we utilized the
docking approach to analyze the binding potency of several phytochemicals from Pakistani
medicinal plants, specifically A. annua, against the Mpro. The docking results revealed that
there are several phytochemicals that have a proper binding ability at the active site of the
Mpro and that may block the replication and maturation of the virus. The phytochemicals
have strong binding abilities and interact with the enzyme’s active site residues, enriched
by both van der Waals and electrostatic interactions. The binding affinity of the top-3
compounds were considered better and were subjected to a molecular dynamic simulation
to investigate their dynamic behavior. The stability of the drug molecule with the pathogen
target is also important, so in the molecular dynamic simulation assay, we analyzed the
stability of the selected compounds with the targeted protein to determine whether the
compounds had binding stability with target proteins or not.

According to the molecular dynamic simulation assay, we analyzed that the docked
complex underwent no major changes throughout the simulation. Some small changes
were observed in the RMSD, RMSF, and RoG values, but at the end of simulations, each
complex was observed to have good overall conformational stability. The fluctuations in
the systems were noted due to the presence of loop regions in the structure. Similarly, the
docking and molecular dynamic findings suggested the complexes as potent inhibitors
of 3-chymotrypsin and papain-like proteases [23–27]. We further estimated the binding
free energies for additional validation of the docking studies, and the results revealed that
the docked complexes attained proper stability during the computational experiments.
Although the findings are promising, further experimental validation is required to decipher
the actual inhibitory potential of the compounds.

4. Materials and Methods

The current research study was designed to virtually screen phytochemicals of Pak-
istani medicinal plants, especially A. annua, to identify potential inhibitors against the
SARS-CoV-2 main protease enzyme. The step-wise methodology is presented under the
following subheadings.

4.1. Retrieval of Antiviral Drugs

The study was commenced with the retrieval of antiviral drugs from Selleckchem Inc.,
the ZINC database, and the drug bank database. A. annua-based plant phytochemicals
were retrieved using keywords such as “A. annua”, “A. annua phytochemicals”, “A. annua
medicinal plant”, and “A. annua plant phytochemicals” [28]. The phytochemicals were
retrieved in 3D format and minimized using the same methodology described for the
Mpro [29]. All the compounds were then transported to the PyRx tool for the molecular
docking studies [30].
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4.2. Receptor and Ligand Preparation

Different phytochemicals of A. annua were used in the virtual screening approach and
were prepared through several steps to be used in the virtual screening process [31]. Herein,
before docking, we firstly prepared the ligand for docking purposes. Prior to docking,
hydrogen atoms were added, hydrogen bonding was optimized, and all the atomic clashes
were removed though structure minimization to achieve better docking results [32]. The
X-ray crystal structure of the Mpro of SARS-CoV-2 with the N3 inhibitor was obtained from
the protein data bank (PDB), with a PDB ID of 6LU7. Chain A and chain B were two chains
of the enzyme that were retrieved from protein data bank (PDB) [33]. As both chains were
homologous in structure, only chain A was prepared with the help of the UCSF Chimera
1.15 tool for an afterward analysis [34]. Energy minimization of the enzyme was performed
for 1500 steps and non-relevant ligands such as water molecules were removed [35].

4.3. Molecular Docking Study

Molecular docking, simply referred to as a docking study, is an important phenomenon
in computer-based drug discovery [36,37]. Herein, a docking pipeline was employed to
virtually screen Pakistani plant phytochemicals against the SARS-CoV-2 main protease
enzyme to identify potential inhibitors. There are different types of docking software that
can be used for docking purposes [36]. The PyRx tool employs autodock vina and can
accurately reproduce crystalized complexes [38–40]. The docking technique was carried
out using the Pakistani-based phytochemicals described above. The docking calculations
were considered over ~100 iterations for each drug molecule and docked at the substrate
binding site of the Mpro. To validate the docking studies, N3 was used as a control.

4.4. Physiochemical and Pharmacokinetic Properties of the Selected Compounds

About 90% of compounds do not reach the market because of poor physiochemi-
cal properties. Therefore, the physiochemical properties of each compound were calcu-
lated using SwissADME (webserver: http://www.swissadme.ch/index.php, accessed on
25 July 2022) [41].

4.5. Molecular Dynamic Simulation

A molecular dynamic simulation was performed via the AMBER20 software [42].
A molecular dynamic simulation (MDs) is an in silico simulation approach mainly used
for the analysis of the dynamic behavior of docked atoms and macromolecules [43,44].
In a molecular dynamic simulation pipeline, a macromolecule is allowed to undergo
dynamic behavior for a specific time period and trajectories of the atoms and molecules
are determined by solving Newton’s equations of motion [45]. In this study, the dynamic
behavior of the drugs was revealed in a 500 ns computer simulation by using the AMBER20
software (Amber, San Francisco, CA, USA). This was performed in order to decode the
drug affinity of the ligands for the receptor enzyme versus time. An appropriate number of
counter ions were added to the system to make them charge-neutral. The steepest descent
step was used to minimize the energy, while a cubic box size of eight angstroms was
considered to solvate the complexes. The force field that was considered for the proteins
was FF14SB, and GAFF was used for ligands [46]. CCPTRAJ was used for the trajectory
analyses [47].

4.6. Binding Free Energy Calculations

The binding free energies of the docked molecules were further validated using
MMPBSA [48,49]. This was accomplished using the MMPBSA.py module and calculations
were performed over 100 frames [50].

5. Conclusions

The successful production of novel drug targets generally needs a surfeit of years of
study and millions of dollars. Herein, a fast path was adopted to discover novel drug targets

http://www.swissadme.ch/index.php
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against COVID-19. In the study, molecular docking, MD modelling, and binding free energy
calculations were carried out for drug target identification. Among all the phytochemicals
of A. annua, three compounds were screened for having a binding potency with the main
protease enzyme of SARS-CoV-2, and for their ability to block the pathogenesis of SARS-
CoV-2. The selected compounds were shortlisted on the basis of the lowest binding energy
score, with the compounds with lowest net binding energy score having the proper binding
efficacy. The stability of a drug molecule with the target is important in order to prevent
the pathogenesis of the disease. An MD simulation analysis was performed to investigate
the dynamic behavior of the docked molecule. From the findings of the MD simulation
analysis, we concluded that the selected compounds had the efficacy of proper binding and
stability, which play a vital role in the prevention of disease. Furthermore, the binding free
energy calculations also revealed that the top-3 selected compounds had a better binding
potency with the main protease enzyme of the coronavirus and could stop the activity of
the target protein, as the target protein is responsible for causing COVID-19 infection. In
conclusion, the data provided in the current study could be promising in this regard, but
should be subject to appropriate experimental analyses and validation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27228103/s1, Table S1. Physiochemical properties and
pharmacokinetic analysis (ADME) of top-3 complexes.
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