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Abstract: Novel thiacalix[4]arene based ammonium ionic liquids (ILs) containing amino acid residues
(glycine and L-phenylalanine) in cone, partial cone, and 1,3-alternate conformations were synthesized
by alkylation of macrocyclic tertiary amines with N-bromoacetyl-amino acids ethyl ester followed
by replacing bromide anions with bis(trifluoromethylsulfonyl)imide ions. The melting temperature
of the obtained ILs was found in the range of 50–75 ◦C. The effect of macrocyclic core conformation
on the synthesized ILs’ melting points was shown, i.e., the ILs in partial cone conformation have the
lowest melting points. Thermal stability of the obtained macrocyclic ILs was determined via ther-
mogravimetry and differential scanning calorimetry. The onset of decomposition of the synthesized
compounds was established at 305–327 ◦C. The compounds with L-phenylalanine residues are less
thermally stable by 3–19 ◦C than the same glycine-containing derivatives.

Keywords: thiacalix[4]arenes; ionic liquids; amino acid; synthesis; thermal stability; melting point

1. Introduction

Ionic liquids (ILs) have been attracting the attention of researchers in the last two
decades. Their unique properties, e.g., low vapor pressure, low toxicity, recyclability, high
solvating ability, polarity, thermal and electrochemical stability and electrical conductivity
can be explained by the structure [1–16]. ILs consist of bulky organic cations with low
symmetry and inorganic or organic anions [17]. The physicochemical properties of ILs can
also be affected by varying the cations and anions [18].

Despite the fact that the first examples of ILs are derivatives of ammonium salts,
this class of compounds has not been fully investigated. Ammonium ILs were used
for metal ions extraction, functional materials creation, as a reaction medium, battery
electrolytes, components of pharmaceutical agents [19–23]. However, low biocompatibility
and complexation selectivity limit the practical application of these compounds. A possible
solution of this problem is the modification of ILs with various functional groups, e.g.,
amide, hydroxyl, carboxyl, amino acid fragments etc. ILs with amino acid fragments also
increase the stability of biomolecules such as enzymes and DNA [24–29]. Prior works
showed the rise of thermal stability and effect of such ILs on proteins activity and stability,
their package changing and aggregation inhibition [30–33].

One of the actively developing classes of ILs are macrocyclic and polyionic liquids
containing several cationic fragments [34–36]. The design of ILs based on supramolecular
platforms, e.g., crown ethers [37], pillararenes [38–40], and (thia)calixarenes [41–47], was
described. At this moment, the creation of such structures is a non-trivial synthetic problem.
Only a few examples of their successful synthesis are known [48,49]. Our scientific group
has shown that the introduction of quaternary ammonium, ester and amino acid fragments
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leads to obtain macrocyclic ILs in cone and 1,3-alternate conformations [50]. There are no
literature examples of the synthesis and properties study of macrocyclic ILs based on partial
cone stereoisomer. The structure of partial cone is less symmetrical than cone and 1,3-alternate,
that can hypothetically decrease the melting point of such compounds. The introduction
of different amino acid residues affects the thermal stability and melting point, which are
important characteristics of ILs. In this work, p-tert-butylthiacalix[4]arenes tetrasubstituted
at the lower rim with quaternary ammonium groups and amino acid fragments (glycine
and L-phenylalanine) in cone, partial cone, and 1,3-alternate conformations were synthesized
for the first time. The influence of the conformation of macrocyclic core and the nature of
the amino acid substituent on their thermal stability was investigated.

2. Results and Discussion
2.1. Synthesis of p-tert-butylthiacalix[4]arenes Containing Quaternary Ammonium Groups and
Fragments of Glycine and L-phenylalanine

Previously, our scientific group developed an approach to the synthesis of macrocyclic
ILs [50]. It consisted in the alkylation of p-tert-butylthiacalix[4]arene-based tertiary amines,
followed by the replacement of bromide anions. Initially, we synthesized highly reactive
alkylating agents containing amino acid residues. Glycine 1 and L-phenylalanine 2 were
selected to evaluate the effect of planar π-aromatic ring systems on physical properties,
e.g., melting point and thermal stability. The target compounds were obtained in two steps
(Scheme 1). The first step was the synthesis of the amino acid esters 3 and 4. The second
step was the interaction of the obtained compounds 3 and 4 with bromoacetic acid bromide.
N-Bromoacetyl-amino acid ethyl esters 5 and 6 were obtained in 92 and 90% yield.
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Scheme 1. Reagents and reaction conditions: (i) SOCl2, ethanol; (ii) BrCH2C(O)Br, NaHCO3, ben-
zene/water.

The next stage of this work was the study of reaction of the obtained alkylating agents 5
and 6 with tetrasubstituted thiacalixarenes 7–9 containing terminal tertiary amino groups in cone,
partial cone and 1,3-alternate conformations (Scheme 2). Targeted bromides of macrocyclic quater-
nary ammonium salts 10–15 were obtained in high yields (93–95%). Previously, a significant
decrease in the melting point by replacing halide ions with bis(trifluoromethylsulfonyl)imide
ions (N(SO2CF3)2

−
, NTf2

−) has also been shown [51]. This can be explained by the fact that the
increase of anion size decreases symmetry of the molecule. Thus, the compounds 10–15 were
reacted with lithium bis(trifluoromethylsulfonyl)imide in water at room temperature. The
macrocyclic ILs 16–21 were obtained in yields close to quantitative (Scheme 2).

The structure and the composition of all synthesized compounds were confirmed by 1H
and 13C NMR, IR spectroscopy, mass spectrometry and elemental analysis (Figures S1–S33).
The conformation of modified p-tert-butylthiacalix[4]arene derivatives can be determined
by one-dimensional 1H NMR spectroscopy based on specific proton signals of tert-butyl
group, aromatic ring, oxymethylene and amide group. Table 1 lists the values of the
characteristic chemical shifts of the compounds 10–21. The protons of oxymethylene
and amide groups of the compound 15 (1,3-alternate) are located in the shielded zone of
neighboring aromatic rings of the macrocycle. These signals in the 1H NMR spectrum
are recorded upfield (4.00 and 8.02 ppm, respectively) of those of the macrocycles 11 in
cone conformation (4.81 and 8.50 ppm, respectively). The chemical shifts of the aromatic
protons depend less on the conformation of the macrocyclic platform, shifting by only
0.20 ppm upfield from cone 11 (7.39 ppm) to 1,3-alternate 15 (7.59 ppm) stereoisomers. This
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provides evidence of the shielding effect of neighboring aryl fragments in cone stereoisomer
on the aryl protons of macrocycle ring. The tert-butyl groups proton signals of cone 11 were
found upfield (1.07 ppm) in contrast to the same signals of 1,3-alternate 15 (1.19 ppm). This
effect was related to the spatial location of the tert-butyl groups of 1,3-alternate stereoisomer
shielded by neighboring fragments of the macrocycle. The proton signals in partial cone 13
differ from cone and 1,3-alternate due to the asymmetric structure of the macrocycle. The
tert-butyl groups proton signals of partial cone 13 were recorded upfield (1.00, 1.10 and
1.27 ppm) as singlets with 2:1:1 intensity ratio. The oxymethylene proton signals were
located in 4.40–4.77 ppm as two singlets and an AB–system. The aromatic ring proton
signals are recorded at 7.67, 7.75, 7.01–7.65 ppm as two singlets and an AB–system. The
amide group proton signals appeared in 8.31–8.48 ppm as broadened triplets. This effect
of AB–systems in the 1H NMR spectra due to the asymmetry of partial cone stereoisomer
structure shielded by neighboring aromatic fragments of the macrocycle.
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Table 1. Chemical shifts (ppm) and spin-spin coupling constants (Hz) in the 1H NMR spectra of the
compounds 10–21 (DMSO-d6, 298 K, 400 MHz).

Compounds Amino Acid
Fragments/Anion

tBu OCH2 ArH NHCH2CH2CH2N+

10 (cone) * Gly/Br− 1.12 5.03 7.36 8.68

11 (cone) L-Phe/Br− 1.07 4.81 7.39 8.50

12 (partial cone) Gly/Br− 1.00, 1.17, 1.27
4.40 (2JHH = 13.6 Hz),

4.49, 4.51,
4.80 (2JHH = 13.6 Hz)

7.67, 7.01
(4JHH = 2.4 Hz), 7.65
(4JHH = 2.4 Hz), 7.75

8.36, 8.45, 8.50

13 (partial cone) L-Phe/Br− 1.00, 1.10, 1.27
4.42 (2JHH = 13.5 Hz),

4.48, 4.51,
4.79 (2JHH = 13.5 Hz)

7.67, 7.01
(4JHH = 2.4 Hz), 7.65
(4JHH = 2.4 Hz), 7.75

8.31, 8.41, 8.48

14 (1,3-alternate) * Gly/Br− 1.20 3.99 7.60 8.04

15 (1,3-alternate) L-Phe/Br− 1.19 4.00 7.59 8.02

16 (cone) * Gly/NTf2
− 1.11 4.89 7.35 8.48

17 (cone) L-Phe/NTf2
− 1.06 4.79 7.38 8.48

18 (partial cone) Gly/NTf2
− 1.00, 1.27, 1.30

4.39 (2JHH = 13.6 Hz),
4.49, 4.51, 4.78

(2JHH = 13.6 Hz)

7.67, 7.01
(4JHH = 2.4 Hz), 7.65
(4JHH = 2.4 Hz), 7.75

8.31, 8.41, 8.50

19 (partial cone) L-Phe/NTf2
− 1.00, 1.27, 1.28

4.40 (2JHH = 13.5 Hz),
4.49, 4.52,

4.79 (2JHH = 13.5 Hz)

7.67, 7.02
(4JHH = 2.4 Hz), 7.65
(4JHH = 2.4 Hz), 7.75

8.28, 8.40, 8.48

20 (1,3-alternate) * Gly/NTf2
− 1.20 3.99 7.59 8.03

21 (1,3-alternate) L-Phe/NTf2
− 1.19 3.99 7.59 8.00

* previously published data [50].

It should be noted that the proton signals in the 1H NMR spectra of the compounds 10–
15 containing halide anions, and the proton signals of salts 16–21 containing NTf2

− anions
have identical multiplicity and exert very similar chemical shifts. This can be explained by
the ability of compounds to form solvent-separated ion pairs. The quartet observed in the
13C NMR spectra of compounds 16–21 at 120 ppm corresponds to the N(SO2CF3)2

− anion.
The obtained salts 10–21 were characterized by ESI mass spectrometry. The mass spectra of
the compounds 10–15 showed peaks corresponding to one-, two-, three-, and four-charged
molecular ions without one, two, three, and four bromide anions. The obtained data also
confirm the formation of solvate-separated ion pairs by the compounds 10–21.

2.2. The Study of Thermal Stability of the Obtained Thiacalix[4]arene Based ILs

Melting point is one of the most important characteristics of ILs. Melting points of
the synthesized thiacalix[4]arenes 10–21 are presented in Table 2. The replacement of
halide ions by NTf2

− ions leads to significant decrease of the melting points of the thia-
calix[4]arenes by 39–55 ◦C. All synthesized macrocycles 16–21 containing NTf2

− anions
melt below 100 ◦C. It is well known that molecular packing density in the crystal lattice is a
major factor affecting the melting point of the compound. More symmetrical molecules
have denser packing in crystal and higher melting points. A comparison with the ob-
tained results from previously published compounds with glycine residues [50] found
that symmetrical 1,3-alternate and cone stereoisomers showed higher melting points than
asymmetrical partial cone structures. Thus, our hypothesis of lowering the melting point
of partial cone stereoisomers (the compounds 12, 13, 18, 19) due to their molecular asym-
metry was confirmed experimentally. However, the decrease of the melting point of the
targeted compounds due to aromatic fragments in amino acid residues was not confirmed.
The melting points of the macrocycles containing glycine fragments are lower by 1–11 ◦C
compared to stereoisomers with L-phenylalanine fragments. Apparently, these results can
be explained by the interaction of L-phenylalanine fragments with each other and the for-
mation of additional hydrophobic and π-π interactions, which leads to a denser molecular
packing in the crystal lattice and an increase in the melting point of the compounds as
a result.
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Table 2. Melting points (◦C) of the macrocycles 10–21 containing amino acid fragments.

Amino
Acid

Fragments

Br− N(SO2CF3)2−

Cone Partial
Cone

1,3-
alternate Cone Partial

Cone
1,3-

alternate

Gly 114 * (10) 105 (12) 112 * (14) 63 * (16) 50 (18) 73 * (20)

L-Phe 118 (11) 110 (13) 123 (15) 64 (17) 55 (19) 75 (21)
* previously published data [50].

High thermal stability is one of the characteristic properties of ILs [52,53]. The correla-
tion between the obtained macrocyclic ILs structure and their thermal stability (influence
of macrocycle conformation and amino acid residues) was investigated via thermogravi-
metric analysis (TG). Figure 1 shows the TG curves for the compounds 16–21. All obtained
macrocyclic ILs were thermally stable (decomposition temperature Tonset = 305–327 ◦C).
Glycine containing compounds decomposed at a higher temperature (by 3–19 ◦C) com-
pared to the compounds containing L-phenylalanine fragments. Many low molecular
weight compounds for biofuel technology are obtained by pyrolysis (thermal lysis) of oligo-
and polypeptides at a temperature of 300–350 ◦C [54]. However, thermal decomposition of
proteins occurs at temperatures between 175 and 250 ◦C. In our case, the decomposition
temperature of the amino acids containing compounds 16–21 was significantly higher.
The obtained results are also consistent with the literature data on the thermal stability of
macrocyclic ILs [38,50]. Temperature data T10% and T50% corresponding to 10% and 50%
weight loss on decomposition are presented in Table 3. These characteristics are important
in materials thermal stability research. The difference between Tonset, T10% and T50% is
the measure of decomposition rate [52,55]. Tonset and T10% of the studied compounds
differ by 0–3 ◦C. The difference between Tonset and T50% is more considerable, namely
41–109 ◦C. These results correspond to decomposition rate of non-macrocyclic ILs contain-
ing quaternary ammonium fragments [56,57]. The differential scanning calorimetry (DSC)
heating curves of the synthesized compounds (Figure S34) in the temperature range of
300–375 ◦C clearly show endo effects corresponding to the first stage of decomposition. The
values of endo effects for the compounds 16, 18, 20 are similar (38–41 J/g) (Figure S34a).
These values are larger for the compounds 17, 19, 21 (53–55 J/g) (Figure S34b). The further
decomposition of the obtained compounds at temperatures above 375 ◦C is accompanied
by exo effects.
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Table 3. TG data for the macrocyclic ILs 16–21 (◦C).

Compounds Amino Acid
Fragments Tonset T10% T50%

16 (cone)

Gly

320 320 405

18 (partial cone) 324 321 365

20 (1,3-alternate) 327 329 391

17 (cone)

L-Phe

317 314 389

19 (partial cone) 305 305 414

21 (1,3-alternate) 323 321 382

The experimental results and determined correlations between the synthesized macro-
cyclic ILs structure and their thermal characteristics showed that the introduction of
aromatic amino acid (L-phenylalanine) fragments into ammonium salts based on p-tert-
butylthiacalixarene reduces the thermal stability by 3–19 ◦C compared to glycine containing
compounds. The melting points of the L-phenylalanine derivatives were higher than glycine
ones by 1–11 ◦C. Oligo- and polypeptides thermal stability literature data [58–60] show that
protein thermal stability increase is associated with rise of the number of charged amino
acid fragments in their structures capable of electrostatic and cation–π interactions [61]. The
presence of amino acids with uncharged polar fragments in protein structures reduces their
thermal stability due to biomolecule packing efficiency decrease [62]. Thus, the obtained
macrocyclic ILs are considered as biomimetic models of oligo- and polypeptides with the
same structural patterns. The obtained results can also be applied to design of sensor
systems capable for target substrate recognition.

3. Materials and Methods
3.1. General

All chemicals were purchased from Acros (Fair Lawn, NJ, USA), and most of them
were used as received without additional purification. Organic solvents were purified
by standard procedures. 1H NMR and 13C NMR spectra were obtained on the Bruker
Avance-400 spectrometer (Bruker Corp., Billerica, MA, USA) (13C{1H} 100 MHz and 1H
400 MHz). Chemical shifts were determined against the signals of residual protons of
deuterated solvent (DMSO-d6). The compounds concentration was equal to 3–5% by the
weight in all records. The FTIR ATR spectra were recorded on the Spectrum 400 FT-IR
spectrometer (Perkin–Elmer, Seer Green, Llantrisant, UK) with the Diamond KRS-5 attenu-
ated total internal reflectance attachment (resolution 0.5 cm−1, accumulation of 64 scans,
recording time 16 s in the wavelength range 400–4000 cm−1). Elemental analysis was
performed on the Perkin–Elmer 2400 Series II instruments (Perkin–Elmer, Waltham, MA,
USA). Melting points were determined using the Boetius Block apparatus (VEB Kombinat
Nagema, Radebeul, Germany). Mass spectra (ESI) were recorded on an AmaZonX mass
spectrometer (Bruker Daltonik GmbH, Bremen, Germany). The drying gas was nitrogen
at 300 ◦C. The capillary voltage was 4.5 kV. The samples were dissolved in acetonitrile
(concentration ~ 10−6 g mL−1). ESI HRMS experiments were performed at Agilent 6550
iFunnel Q-TOF LC/MS (Agilent Technologies, Santa Clara, CA, USA), equipped with
Agilent 1290 Infinity II LC. Simultaneous thermogravimetry (TG) and differential scanning
calorimetry (DSC) of solid samples were performed using the thermoanalyzer STA 449F1
Jupiter (Netzsch, Germany) at the temperature range of 40–500 ◦C. The measurements
were carried out in aluminum crucibles in a dynamic argon atmosphere (75 mL/min) at a
temperature scanning rate of 10 ◦C/min. The weights of sample were 4.9–10.2 mg.

N-Bromoacetyl-glycine ethyl ester 5 and thiacalix[4]arenes 7–10, 14, 16, 20 were syn-
thesized according to the literature procedures [50,63–65].
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3.2. Procedure for the Synthesis of the Compound 4

L–Phenylalanine 2 (1 g, 6.05 mmol) was dissolved in 10 mL of ethanol in a round-
bottom flask equipped with a magnetic stirrer. Thionyl chloride (0.88 mL, 12.10 mmol)
was added dropwise with stirring. The reaction mixture was left for 30 min at room
temperature, then the reaction was carried out under heating for 4 h. The solvent was
removed on a rotary evaporator. Diethyl ether was added to the residue, after which
the formed precipitate was filtered off. The obtained product was dried in vacuum over
phosphorus pentoxide.

L–Phenylalanine Ethyl Ester Hydrochloride (4) [66]
1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.07 (t, 3JHH = 7.1 Hz, 3H, CH3CH2O), 3.01–

3.20 (m, 2H, CH2Ph), 4.08 (m, 2H, CH3CH2O), 4.23 (m, 1H, NHCHCO), 7.22–7.35 (m, 5H,
PhCH2), 8.64 (br.s, 3H, NH3

+).

3.3. Procedure for the Synthesis of the Compound 6

The solution of Na2CO3 (3.46 g, 32.66 mmol) in 50 mL of water was added to the
suspension of L-phenylalanine ethyl ester hydrochloride 4 (3.41 g, 14.85 mmol) in benzene
(50 mL). The reaction mixture was then cooled to 0 ◦C and bromoacetyl bromide (2.6 mL,
30 mmol) was added dropwise. The reaction mixture was allowed to warm to room
temperature and stirred for 12 h with controlling pH = 6.5 by adding acetic acid. The
organic phase was separated on a separating funnel and dried over anhydrous magnesium
sulfate. Then the benzene was removed on a rotary evaporator. The obtained product 6
was dried in vacuum over phosphorus oxide.

N-Bromoacetyl-L-Phenylalanine Ethyl Ester (6) [66]
1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.11 (t, 3JHH = 7.1 Hz, 3H, CH3CH2O), 2.90–3.05

(m, 2H, CH2Ph), 3.86 (s, 2H, BrCH2CO), 4.06 (q, 3JHH = 7.1 Hz, 2H, CH3CH2O), 4.45 (m,
1H, NHCHCO), 7.20–7.30 (m, 5H, PhCH2), 8.75 (d, 3JHH = 7.5 Hz, 1H, CONHCH).

3.4. General Procedure for the Synthesis of the Compounds 10–15

The compounds 7–9 (0.30 g, 0.023 mmol) were dissolved in 5 mL of acetonitrile in a
round-bottom flask equipped with a magnetic stirrer and reflux condenser. An equimolar
amount per functional group (0.092 mmol) of the alkylating agent (N-bromoacetyl-glycine
ethyl ester 5 or N-bromoacetyl-L-phenylalanine ethyl ester 6) was added. The reaction
mixture was refluxed for 18 h. Then the solvent was removed on a rotary evaporator. The
obtained product was dried in vacuum over phosphorus oxide.

3.4.1. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis{N-[3′-(dimethyl{[(S)-
ethoxycarbonylbenzylmethyl]aminocarbonylmethyl}ammonio)propyl]aminocarbonylmethoxy}-
2,8,14,20-thiacalix[4]arene Tetrabromide in cone Conformation (11)

Yield: 0.57 g (96%). M.p. 118 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.06 (s, 36H,
(CH3)3C), 1.11 (t, 3JHH = 7.1 Hz, 12H, CH3CH2O), 1.88 (m, 8H, NHCH2CH2CH2N+),
2.93 (m, 8H, CH2Ph), 3.08 (s, 24H, (CH3)2N+), 3.20 (m, 8H, NHCH2CH2CH2N+), 3.45
(m, 8H, NHCH2CH2CH2N+), 4.02–4.13 (m, 16H, CH3CH2O, N+CH2CO), 4.55 (m, 4H,
NHCHCO), 4.80 (s, 8H, OCH2CO), 7.21–7.30 (m, 20H, Ph), 7.38 (s, 8H, ArH), 8.51 (br.s,
4H, NHCH2CH2CH2N+), 9.12. (d, 3JHH = 7.5 Hz, 4H, CONHCH). 13C NMR (DMSO-d6, δ,
ppm): 13.9, 22.6, 30.7, 33.9, 35.4, 36.5, 51.1, 53.7, 60.9, 61.7, 62.8, 74.2, 126.7, 128.1, 128.3, 129.1,
134.4, 136.6, 146.7, 157.9, 163.1, 168.3, 170.6. Elemental analysis. C120H168Br4N12O20S4 C,
56.60; H, 6.65; Br, 12.55; N, 6.60; S, 5.04. Found: C, 56.72; H, 6.85; Br, 12.23; N, 6.43; S, 4.79.
MS (ESI), m/z: calculated for 556.5 [M–4 Br−]4+, 1192.5 [M–2 Br−]2+; found: 556.6 [M–4
Br−]4+, 1193.0 [M–2 Br−]2+. FTIR ATR (ν, cm−1): 1095 (COC), 1677 (C=O), 3191 (N–H).



Molecules 2022, 27, 8006 8 of 13

3.4.2. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis{N-[3′-
(dimethyl{[ethoxycarbonylmethyl]aminocarbonylmethyl}ammonio)propyl]aminocarbonylmethoxy}-
2,8,14,20-tetrathiacalix[4]arene Tetrabromide in partial cone Conformation (12)

Yield: 0.477 g (94%). M.p. 105 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.00 (s, 18H,
(CH3)3C), 1.14–1.21 (m, 12H, CH3CH2O), 1.27 (s, 9H, (CH3)3C), 1.29 (s, 9H, (CH3)3C),
1.94 (m, 8H, NHCH2CH2CH2N+), 3.13 (s, 6H, (CH3)2N+), 3.19 (s, 18H, (CH3)2N+), 3.39
(m, 8H, NHCH2CH2CH2N+), 3.53 (m, 8H, NHCH2CH2CH2N+), 3.93 (d, 3JHH = 5.8 Hz,
8H, NHCH2CO), 4.07–4.13 (m, 16H, CH3CH2O, N+CH2CO), 4.40 (d, 2JHH = 13.6 Hz, 2H,
OCH2C(O)), 4.49 (s, 2H, OCH2C(O)), 4.51 (s, 2H, OCH2C(O)), 4.80 (d, 2JHH = 13.6 Hz,
2H, OCH2C(O)), 7.01 (d, 4JHH = 2.4 Hz, 2H, ArH), 7.65 (d, 4JHH = 2.4 Hz, 2H, ArH),
7.67 (s, 2H, ArH), 7.75 (s, 2H, ArH), 8.32 (br.s, 2H, NHCH2CH2CH2N+), 8.42 (br.s, 1H,
NHCH2CH2CH2N+), 8.50 (br.s, 1H, NHCH2CH2CH2N+), 9.05. (m, 4H, CONHCH). 13C
NMR (DMSO-d6, δ, ppm): 14.1, 22.6, 30.7, 31.0, 33.8, 35.5, 40.8, 51.3, 60.8, 61.8, 62.7, 72.6,
126.4, 127.1, 127.6, 128.1, 133.7, 134.0, 135.1, 135.4, 145.3, 145.7, 146.5, 157.2, 159.4, 163.7,
166.9, 168.0, 168.8, 169.1. Elemental analysis. C92H144Br4N12O20S4 C, 50.55; H, 6.64; Br,
14.62; N, 7.69; S, 5.87; Found: C, 51.52; H, 6.25; Br, 14.26; N, 7.47; S, 5.89. HRMS (ESI), m/z:
calculated for: 466.2370 [M–4 Br−]4+, 647.9557 [M–3 Br−]3+, 1012.3919 [M–2 Br−]2+; found:
466.2364 [M–4 Br−]4+, 647.9541 [M–3 Br−]3+, 1012.3937 [M–2 Br−]2+. FTIR ATR (ν, cm−1):
1094 (COC), 1675 (C=O), 3207 (N–H).

3.4.3. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis{N-[3′-(dimethyl{[(S)-
ethoxycarbonylbenzylmethyl]aminocarbonylmethyl}ammonio)propyl]aminocarbonylmethoxy}-
2,8,14,20-thiacalix[4]arene Tetrabromide in partial cone Conformation (13)

Yield: 0.551 g (93%). M.p. 110 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.00 (s,
18H, (CH3)3C), 1.10 (t, 3JHH = 7.1 Hz, 12H, CH3CH2O), 1.27 (s, 9H, (CH3)3C), 1.28 (s,
9H, (CH3)3C), 1.85 (m, 8H, NHCH2CH2CH2N+), 2.90–2.93 (m, 8H, CH2Ph), 3.03 (s, 6H,
(CH3)2N+), 3.09 (s, 18H, (CH3)2N+), 3.13–3.24 (m, 8H, NHCH2CH2CH2N+), 3.46 (m, 8H,
NHCH2CH2CH2N+), 4.01–4.13 (m, 16H, CH3CH2O, N+CH2CO), 4.42 (d, 2JHH = 13.5 Hz,
2H, OCH2C(O)), 4.48 (s, 2H, OCH2C(O)), 4.51 (s, 2H, OCH2C(O)), 4.55–4.60 (m, 4H,
NHCHCO), 4.79 (d, 2JHH = 13.5 Hz, 2H, OCH2C(O)), 7.01 (d, 4JHH = 2.4 Hz, 2H, Ar-H),
7.22–7.30 (m, 20H, Ph), 7.65 (d, 2H, 4JHH = 2.4 Hz, ArH), 7.67 (s, 2H, ArH), 7.75 (s, 2H, ArH),
8.31 (br.s, 2H, NHCH2CH2CH2N+), 8.41 (br.s, 1H, NHCH2CH2CH2N+), 8.48 (br.s, 1H,
NHCH2CH2CH2N+), 9.12 (d, 3JHH = 7.5 Hz, 4H, CONHCH). 13C NMR (DMSO-d6, δ, ppm):
14.0, 22.6, 28.8, 30.7, 31.0, 33.8, 34.0, 35.5, 36.5, 51.2, 53.7, 54.0, 60.7, 61.0, 61.6, 61.8, 62.8, 63.1,
72.6, 126.4, 126.7, 127.1, 127.6, 128.3, 129.2, 133.7, 134.1, 135.1, 135.4, 136.6, 145.3, 145.7, 146.5,
157.2, 159.4, 163.2, 166.9, 168.0, 168.8, 170.7. Elemental analysis. C120H168Br4N12O20S4 C,
56.60; H, 6.65; Br, 12.55; N, 6.60; S, 5.04; found: C, 56.52; H, 6.55; Br, 12.26; N, 6.47; S, 4.89.
HRMS (ESI), m/z: calculated for: 556.5348 [M–4 Br−]4+, 768.3527 [M–3 Br−]3+, 1192.4858
[M–2 Br−]2+; found: 556.5339 [M–4 Br−]4+, 768.3522 [M–3 Br−]3+, 1192.4872 [M–2 Br−]2+.
FTIR ATR (ν, cm−1): 1094 (COC), 1672 (C=O), 3187 (N–H).

3.4.4. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis{N-[3′-(dimethyl{[(S)-
ethoxycarbonylbenzylmethyl]aminocarbonylmethyl}ammonio)propyl]aminocarbonylmethoxy}-
2,8,14,20-thiacalix[4]arene tetrabromide in 1,3-alternate Conformation (15)

Yield: 0.574 g (97%). M.p. 123 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.12 (t,
3JHH = 7.1 Hz, 12H, CH3CH2O), 1.19 (s, 36H, (CH3)3C), 1.90 (m, 8H, NHCH2CH2CH2N+),
3.01 (m, 8H, CH2Ph), 3.09 (s, 24H, (CH3)2N+), 3.15 (m, 8H, NHCH2CH2CH2N+), 3.45 (m,
8H, NHCH2CH2CH2N+), 4.00 (s, 8H, OCH2CO), 4.01–4.14 (m, 16H, CH3CH2O, N+CH2CO),
4.59 (m, 4H, NHCHCO), 7.20–7.30 (m, 20H, Ph), 7.59 (s, 8H, ArH), 8.02 (br.s, 4H,
NHCH2CH2CH2N+), 9.12 (d, 3JHH = 7.6 Hz, 4H, CONHCH).13C NMR (DMSO-d6, δ, ppm):
13.9, 22.6, 30.7, 33.9, 35.4, 36.5, 51.1, 53.7, 60.9, 61.7, 62.8, 74.2, 126.7, 128.1, 128.3, 129.1, 134.5,
136.6, 146.7, 157.9, 163.1, 168.3, 170.6. Elemental analysis. C120H168Br4N12O20S4 C, 56.60; H,
6.65; Br, 12.55; N, 6.60; S, 5.04; found: C, 56.78; H, 6.26; Br, 12.21; N, 6.31; S, 4.07. MS (ESI),
m/z: calculated: 556.5 [M–4 Br−]4+, 768.3 [M–3 Br−]3+, 1192.5 [M–2 Br−]2+, 2463.9 [M–Br−]+;
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found: 556.5 [M–4 Br−]4+, 768.9 [M–3 Br−]3+, 1193.5 [M–2 Br−]2+, 2464.0 [M–Br−]+. FTIR
ATR (ν, cm−1): 1086 (COC), 1675 (C=O), 3186 (N–H).

3.5. General Procedure for the Synthesis of the Compounds 16–21

The compounds 10–15 (0.10 g) were dissolved in 2 mL of water in a round-bottom
flask equipped with a magnetic stirrer and reflux condenser. An equimolar amount per
functional group of the lithium bis(trifluoromethylsulfonyl)imide was added. The reaction
mixture was stirred for 24 h. The resulting precipitate was filtered off. The obtained product
was dried in vacuum over phosphorus oxide.

3.5.1. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis{N-[3′-(dimethyl{[(S)-
ethoxycarbonylbenzylmethyl]aminocarbonylmethyl}ammonio)propyl]aminocarbonylmethoxy}-
2,8,14,20-thiacalix[4]arene tetra[bis(trifluoromethylsulfonyl)imide] in cone
Conformation (17)

Yield: 0.127 g (97%). M.p. 64 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.06 (s, 36H,
(CH3)3C), 1.12 (t, 3JHH = 7.1 Hz, 12H, CH3CH2O), 1.86 (m, 8H, NHCH2CH2CH2N+), 2.89–
295 (m, 8H, CH2Ph), 3.06 (s, 24H, (CH3)2N+), 3.20 (m, 8H, NHCH2CH2CH2N+), 3.42
(m, 8H, NHCH2CH2CH2N+), 3.98–4.09 (m, 16H, CH3CH2O, N+CH2CO), 4.57 (m, 4H,
NHCHCO), 4.79 (s, 8H, OCH2CO), 7.19–7.29 (m, 20H, Ph), 7.38 (s, 8H, ArH), 8.48 (br.s,
4H, NHCH2CH2CH2N+), 9.06 (d, 3JHH = 7.5 Hz, 4H, CONHCH). 13C NMR (DMSO-d6, δ,
ppm): 13.9, 22.6, 30.7, 33.9, 35.4, 36.6, 51.2, 53.5, 61.0, 61.7, 62.6, 74.2, 119.5 (1JCF = 322 Hz),
126.8, 128.1, 128.4, 129.1, 134.5, 136.5, 146.8, 158.0, 163.1, 168.3, 170.6. Elemental analysis.
C128H168F24N16O36S12 C, 45.93; H, 5.06; F, 13.62; N, 6.69; S, 11.49; found: C, 45.72; H, 5.85; F,
13.23; N, 6.43; S, 11.79. HRMS (ESI), m/z: calculated for: 556.5348 [M–4 NTf2

−]4+, 835.3524
[M–3 NTf2

−]3+; found: 556.5220 [M–4 NTf2
−]4+, 835.3328 [M–3 NTf2

−]3+. FTIR ATR (ν,
cm−1): 1094 (COC), 1668 (C=O), 3065 (N–H).

3.5.2. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis{N-[3′-
(dimethyl{[ethoxycarbonylmethyl]aminocarbonylmethyl}ammonio)propyl]aminocarbonylmethoxy}-
2,8,14,20-tetrathiacalix[4]arene tetra[bis(trifluoromethylsulfonyl)imide] in partial cone
Conformation (18)

Yield: 0.131 g (96%). M.p. 50 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.00 (s, 18H,
(CH3)3C), 1.14–1.20 (m, 12H, CH3CH2O), 1.27 (s, 9H, (CH3)3C), 1.30 (s, 9H, (CH3)3C), 1.93
(m, 8H, NHCH2CH2CH2N+), 3.13 (s, 6H, (CH3)2N+), 3.18 (s, 18H, (CH3)2N+), 3.23–3.29
(m, 8H, NHCH2CH2CH2N+), 3.52 (m, 8H, NHCH2CH2CH2N+), 3.93 (d, 3JHH = 5.8 Hz, 8H,
OCH2CH3), 4.07 (m, 8H, N+CH2CO), 4.13 (m, 8H, NHCH2CO), 4.39 (d, 2JHH = 13.6 Hz,
2H, OCH2C(O)), 4.49 (s, 2H, OCH2C(O)), 4.51 (s, 2H, OCH2C(O)), 4.78 (d, 2JHH = 13.6 Hz,
2H, OCH2C(O)), 7.01 (d, 4JHH = 2.4 Hz, 2H, ArH), 7.65 (d, 4JHH = 2.4 Hz, 2H, ArH),
7.68 (s, 2H, ArH), 7.75 (s, 2H, ArH), 8.31 (br.s, 2H, NHCH2CH2CH2N+), 8.41 (br.s, 1H,
NHCH2CH2CH2N+), 8.50 (br.s, 1H, NHCH2CH2CH2N+), 9.05. (m, 4H, CONHCH). 13C
NMR (DMSO-d6, δ, ppm): 14.1, 22.6, 30.7, 31.0, 33.8, 35.5, 40.8, 51.3, 60.8, 61.8, 62.7, 72.6,
119.5 (1JCF = 322 Hz), 126.4, 127.1, 127.6, 128.1, 133.7, 134.0, 135.1, 135.4, 145.3, 145.7, 146.5,
157.2, 159.4, 163.7, 166.9, 168.0, 169.1. Elemental analysis. C100H144F24N16O36S12 C, 40.21;
H, 4.86; F 15.26, N, 7.50; S, 12.88 found: C, 39.26; H, 4.46; F 15.08, N, 6.95; S, 12.49. HRMS
(ESI), m/z: calculated for: 466.2370 [M–4 NTf2

−]4+, 715.2898 [M–3 NTf2
−]3+, 1212.8936

[M–2 NTf2
−]2+; found: 466.2357 [M–4 NTf2

−]4+, 715.2875 [M–3 NTf2
−]3+, 1212.8914 [M–2

NTf2
−]2+. FTIR ATR (ν, cm−1):1094 (C–O–C), 1674 (C=O), 3207 (N–H).

3.5.3. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis{N-[3′-(dimethyl{[(S)-
ethoxycarbonylbenzylmethyl]aminocarbonylmethyl}ammonio)propyl]aminocarbonylmethoxy}-
2,8,14,20-thiacalix[4]arene tetra[bis(trifluoromethylsulfonyl)imide] in partial cone
Conformation (19)

Yield: 0.125 g (95%). M.p. 55 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.00 (s,
18H, (CH3)3C), 1.10 (t, 3JHH = 7.1 Hz, 12H, CH3CH2O), 1.27 (s, 9H, (CH3)3C), 1.28 (s,
9H, (CH3)3C), 1.86 (m, 8H, NHCH2CH2CH2N+), 2.90–2.95 (m, 8H, CH2Ph), 3.02 (s, 6H,
(CH3)2N+), 3.08 (s, 18H, (CH3)2N+), 3.13–3.24 (m, 8H, NHCH2CH2CH2N+), 3.42–3.45 (m,
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8H, NHCH2CH2CH2N+), 4.04–4.07 (m, 16H, CH3CH2O, N+CH2CO), 4.40 (d, 2JHH = 13.5 Hz,
2H, OCH2C(O)), 4.49 (s, 2H, OCH2C(O)), 4.52 (s, 2H, OCH2C(O)), 4.56–4.61 (m, 4H,
NHCHCO), 4.79 (d, 2JHH = 13.5 Hz, 2H, OCH2C(O)), 7.02 (d, 4JHH = 2.4 Hz, 2H, ArH),
7.21–7.28 (m, 20H, Ph), 7.65 (d, 4JHH = 2.4 Hz, 2H, ArH), 7.67 (s, 2H, ArH), 7.75 (s, 2H,
ArH), 8.28 (br.s, 2H, NHCH2CH2CH2N+), 8.40 (br.s, 1H, NHCH2CH2CH2N+), 8.48 (br.s,
1H, NHCH2CH2CH2N+), 9.09. (m, 4H, CONHCH). 13C NMR (DMSO-d6, δ, ppm): 13.9,
22.6, 30.7, 31.0, 33.8, 35.5, 36.6, 51.3, 53.6, 61.0, 61.7, 62.6, 72.6, 119.5 (1JCF = 322 Hz), 126.3,
126.8, 127.7, 128.4, 129.2, 133.7, 134.1, 135.2, 135.4, 136.6, 145.4, 145.7, 146.6, 157.3, 163.1,
168.0, 168.8, 170.7. Elemental analysis. C128H168F24N16O36S12 C, 45.93; H, 5.06; F, 13.62; N,
6.69; S, 11.49; found: C, 45.79; H, 5.00; F, 13.35; N, 6.43; S, 11.47. HRMS (ESI), m/z: calculated
for: 556.5348 [M–4 NTf2

−]4+, 835.3524 [M–3 NTf2
−]3+; found: 556.5206 [M–4 NTf2

−]4+,
835.3283 [M–3 NTf2

−]3+. FTIR ATR (ν, cm−1): 1096 (COC), 1668 (C=O), 3064 (N–H).

3.5.4. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis{N-[3′-(dimethyl{[(S)-
ethoxycarbonylbenzylmethyl]aminocarbonylmethyl}ammonio)propyl]aminocarbonylmethoxy}-
2,8,14,20-thiacalix [4]arene tetra[bis(trifluoromethylsulfonyl)imide] in 1,3-alternate
Conformation (21)

Yield: 0.129 g (98%). M.p. 75 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.12 (t,
3JHH = 7.1 Hz, 12H, CH3CH2O), 1.19 (s, 36H, (CH3)3C), 1.89 (m, 8H, NHCH2CH2CH2N+),
2.91–2.96 (m, 8H, CH2Ph), 3.08 (s, 24H, (CH3)2N+), 3.15 (m, 8H, NHCH2CH2CH2N+),
3.43 (m, 8H, NHCH2CH2CH2N+), 3.99 (s, 8H, OCH2CO), 4.03–4.07 (m, 16H, CH3CH2O,
N+CH2CO), 4.59 (m, 4H, NHCHCO), 7.23–7.28 (m, 20H, Ph), 7.59 (s, 8H, ArH), 8.00 (br.s,
4H, NHCH2CH2CH2N+), 9.07 (d, 3JHH = 7.6 Hz, 4H, CONHCH). 13C NMR (DMSO-d6, δ,
ppm): 13.9, 22.6, 30.8, 33.9, 35.8, 36.6, 51.2, 53.6, 61.0, 61.7, 62.5, 71.0, 119.5 (1JCF = 322 Hz),
126.7, 127.6, 128.4, 129.2, 133.1, 136.6, 146.1, 157.2, 163.1, 167.4, 170.7. Elemental analysis.
C128H168F24N16O36S12 C, 45.93; H, 5.06; F, 13.62; N, 6.69; S, 11.49; found C, 45.22; H, 5.05; F,
13.53; N, 6.09; S, 11.09. HRMS (ESI), m/z: calculated for: 556.5348 [M–4 NTf2

−]4+, 835.3524
[M–3 NTf2

−]3+; found: 556.5198 [M–4 NTf2
−]4+, 835.3278 [M–3 NTf2

−]3+. FTIR ATR (ν,
cm−1): 1093 (COC), 1669 (C=O), 3064 (N–H).

4. Conclusions

Novel macrocyclic quaternary ammonium ILs containing amino acid fragments
(glycine and L-phenylalanine) based on p-tert-butylthiacalix[4]arene in cone, partial cone,
and 1,3-alternate conformations were synthesized. The melting temperature of the ob-
tained ILs was found in the range of 50–75 ◦C. Replacement of the bromide anion with
bis(trifluoromethylsulfonyl)imide led to a decrease in the melting point by 39–55 ◦C. The
ILs in partial cone conformation had the lowest melting points among all stereoisomers.
Thermal stability of the obtained macrocyclic ILs was determined via thermogravimetry
and differential scanning calorimetry. The onset of decomposition of the synthesized com-
pounds was established at 305–327 ◦C. The obtained results can be applied to the design of
sensor systems capable for target substrate recognition. These compounds can also be used
as synthetic biomimetic models of oligo- and polypeptides.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27228006/s1, Figures S1–S10: 1H NMR spectra of the compounds 4, 6, 11–13, 15, 17–
19, 21; Figures S11–S18: 13C NMR spectra of the compounds 4, 6, 11–13, 15, 17–19, 21; Figures S19–S26:
FT-IR spectra of the compounds 4, 6, 11–13, 15, 17–19, 21; Figures S27–S33: HRMS spectra of the
compounds 4, 6, 11–13, 15, 17–19, 21; Figure S34: DSC curves of the compounds 16–21.
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