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Abstract: Protein–protein interaction (PPI) inhibitors have an increasing role in drug discovery.
It is hypothesized that machine learning (ML) algorithms can classify or identify PPI inhibitors.
This work describes the performance of different algorithms and molecular fingerprints used in
chemoinformatics to develop a classification model to identify PPI inhibitors making the codes freely
available to the community, particularly the medicinal chemistry research groups working with
PPI inhibitors. We found that classification algorithms have different performances according to
various features employed in the training process. Random forest (RF) models with the extended
connectivity fingerprint radius 2 (ECFP4) had the best classification abilities compared to those
models trained with ECFP6 o MACCS keys (166-bits). In general, logistic regression (LR) models
had lower performance metrics than RF models, but ECFP4 was the representation most appropriate
for LR. ECFP4 also generated models with high-performance metrics with support vector machines
(SVM). We also constructed ensemble models based on the top-performing models. As part of this
work and to help non-computational experts, we developed a pipeline code freely available.

Keywords: chemoinformatics; computer-aided drug design; drug discovery; machine learning;
protein–protein interaction

1. Introduction

In recent years, protein–protein interactions (PPI) have received increased attention as
therapeutic macromolecular targets [1,2]. Designing PPI inhibitors is challenging because
they have distinct molecular properties and occupy regions of chemical space differently
from conventional small-molecule drugs [3]. For instance, PPI inhibitors are larger, are
more hydrophobic, have more aromatic rings, and have distinct three-dimensional con-
formations compared to traditional small-molecule drugs [4]. In general, the properties
of PPI inhibitors are significantly different from traditional drug candidates [5]. In recent
years, several efforts have been made to develop PPI inhibitors [6], resulting in many PPI
inhibitors in clinical trials [7] (Figure 1). An example is apabetalone, which has progressed
to phase III clinical trials to prevent major adverse cardiovascular events in high-risk type
2 diabetes mellitus patients. Idasanutlin is being tested in clinical trials to treat neoplasia
and leukemias [8]. Another representative example is Venetoclax, a BCL-2 inhibitor ap-
proved for clinical use to treat chronic lymphocytic leukemia and certain types of small
lymphocytic lymphoma [9] (Figure 1). PPI inhibitors are a specific case of PPI modulators
(modulation includes inhibition and stabilization).
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Figure 1. Examples of protein–protein interaction inhibitors currently approved for clinical use or
under clinical trials.

Different compound databases of PPI inhibitors have been created. For example,
TIMBAL [10], the Inhibitors of Protein–Protein Interaction Database (iPPI-DB) [11], Fr-
PPIChem, and the databases reviewed therein [12]. This research was made possible
thanks to the advances in cheminformatics techniques and the growing availability of
PPI inhibitors data in the public domain [13]. Thanks to the availability of this data, it
is possible to develop machine learning (ML) models [12]. The iPP-DB was one of the
first efforts to develop available compounds with activity against 13 PPI targets: it was
manually curated and includes 8,900 compounds. Examples of PPI targets included in this
database are bromodomain proteins. Fr-PPIChem is a diverse library of 10,314 PPI-like
inhibitors identified because of the implementation of artificial intelligence (AI) techniques.
Of note, to the best of our knowledge, the rich data currently available for PPIs have not
been fully used to develop predictive models.

AI and ML have enormous potential to revolutionize drug design and develop-
ment [14,15]. ML is valuable because it uses pattern recognition algorithms to discern
key features between molecules and properties and differentiate them [16]. The subfield of
ML, deep learning (DL), uses artificial neural networks that adapt and learn from the vast
amount of experimental data [14,17,18]. ML and DL have been successfully implemented
in drug discovery programs [19,20]. Recently, Choi et al. employed principal component
analysis and k-means clustering to classify and explore PPI inhibitors in chemical space
based on drug-like physicochemical properties [4]. However, ML has not been reported to
classify PPI inhibitors successfully based on molecular fingerprints.

This study aimed to generate ML predictive models to classify compounds as PPI
inhibitors and make the code freely available to the scientific community, particularly
medicinal chemists working with PPI inhibitors. The underlying hypothesis is that a large
amount of structure–activity–relationships data of PPI inhibitors in public databases should
facilitate the development of models with high predictive ability. As part of this work, we
developed and implemented a pipeline script to automate the models’ training, save the
output, and store the results in a report. The pipeline developed simplifies the process
of different parameter settings in combination with a variety of molecular fingerprints of
different designs, including extended connectivity radius four and six (ECFP4, ECFP6),
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Molecular ACCess system (MACCS) keys, and Atom Pairs. The details of the script are
described in the Methods section.

2. Methods
2.1. Data Sets

PPI inhibitors. We assembled a compound database of PPI inhibitors from the IPP-Fr
database [11] and ChEMBL_27 [21]. The database contains 2403 unique (non-duplicate)
PPI inhibitors from 28 subfamilies (the subfamilies are summarized in Table S1 of the
Supplementary Materials) that were set as the success case (positive set). All selected
targets are reported as PPI on different databases such as HIPPIE [22,23]. The criterion to
include a molecule in the set is the activity independent of its mechanism of inhibition. In
this work, we consider a compound as “active” if the reported IC50, EC50, Kd,, or Ki value
is equal to or lower than 30 µM.

Approved drugs. A set with 2,403 small molecules approved for clinical use (except PPI
inhibitors) obtained from DrugBank [24] was used to assemble a negative set to train the
classification models.

2.2. Molecular Representations

Molecular representation is the core of chemoinformatics [25]. For this work, we used
four fingerprints: ECFP4, ECFP6, MACCS keys, and Atom Pairs. The size of the feature
vectors was 2048, 2048, 167, and 8718, respectively.

2.3. Machine Learning Models

To develop an ML model with the ability to identify a PPI inhibitor from the positive
and negative set described in Section 2.1, the algorithms selected for implementation and
training were those that include labeled data, known as supervised algorithms [26]. Three
classification algorithms were implemented to develop a predictive model that classifies a
molecule into a specific category (e.g., PPI inhibitor from non-PPI inhibitor): RF, LR, and
SVM. For this work focused on the classification of PPI inhibitors, these three models were
selected based on their well-known performance. However, several other models can be
explored in future studies. The models were trained with different hyperparameters and
initial setups described in Section 2.4. All algorithms employed in this work demonstrated
their applicability in several chemical-related tasks [27–29], including the prediction of
biological endpoints [30] and absorption, distribution, metabolism, excretion, and toxicity
(ADMETox) properties [31]. Of note, as indicated in the Perspectives section (Section 4),
the robustness of the ML initially proposed in this work was assessed with experimental
data generated by our or other research laboratories working on the development of
PPI inhibitors.

2.4. Training Models
2.4.1. Data Proportions

Two proportions were used to assess which provided the best results: 80:20 and 70:30.
However, other ratios can be explored in follow-up studies.

2.4.2. Parameter Settings

(A) RF is an algorithm that generates many decision trees and then assembles their out-
puts [16]. The parameters explored for this algorithm are: the number of trees in the
forest (100, 500, 1000) and gini and entropy as functions to measure the quality of a split.
Details of the RF setup are summarized in Table S2 in the Supplementary Materials.

(B) LRG [32] is a linear classification model. In this model, the probabilities describ-
ing the possible outcomes of a single trial are modeled using a logistic function.
Solver parameters have a major impact on results. Five different solvers included
in scikit-learn were used: newton-cg, lbfgs, liblinear, sag, and saga (Table S3 in the
Supplementary Materials).
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(C) SVM [33] solves classification problems because of its ability to handle high-dimensional
data using a kernel function [34]. In SVM, the kernel function is used to map data
into high-dimensional space by finding an optimally separating hyperplane. For this
study, four different kernels were used: linear, poly, rbf, and sigmoid (Table S4 in the
Supplementary Materials).

2.5. The Automated Pipeline

The methodology established in solving problems similar to our study case involves
a process containing several sequential and repetitive phrases. For this purpose, it was
very useful to automate the workflow. Although there are tools such as KNIME [35] in
this work, we developed our own pipeline to simplify common tasks such as training,
model evaluation, and writing individual reports. Through the orderly execution of codes
written using the python3 programming language and the python libraries: pandas, scikit-
learn, numpy, and matplotlib. Of note, the pipeline elements can be used on any machine,
computational cluster, or operating system and enable the code to be generated broadly
and used to solve new problems in the future. These files were developed to make our
code more readable and reproducible.

The methodology implemented in the pipeline is divided into six sections (Figure 2):
set-up, model training, identifier generation, data analysis, validation, and ensemble. Each
section is described hereunder.

Figure 2. Workflow developed in this work to automatize the steps of training the classification
methods, their evaluation, and output of the results.

• In Section 1 of the workflow (Figure 2), it is necessary to create the folders and
download the python files.
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• In Section 2, some variables should be associated with specific values, such as allocat-
ing the files’ location. Training parameters must be assigned: once configured, run
scripts 1, 2, and 3 to train the models. These scripts also calculate accuracy, precision,
F1, and recall, which are metrics to describe the quality of the model’s predictions
(metrics are computed from the test population). The script also stores the results in
an individual report.

• Section 3 generates identifiers if the report’s name corresponds to the Primary Key.
Then, a Foreign Keys is generated by the union of the initials of the algorithm and a
numerical index. The results are stored in a JSON file.

• Section 4 includes a series of scripts to collect metrics values from reports and generate
heatmaps. These plots contain information from those models whose values were
greater than or equal to the statistical metric known as Q2 (i.e., the middle of the data
set, also termed the 50th percentile).

• Section 5 implements cross-validation of models with values above Q2 with a k equal
to 20. As a result, an output file is generated that reports the value of the mean and
the deviation of accuracy.

• Section 6 performs the training and validation of a consensus model.

3. Results and Discussion
3.1. RF

All the trained models with RF had precision values higher than 0.91; the mean
was 0.94, and the maximum value was 0.98 (Tables S5 and S8 and Figure S1 in the
Supplementary Materials). The minimum and maximum accuracy values were 0.93 and
0.96, respectively. The maximum recall value (0.96) was lower than the maximum precision
value but equal to the maximum accuracy value.

Models that shared maximum accuracy and precision values were RF4, RF6, and RF27,
although these models did not share the maximum recall value. RF4 and RF6 were trained
with ECFP4 but differed regarding the number of estimators and the number of decision
trees employed. Both models had very similar performances. RF27 was trained with ECFP6.
However, compared to RF4 and RF6, RF27 was slightly worse at predicting positives as
measured by its recall value (0.93).

The RF models with good performance were generally trained with ECFP4, followed
by ECFP6. In contrast, models with lower performance, e.g., lowest precision and accuracy
values, were trained with MACCS Keys and Atom Pairs fingerprints.

Validation results obtained by cross-validation of model RF27 (Table S11 in the
Supplementary Materials) suggest that the predictions are consistent across different test
subsets (see results in Table 1). The training conditions of RF27 were selected to construct
the ensemble model discussed in Section 3.4.

Table 1. Validation results of selected individual and ensemble models.

ID Accuracy Mean Accuracy Std

RF27 0.957 0.014

LRG22 0.941 0.017

LRG24 0.941 0.017

LRG27 0.941 0.017

SVM22 0.958 0.015

Ensemble1 0.940 0.013

Ensemble2 0.956 0.010

3.2. LRG

Eighty models with a different initial setup, such as fingerprint representation, dataset
proportion, and solver configuration, were trained (evaluation metrics are summarized in
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Table S6 and the statistical values are in Table S9 and Figure S2 in the Supplementary Materials).
Six of the twenty models trained from ECFP4 had a precision value equal to or higher than
0.95. The models with better precision were those trained with ECFP6. The minimum
precision value was 0.76. These models have in common that they were trained with Atom
Pairs employing a saga solver.

The maximum accuracy value (0.95) was obtained for five models: LRG21, LRG22,
LRG23, LRG24, and LRG25, all trained with ECFP6. LRG21 and LRG22 were trained with
newton-cg, RG25 was trained with a liblinear solver, and LRG23 and LRG24 were trained
with lbfgs.

Models trained with Atom Pairs had a minimum accuracy value of 0.83 and had the
lowest recall values.

There were no models that shared both maximum precision and recall values. How-
ever, models that share maximum accuracy and precision values, such as LRG22, LRG24,
and LRG27, were trained with ECFP6.

LRG35, LRG36, LRG39, and LRG40 models had maximum recall values of 0.95. These
models were trained with ECFP6.

LRG22, LRG24, and LRG27 were trained with the same proportion set: 0.20 for
evaluations and 0.80 for training. LRG22 and LRG24 had the same number of true negatives
in the confusion matrix: the value of true positives obtained with LRG22, LRG24, and
LRG27 were 470 and reported maximum values for F1. Therefore, these models help
identify negatives and positives. Based on good performance metrics values, the setup
conditions of these models were employed as a reference to train a consensus model (see
Section 3.4). The average accuracy, precision, and recall values were 0.91, 0.90, and 0.92,
respectively. ECFP6 seems to be a good descriptor. In contrast, LRG models trained from
Atom Pairs fingerprints did not yield good separations between positive and negative
PPI inhibitors.

Table 1 summarizes the validation results of models selected for consensus analysis.
The models chosen for the ensemble were LRG22, LRG24, and LRG27 which had equal
accuracy, precision, and F1 values. Further details are summarized in Table S12 in the
Supplementary Materials.

3.3. SVM

Sixty-four models with different initial setups were trained. The evaluation metrics
are summarized in Table S7 and Figure S3 in the Supplementary Materials. The accuracy
values obtained for SVM ranged between 0.95 and 0.62. The range of precision values was
0.99–0.59. The recall values ranged between 0.94 and 0.57.

The highest accuracy values were obtained by eight models with the maximum F1
value: SVM5, SVM6, SVM13, SVM14, SVM21, SVM22, SVM29, and SCM30. The eight
models share the same kernel type, rbf, but contain different “class weights” and descriptors.
Four models were trained with ECFP4 and four with ECFP6. SVM21 and SVM22 (trained
withECFP6) had the highest precision and maximum accuracy values. In contrast, SVM13
trained with ECFP4 had the maximum recall value. These results suggest that for the PPI
inhibitors used in this work, ECFP4 is better for training models with high precision and
ECFP6 is more appropriate for training models with high recall values.

The mean accuracy values were 0.89, while the lowest value was 0.62, obtained by the
SVM39, SVM40, and SVM47, models trained with MACCS Keys and a sigmoidal kernel.

The highest precision values were obtained with models trained with ECFP6 and the
polynomial kernel. The lowest values were obtained for models trained with MACCS Keys
and the sigmoidal kernel.

The model selected for consensus prediction (discussed in Section 3.4) was SVM22.
This model had an accuracy and F1 values equal to the maximum statistical value for
two metrics (Table S10 in the Supplementary Materials). The results of model validation
are listed in Table 1. Uniquely, the models whose metrics were more significant than the
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value of Q2 were validated (Table S13). The result of this process is freely available at
https://github.com/BarbaraDiazE/PPI_ML (accessed on 15 November 2022).

3.4. Consensus Prediction

In this part of the study, the primary purpose was to develop a consensus model to
obtain predictions better than the individual models. The rationale is that a model trained
from many single models should increase the model’s capability to discern between active
and inactive PPI inhibitors.

After identifying the different models’ performance and their respective evaluation
metrics (discussed in previous sections), we combined multiple models to improve the
overall performance and yield a consensus prediction by generating an ensemble learning.
We selected the five models summarized in Table 2 based on the following criteria: good
values of evaluation metrics, the same proportion of training/test set, and the molecular
representations employed during the training process. All models used in the ensemble
were trained with ECFP6. Regarding the metrics, given the study’s primary goal, we
decided to prioritize models with high precision and those that were more susceptible to
making a correct prediction of success. Therefore, we selected models with good recall,
prioritizing these models over others with high-balanced accuracy and high F1 values.

Table 2. Metrics comparison. Single models vs. ensemble using ECFP6.

ID Accuracy Balanced Accuracy Precision Recall F1 Confusion Matrix

RF27 0.96 0.96 0.98 0.94 0.96 [486 10]
[32 401]

LRG 22 0.95 0.95 0.95 0.94 0.94 [470 23]
[27 406]

LRG24 0.95 0.95 0.95 0.94 0.94 [470 23]
[27 406]

LRG27 0.95 0.95 0.95 0.94 0.94 [470 23]
[26 407]

SVM22 0.95 0.95 0.98 0.92 0.95 [484 9]
[33 400]

Ensemble1 0.95 0.95 0.95 0.94 0.94 [471 22]
[27 406]

Ensemble2 0.95 0.95 0.98 0.91 0.94 [486 7]
[41 392]

Ensemble 1 and Ensemble 2 (Table 2) had an accuracy value lower than RF27. However,
Ensemble 1 predicted fewer FP and more TP, while Ensemble 2 was as good as RF27
predicting TP and a better detecting FP. All other models in Table 2 had accuracy records
equal to both ensembles.

Regarding precision, SVM22, RF27, and Ensemble 2 had the maximum precision value,
0.98, in contrast to 0.95 of Ensemble 1. The confusion matrix indicated that SVM22 was not
as good as RF27 and Ensemble 2 at identifying TP. Four of the five models employed in
Ensemble 1 training shared the same recall value as Ensemble 2, while Ensemble 2 had a
lower recall value.

Ensemble1 had the same metrics values as the LRG models employed in training
exclusively registered different values on the confusion matrix (see Table 3). This result
suggested that even when metrics were equal, Ensemble 1 was better at identifying TP
than individual LRG models. Furthermore, Ensemble 2 was better than LRG models
predicting TP.

https://github.com/BarbaraDiazE/PPI_ML
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Table 3. Models’ prediction for individual compounds.

Real RF27 RF22 LRG24 LRG27 SVM22 Ensemble1 Ensemble2

Venetoclax Active Active Inactive Inactive Inactive Active Inactive Active

Apabetalone Active Inactive Active Active Active Active Active Inactive

Idasanutline Active Active Active Active Active Active Active Active

JQ1 Active Active Active Active Active Active Active Active

I-BET Active Active Active Active Active Active Active Active

Nutlin-2 Active Active Active Active Active Active Active Active

Atorvastatin Inactive Inactive Inactive Active Active Inactive Active Inactive

Amoxicilin Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive

Albuterol Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive

Metformin Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive

Omeprazol Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive

Losartan Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive

Ensemble 2 was chosen to perform activity prediction because joined knowledge
learned by individual models at the time obtained better predictive performance by de-
ducing variation and generating a robust model [36]. This model also had lower accuracy
standard deviation obtained by cross-validation (k = 20) with respect to the models re-
ported in Table 1 (employed on training ensemble). This result suggested that although
the performance metrics of the ensemble models are not better than those of the individual
models, the results are more reproducible.

Table 3 summarizes predictions made with the models reported in Table 2 and both
ensemble models exemplify the prediction results. Ensemble 1 made incorrect predictions
in two instances in this focused case study, while the Ensemble 2 model only made one
incorrect prediction. In Table 3, is noticeable that Venetoclax was a challenging case for
several models, expect for RF27, SVM22 and Ensemble 2, that correctly predicted the
compound as PPI inhibitors. This is likely due to the chemical descriptors used to train the
models that could not accurately capture the unique structure of Venetoclax. This example
further emphasizes the notable performance of Ensemble 2.

4. Conclusions and Perspectives

In this study, several ML algorithms were trained to develop predictive models to
identify PPI inhibitors. Out of the different fingerprints used, the ones trained with ECFPs
yielded, in general, the best results. Three trained models were selected to develop ensemble
learning and perform a consensus prediction. Ensemble learning provides a prediction
(PPI or not PPI inhibitor) by a voting decision instead of a single decision from one model.
The outcome of this work is helpful because it presents predictive models that will aid
data-driven decisions in future PPI inhibitor design projects.

As part of this study, we developed a code pipeline that facilitated the training of ML
models to classify PPI inhibitors. The freely available code can be used with other data sets
and molecular representations.

One of the main perspectives of this work is to conduct a prospective validation
of the ML models by testing their ability to classify newly designed inhibitors made by
medicinal chemists or published in the peer-reviewed literature. Another perspective is to
update the database of PPI inhibitors periodically, e.g., on a bi-annual basis, to improve the
performance of the individual and ensemble models. We also anticipate implementing an
accessible webserver to facilitate the scientific community’s prediction of PPI inhibitors.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27227986/s1, Table S1: PPI subfamilies and compounds;
Table S2: RF setup information; Table S3: LRG setup information; Table S4: SVM setup information;
Table S5: RF metrics values; Table S6: LRF metrics values; Table S7: SVM metrics values; Table S8:
Statistical values of RF models; Table S9: Statistical values of LRG models; Table S10: Statistical values
of SVM models; Table S11: RF models validation results; Table S12: LRG models validation results;
Table S13: SVM models validation results; Figure S1: RF metrics heatmap; Figure S2: LRG metrics
heatmap; Figure S3: SVM metrics heatmap.

Author Contributions: Conceptualization, B.I.D.-E. and J.L.M.-F.; methodology, B.I.D.-E.; software,
B.I.D.-E.; investigation, B.I.D.-E.; resources, J.L.M.-F.; writing—original draft preparation, B.I.D.-E.;
writing—review and editing, B.I.D.-E. and J.L.M.-F.; project administration, J.L.M.-F.; funding acquisi-
tion, J.L.M.-F. All authors have read and agreed to the published version of the manuscript.

Funding: The authors thank the Dirección General de Cómputo y de Tecnologías de Información
y Comunicación (DGTIC), UNAM, for the computational resources to use Miztli supercomputer at
UNAM under project LANCAD-UNAM-DGTIC-335. J.L.M-F. Thanks to the School of Chemistry,
Universidad Nacional Autónoma de México, for grant Programa de Apoyo a la Investigación y
Posgrado (PAIP), no. 5000-9163.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Acknowledgments: B.I.D.-E. acknowledges Consejo Nacional de Ciencia y Tecnología (CONCyT),
Mexico, for scholarship number 817896.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
AI: artificial intelligence; ECFP, extended connectivity fingerprint; FN, False Negative;

FP, False Positive; LRG, logistic regression; ML, machine learning; PPI, protein–protein
interaction; RF, random forest; SVM, support vector machines; TN, true negative; TP,
true positive.

References
1. Villoutreix, B.O.; Kuenemann, M.A.; Poyet, J.-L.; Bruzzoni-Giovanelli, H.; Labbé, C.; Lagorce, D.; Sperandio, O.; Miteva, M.A.

Drug-Like Protein-Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology. Mol.
Inform. 2014, 33, 414–437. [CrossRef] [PubMed]

2. Mullard, A. Protein-protein interaction inhibitors get into the groove. Nat. Rev. Drug Discov. 2012, 11, 173–175. [CrossRef]
[PubMed]

3. Díaz-Eufracio, B.I.; Naveja, J.J.; Medina-Franco, J.L. Protein-Protein Interaction Modulators for Epigenetic Therapies. Adv. Protein
Chem. Struct. Biol. 2018, 110, 65–84. [CrossRef] [PubMed]

4. Choi, J.; Yun, J.S.; Song, H.; Kim, N.H.; Kim, H.S.; Yook, J.I. Exploring the chemical space of protein-protein interaction inhibitors
through machine learning. Sci. Rep. 2021, 11, 13369. [CrossRef]

5. Sperandio, O.; Reynès, C.H.; Camproux, A.-C.; Villoutreix, B.O. Rationalizing the chemical space of protein-protein interaction
inhibitors. Drug Discov. Today 2010, 15, 220–229. [CrossRef]

6. Bosica, F.; Andrei, S.A.; Neves, J.F.; Brandt, P.; Gunnarsson, A.; Landrieu, I.; Ottmann, C.; O’Mahony, G. Design of Drug-Like
Protein-Protein Interaction Stabilizers Guided by Chelation-Controlled Bioactive Conformation Stabilization. Chem. Eur. J. 2020,
26, 7131–7139. [CrossRef]

7. Scott, D.E.; Bayly, A.R.; Abell, C.; Skidmore, J. Small molecules, big targets: Drug discovery faces the protein-protein interaction
challenge. Nat. Rev. Drug Discov. 2016, 15, 533–550. [CrossRef]

8. A Study of Idasanutlin with Cytarabine Versus Cytarabine Plus Placebo in Participants with Relapsed or Refractory Acute
Myeloid Leukemia (AML)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02545
283?term=idasanutlin&draw=2&rank=4 (accessed on 13 April 2021).

9. Venetoclax DrugBank. Available online: https://go.drugbank.com/drugs/DB11581 (accessed on 4 February 2021).
10. Higueruelo, A.P.; Jubb, H.; Blundell, T.L. TIMBAL v2: Update of a database holding small molecules modulating protein-protein

interactions. Database 2013, 2013, bat039. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules27227986/s1
https://www.mdpi.com/article/10.3390/molecules27227986/s1
http://doi.org/10.1002/minf.201400040
http://www.ncbi.nlm.nih.gov/pubmed/25254076
http://doi.org/10.1038/nrd3680
http://www.ncbi.nlm.nih.gov/pubmed/22378255
http://doi.org/10.1016/bs.apcsb.2017.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29413000
http://doi.org/10.1038/s41598-021-92825-5
http://doi.org/10.1016/j.drudis.2009.11.007
http://doi.org/10.1002/chem.202001608
http://doi.org/10.1038/nrd.2016.29
https://clinicaltrials.gov/ct2/show/NCT02545283?term=idasanutlin&draw=2&rank=4
https://clinicaltrials.gov/ct2/show/NCT02545283?term=idasanutlin&draw=2&rank=4
https://go.drugbank.com/drugs/DB11581
http://doi.org/10.1093/database/bat039


Molecules 2022, 27, 7986 10 of 10

11. Labbé, C.M.; Kuenemann, M.A.; Zarzycka, B.; Vriend, G.; Nicolaes, G.A.F.; Lagorce, D.; Miteva, M.A.; Villoutreix, B.O.; Sperandio,
O. iPPI-DB: An online database of modulators of protein-protein interactions. Nucleic Acids Res. 2016, 44, D542–D547. [CrossRef]

12. Bosc, N.; Muller, C.; Hoffer, L.; Lagorce, D.; Bourg, S.; Derviaux, C.; Gourdel, M.-E.; Rain, J.-C.; Miller, T.W.; Villoutreix, B.O.; et al.
Fr-PPIChem: An Academic Compound Library Dedicated to Protein-Protein Interactions. ACS Chem. Biol. 2020, 15, 1566–1574.
[CrossRef]

13. Cicaloni, V.; Trezza, A.; Pettini, F.; Spiga, O. Applications of in Silico Methods for Design and Development of Drugs Targeting
Protein-Protein Interactions. Curr. Top. Med. Chem. 2019, 19, 534–554. [CrossRef]

14. Mak, K.-K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today
2019, 24, 773–780. [CrossRef]

15. Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci.
2019, 40, 592–604. [CrossRef]

16. Lo, Y.-C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 2018,
23, 1538–1546. [CrossRef]

17. Grys, B.T.; Lo, D.S.; Sahin, N.; Kraus, O.Z.; Morris, Q.; Boone, C.; Andrews, B.J. Machine learning and computer vision approaches
for phenotypic profiling. J. Cell Biol. 2017, 216, 65–71. [CrossRef]

18. Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J.
Radiol. 2017, 18, 570–584. [CrossRef]

19. Prieto-Martínez, F.D.; López-López, E.; Eurídice Juárez-Mercado, K.; Medina-Franco, J.L. Computational drug design
methods—Current and future perspectives. In In Silico Drug Design; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–44,
ISBN 9780128161258.

20. Gastegger, M.; Marquetand, P. Molecular Dynamics with Neural Network Potentials. In Machine Learning Meets Quantum Physics;
Schütt, K.T., Chmiela, S., von Lilienfeld, O.A., Tkatchenko, A., Tsuda, K., Müller, K.-R., Eds.; Lecture Notes in Physics; Springer
International Publishing: Cham, Switzerland, 2020; Volume 968, pp. 233–252, ISBN 978-3-030-40244-0.

21. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka,
M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [CrossRef]

22. Alanis-Lobato, G.; Andrade-Navarro, M.A.; Schaefer, M.H. HIPPIE v2.0: Enhancing meaningfulness and reliability of protein-
protein interaction networks. Nucleic Acids Res. 2017, 45, D408–D414. [CrossRef]

23. Protein-Protein Interaction Databases. Available online: https://openwetware.org/wiki/Protein-protein_interaction_databases
(accessed on 5 February 2021).

24. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank
5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef]

25. López-López, E.; Bajorath, J.; Medina-Franco, J.L. Informatics for chemistry, biology, and biomedical sciences. J. Chem. Inf. Model.
2021, 61, 26–35. [CrossRef]

26. Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
(English Edition), 1st ed.; O’REILLY: Sebastopol, CA, USA, 2017; ISBN 9781492032649.

27. Plisson, F.; Ramírez-Sánchez, O.; Martínez-Hernández, C. Machine learning-guided discovery and design of non-hemolytic
peptides. Sci. Rep. 2020, 10, 16581. [CrossRef] [PubMed]

28. Rodríguez-Pérez, R.; Vogt, M.; Bajorath, J. Support vector machine classification and regression prioritize different structural
features for binary compound activity and potency value prediction. ACS Omega 2017, 2, 6371–6379. [CrossRef] [PubMed]

29. Mughal, H.; Wang, H.; Zimmerman, M.; Paradis, M.D.; Freundlich, J.S. Random forest model prediction of compound oral
exposure in the mouse. ACS Pharmacol. Transl. Sci. 2021, 4, 338–343. [CrossRef] [PubMed]

30. Rinaldi, F.G.; Arutanti, O.; Arif, A.F.; Hirano, T.; Ogi, T.; Okuyama, K. Correlations between Reduction Degree and Catalytic
Properties of WO x Nanoparticles. ACS Omega 2018, 3, 8963–8970. [CrossRef]

31. Vo, A.H.; Van Vleet, T.R.; Gupta, R.R.; Liguori, M.J.; Rao, M.S. An overview of machine learning and big data for drug toxicity
evaluation. Chem. Res. Toxicol. 2020, 33, 20–37. [CrossRef]

32. Hoffman, J.I.E. Logistic Regression. In Basic Biostatistics for Medical and Biomedical Practitioners; Elsevier: Amsterdam,
The Netherlands, 2019; pp. 581–589, ISBN 9780128170847.

33. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
34. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef]
35. Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME—The Konstanz

information miner. SIGKDD Explor. Newsl. 2009, 11, 26. [CrossRef]
36. Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications, 2012th ed.; Springer: New York, NY, USA, 2012; p. 340,

ISBN 978-1441993250.

http://doi.org/10.1093/nar/gkv982
http://doi.org/10.1021/acschembio.0c00179
http://doi.org/10.2174/1568026619666190304153901
http://doi.org/10.1016/j.drudis.2018.11.014
http://doi.org/10.1016/j.tips.2019.06.004
http://doi.org/10.1016/j.drudis.2018.05.010
http://doi.org/10.1083/jcb.201610026
http://doi.org/10.3348/kjr.2017.18.4.570
http://doi.org/10.1093/nar/gky1075
http://doi.org/10.1093/nar/gkw985
https://openwetware.org/wiki/Protein-protein_interaction_databases
http://doi.org/10.1093/nar/gkx1037
http://doi.org/10.1021/acs.jcim.0c01301
http://doi.org/10.1038/s41598-020-73644-6
http://www.ncbi.nlm.nih.gov/pubmed/33024236
http://doi.org/10.1021/acsomega.7b01079
http://www.ncbi.nlm.nih.gov/pubmed/30023518
http://doi.org/10.1021/acsptsci.0c00197
http://www.ncbi.nlm.nih.gov/pubmed/33615183
http://doi.org/10.1021/acsomega.8b01110
http://doi.org/10.1021/acs.chemrestox.9b00227
http://doi.org/10.1007/BF00994018
http://doi.org/10.1038/nbt1206-1565
http://doi.org/10.1145/1656274.1656280

	Introduction 
	Methods 
	Data Sets 
	Molecular Representations 
	Machine Learning Models 
	Training Models 
	Data Proportions 
	Parameter Settings 

	The Automated Pipeline 

	Results and Discussion 
	RF 
	LRG 
	SVM 
	Consensus Prediction 

	Conclusions and Perspectives 
	References

