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Abstract: Polycyclic aromatic hydrocarbons (PAHs) and their oxygen/nitrogen derivatives released
into the atmosphere can alternate between a gas phase and a particulate phase, further affecting their
environmental behavior and fate. The gas/particulate partition coefficient (KP) is generally used
to characterize such partitioning equilibrium. In this study, the correlation between log KP of fifty
PAH derivatives and their n-octanol/air partition coefficient (log KOA) was first analyzed, yielding a
strong linear correlation (R2 = 0.801). Then, Gaussian 09 software was used to calculate quantum
chemical descriptors of all chemicals at M062X/6-311+G (d,p) level. Both stepwise multiple linear
regression (MLR) and support vector machine (SVM) methods were used to develop the quantitative
structure-property relationship (QSPR) prediction models of log KP. They yield better statistical
performance (R2 > 0.847, RMSE < 0.584) than the log KOA model. Simulation external validation
and cross validation were further used to characterize the fitting performance, predictive ability, and
robustness of the models. The mechanism analysis shows intermolecular dispersion interaction and
hydrogen bonding as the main factors to dominate the distribution of PAH derivatives between the
gas phase and particulate phase. The developed models can be used to predict log KP values of other
PAH derivatives in the application domain, providing basic data for their ecological risk assessment.

Keywords: PAHs and oxygen/nitrogen derivatives; gas/particulate partition coefficient (KP);
quantitative structure-activity relationships (QSPR); multiple linear regression (MLR); support vector
machine (SVM)

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are typical persistent organic pollutants
(POPs) that are widely found in the environment [1]. Exposure to PAHs may lead to
atherosclerosis, hypertension and myocardial infarction, and increase the risk of skin, lung,
pancreas, stomach, intestinal and other cancers [2–6]. PAHs can further undergo photo-
chemical reactions or be oxidized by atmospheric oxidants, such as O3, OH radicals and
NOx, to generate oxygen/nitrogen derivatives, including oxidized PAHs (O-PAHs), nitro
PAHs (N-PAHs) and azaarenes (AZAs) [7–9]. In addition, the incomplete combustion of fu-
els during human activities, vehicle and ship exhaust emissions, and industrial waste emis-
sions also lead to the generation of PAHs and their oxygen/nitrogen derivatives [10–13].
In recent years, PAHs and their oxygen/nitrogen derivatives have been detected not only
in the atmosphere, but also in soil, water, sediment and other environmental media and or-
ganisms [14–18]. Minero et al. [19] detected N-PAHs in atmospheric particles of Antarctica
in the year 2010, indicating the global presence of PAH derivatives. PAH derivatives are
generally trace compounds with concentrations of about one-tenth or even one-hundredth
of the parent level in environmental media [20,21]. However, most PAH derivatives are
direct mutagens or potential carcinogens [22], and some N-PAHs are even 10 times more car-
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cinogenic or 100,000 times more mutagenic than their parent compounds [23–25], bringing
high risk to human health and arousing widespread concern.

When PAHs and oxygen/nitrogen derivatives are released into the atmosphere from
various sources, they can partly exist in gaseous form or partly combine with atmospheric
particles to migrate over long distances, and finally move to the ground surface through
atmospheric deposition [26]. Studying the distribution of these compounds between
the atmosphere and particulate matter has great implications for understanding their
environmental behavior and fate. The gas/particulate partition coefficient, KP, is often
used to characterize such distribution equilibrium of organic pollutants and calculated
by [27].

KP =
CP

CA × TSP
(1)

Here, CP represents the concentration of organic matter in the atmospheric particle phase
and CA represents the concentration in the air phase, with the unit of ng/m3; TSP refers to
the concentration of total suspended particulate matter, in µg/m3.

Determining the KP values is time-consuming, laborious, and limited by standard
samples of target compounds. Therefore, establishing a predictive model for KP can provide
an important method to study the gas/particulate distribution behavior of pollutants and
supply basic data for their ecological environment safety and health risk assessment.

Previous studies have shown that the n-octanol/air partition coefficient (KOA) can
predict the KP values of organic pollutants such as PAHs, polychlorinated biphenyls (PCBs),
polychlorinated naphthalenes (PCNs), and DDT [28,29]. However, the low prediction
accuracy and the lack of KOA values for some compounds restricts the application of
this method. A quantitative structure-property relationship (QSPR) model can be used
to establish a quantitative relationship between compound properties, environmental
behavior parameters and molecular structure feature through mathematical methods, and
can further predict the properties and environmental behavior of similar compounds which
lack experimental data [30–34].

Therefore, the goals of this study are first to analyze the correlation between log KP and
log KOA of PAHs and oxygen/nitrogen derivatives, and then establish a QSPR prediction
model for log KP by multiple linear regression (MLR) and support vector machine (SVM)
methods. The model performance will be validated and evaluated, and the relevant
mechanism and application domain will be discussed to further understand the partitioning
process and predict more chemicals.

2. Materials and Methods
2.1. Log KP Experimental Values

In this study, the experimental CA, CP and TSP values of 50 PAHs and oxygen/nitrogen
derivatives were obtained from the previous study [35], including 22 parent and alkyl PAHs,
15 O-PAHs, 9 N-PAHs and 4 AZAs. Then, the log KP value for every chemical is calculated
by Equation (1). Information about all compounds as well as log KP data are listed in
Table 1.

Table 1. Experimental and predicted log KP values, log KOA values, and molecular structure descrip-
tors employed in the QSAR model for 50 PAHs and their oxygen/nitrogen derivatives a.

Compound Abbreviations

log KP

log KOA α VS.min (×10−2)
Exp. Pred.

(log KOA)
Pred.

(MLR Model)
Pred.

(SVM Model)

1,2,3,4-Tetrahydronaphthalene TH-NAPH −4.060 −5.231 −5.184 −4.867 4.75 108.571 −3.397
Naphthalene NAPH b −4.392 −5.038 −5.239 −5.093 5.05 112.345 −2.698

2-Methylnaphthalene 2-MNAPH b −5.001 −4.729 −4.738 −4.920 5.53 126.847 −2.924
1-Methylnaphthalene 1-MNAPH −4.617 −4.716 −4.789 −4.932 5.55 125.047 −2.944

Biphenyl BIPH −4.955 −4.484 −4.469 −4.851 5.91 137.036 −2.739
1,3-Dimethylnaphthalene 1,3DMNAPH b −4.837 −4.407 −4.330 −4.680 6.03 139.231 −3.030

Acenaphthylene ACEY −4.921 −4.253 −4.476 −4.766 6.27 134.493 −3.034
Acenaphthene ACEN −4.821 −4.401 −4.511 −4.750 6.04 132.491 −3.141
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Table 1. Cont.

Compound Abbreviations

log KP

log KOA α VS.min (×10−2)
Exp. Pred.

(log KOA)
Pred.

(MLR Model)
Pred.

(SVM Model)

Fluorene FLUO −4.756 −4.047 −4.163 −4.599 6.59 145.606 −2.912
Phenanthrene PHE −4.500 −3.642 −3.724 −4.268 7.22 162.006 −2.643

Anthracene ANT −3.811 −3.725 −3.459 −3.967 7.09 170.616 −2.639
2-Methylphenanthrene 2-MPHE −3.747 −3.461 −3.205 −3.614 7.50 177.433 −2.820

3,6-Dimethylphenanthrene 3,6-DMPHE −3.847 −3.120 −2.728 −2.930 8.03 191.260 −3.031
Fluoranthene FLUA −3.223 −2.754 −2.946 −3.266 8.60 186.008 −2.796

Pyrene PYR b −3.027 −3.017 −2.950 −3.300 8.19 187.779 −2.555
Retene RET −2.703 −2.689 −1.919 −1.743 8.70 217.138 −3.080

Benzo[a]anthracene BaA b −1.592 −2.451 −1.828 −1.593 9.07 223.989 −2.590
Benzo[e]pyrene BeP −0.316 −0.984 −1.513 −1.130 11.35 234.532 −2.550
Benzo[a]pyrene BaP 0.028 −1.300 −1.016 −0.482 10.86 250.507 −2.568

Indeno [1,2,3-cd]pyrene IcdP 0.255 −0.856 −0.284 0.192 11.55 272.695 −2.774
Dibenzo[a,h]anthracene DahA −0.687 −0.708 −0.094 0.352 11.78 280.623 −2.553

Benzo[g,h,i]perylene BghiP 0.028 −0.888 −0.702 −0.127 11.50 261.269 −2.498
1-Indanone 1-IND −3.998 −4.542 −4.235 −3.784 5.82 99.753 −8.388

1,4-Naphthoquinone 1,4-NQ −3.990 −2.625 −4.261 −3.834 8.80 113.590 −6.535
1-Naphthaldehyde 1-NALD b −4.111 −3.680 −3.506 −3.224 7.16 127.809 −7.844

2-Biphenylcarboxaldehyde 2-BPCA b −3.491 −3.236 −2.760 −2.615 7.85 149.944 −8.101
9-Fluorenone 9-FLU −3.630 −3.050 −2.959 −2.748 8.14 148.889 −7.418

1,2-Acenaphthenequinone 1,2-ACEQ −3.196 −2.625 −3.180 −2.953 8.80 138.303 −7.854
9,10-Anthraquinone 9,10-AQ b −2.382 −2.233 −2.902 −2.718 9.41 159.881 −6.271

1,8-Naphtalic anhydride 1,8-NA b −3.033 −3.243 −3.140 −2.912 7.84 141.118 −7.659
4H-

Cyclopenta[d,e,f]phenanthrenone 4-CPHE b −2.739 −2.110 −2.345 −2.201 9.60 170.679 −7.191
2-Meth-9,10-anthraquinone 2-MAQ −1.944 −1.383 −2.362 −2.194 10.73 175.048 −6.566

Benzo[a]florenone BAFLU b −1.590 −1.660 −1.322 −1.442 10.30 203.092 −7.291
7H-Benzo[d,e]anthracene-7-one BdeAQ b −0.682 −1.608 −1.328 −1.527 10.38 199.470 −7.715
Benzo[a]anthracene-7,12-dione BaAQ −1.112 −0.373 −1.231 −1.211 12.30 214.077 −6.284

5,12-Naphthacenequinone 5,12-NQ −0.949 −0.296 −1.006 −1.105 12.42 219.462 −6.523
6H-Benzo[c,d]pyren-6-one BcdPQ b −0.635 −0.701 −0.592 −1.231 11.79 222.901 −7.780

1-Nitronaphthalene 1-NNAP −3.703 −3.571 −3.635 −3.333 7.33 129.792 −7.060
2-Nitrobiphenyl 2-NBP −2.352 −3.301 −3.184 −2.993 7.75 151.356 −6.187

5-Nitroacenaphthene 5-NACE −2.219 −3.017 −2.867 −2.671 8.19 151.022 −7.526
2-Nitrofluorene 2-NFLU −1.932 −3.178 −2.501 −2.329 7.94 167.360 −6.969

9-Nitrophenanthrene 9-NPHE −2.098 −2.342 −2.324 −2.158 9.24 177.214 −6.454
9-Nitroanthracene 9-NANT −1.858 −1.943 −1.660 −1.703 9.86 190.063 −7.545

1-Nitropyrene 1-NPYR −1.496 −1.255 −1.048 −1.295 10.93 211.741 −7.317
2,7-Dinitrofluorene 2,7-DNFLU −1.595 −1.647 −2.037 −1.888 10.32 187.649 −6.309

6-Nitrochrysene 6-NCHR −1.696 −0.933 −0.604 −0.879 11.43 232.917 −6.475
Quinoline QUI −3.127 −4.298 −3.731 −3.475 6.20 107.069 −9.535

Benzo[h]quinoline BhQ b −2.804 −2.767 −2.483 −2.417 8.58 156.877 −8.358
Acridine ACR −2.275 −2.522 −1.969 −2.222 8.96 165.008 −9.437

Carbazole CAR b −3.372 −2.471 −4.071 −4.423 9.04 145.738 −3.265

a α (a.u.) represents the average molecular polarizability; Vs.min (eV) represents the most negative electrostatic
potential on the molecular surface; b as the validation set in simulated external validation.

2.2. Descriptors

The intermolecular interactions, such as van der Waals forces (e.g., dispersion, dipole-
dipole, dipole-induced dipole Interactions) and specific polarization (e.g., hydrogen bond-
ing), are important factors to determine the distribution of organic chemicals between
gas and particulate phases [36,37]. In this study, the molecular volume (V, cm3/mol),
the dipole moment (d, Debye), the square of dipole moment (d2, Debye) and the average
molecular polarization (α, a.u.) are selected to characterize dispersion, dipole–dipole and
dipole-induced dipole interactions. The frontier molecular orbitals (ELUMO and EHOMO,
eV), hardness (η, eV), softness (σ, eV), chemical potential (µ, eV) and electrophilic index
(ω, eV) are used to quantify the ability of molecules to receive or provide electrons. Three
charge descriptors, the most positive electrostatic charge of hydrogen atom (qH+, a.c.u.),
the most positive electrostatic charge of carbon atom (qC+, a.c.u.) and the most negative
electrostatic charge of carbon atom (qC−, a.c.u.), are employed to characterize the charge
information of the compounds. All 13 descriptors were obtained from the output files
of molecular configuration optimization, which was carried out by using Gaussian 09
software [38] at M062X/6-311 + G (d, P) level. In addition, the parameters that charac-
terize the electrostatic potential on the molecular surface are selected, including the most
positive/negative electrostatic potential on the molecular surface (Vs.max/Vs.min, eV), the
average value of the positive/negative electrostatic potential on the molecular surface
(V+

s /V−
s , eV), the average dispersion of the electrostatic potential on the molecular surface

(Π, eV), and the equilibrium constant of the electrostatic potential on the molecular sur-
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face (τ). These parameters were further calculated by GsGrid (Verison 1.7) software [39]
based on the Gaussian output files. Moreover, the log KOA values of the compounds were
calculated using EPI SuiteTM v4.11 software [40].

2.3. Model Construction and Verification

The stepwise regression method in IBM SPSS 21.0 software [41] was used to screen
variables and build the MLR model. The regression performance, predictive capability and
robustness of the model was assessed according to the OECD guidelines [42], the square of
the correlation coefficient (R2), the square of the prediction correlation coefficient (Q2), the
root-mean-square error (RMSE), the mean absolute error (MAE), the maximum positive
error (MPE), the maximum negative error (MNE), and the systematic error (BIAS) were cal-
culated to evaluate the fitting ability of the model. Then the original data set was randomly
divided into a training set (70%) and a test set (30%) for simulated external authentication to
evaluate the predictive ability. The leave-one-out cross-validation was further implemented
by Weka 3.8.0 software [43], and the mean cross-validation correlation coefficient (Q2

CV)
and the mean root-mean-square error (RMSECV) were obtained to evaluate the robustness
of the QSPR model.

In order to further improve the model’s performance, an SVM model was constructed
using R language by the descriptors employed in the MLR model. The kernel function of
the SVM method is radial basis function. The complexity and prediction error of the model
were determined by searching for the optimal combination of hyperparameters (γ and C),
and the optimal model is obtained based on it. In this process, the range of the combination
of γ and C was set as 10−2~104, and the grid search method was used to find the optimal
combination. The ten-fold cross validation method was used to evaluate the performance
of the SVM model. At the same time, the counter map of log γ and log C was drawn to
visualize the combination of the hyperparameters.

2.4. Define the Application Domain

The model application domain was defined using a Williams diagram [33]. If the
absolute value of the standardized residual (StdR) of a compound is smaller than 3, it is
considered to be well predicted. If the leverage value hi of a compound is larger than the
threshold h* (h* = 3 × p/n, p represents the number of molecular structure descriptors, n
represents the number of modeling data), this compound may have extreme descriptors
that can influence the model construction, so it is identified as a high-influence compound.
It should be noted that if the absolute values of StdR of the high-influence compounds are
less than 3, this indicates the model has great generalization capability.

3. Results and Discussion
3.1. Model Establishment and Verification

(1) log KOA model

The linear correlation between log KP and log KOA was obtained:

log KP = (0.643 ± 0.046) × log KOA + (−8.287 ± 0.410) (2)

As shown in Figure 1, log KP positively correlates with log KOA (p < 0.05). This
indicates log KOA can be used to roughly predict log KP values. The predictive values are
listed in Table 1 and the 95% confidence intervals are provided in Supplementary Materials,
Table S1. However, the moderate correlation coefficient (R2 = 0.801) may lead to inaccurate
predictive results. QSPR models are further developed.
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Figure 1. The fitting plot between experimental log KP values and log KOA values.

(2) MLR model

The QSPR model was established by stepwise MLR method based on quantum chemi-
cal descriptors:

log KP = (0.031 ± 0.002) × α + (−24.453 ± 3.684) × Vs.min + (−9.358 ± 0.433) (3)

This model has two molecular descriptors α and Vs.min, both of which have VIF values
less than 10 (see Table 2), and there is no multicollinearity in the model (p < 0.05). The
predictive log KP values as well as the calculated values of the employed descriptors are
shown in Table 1, and the 95% confidence interval of the predictive log KP values can be
found in Table S1.

Table 2. The coefficients, t-test (t value), significance level (p value) and variance inflation factor (VIF
value) of each descriptor in the MLR model.

Parameter Coefficient t p VIF

α 0.031 15.839 <0.001 1.056
Vs.min −24.453 −6.638 <0.001 1.056

The statistical performance of MLR model based on quantum chemical descriptors has
been significantly improved: R2 = 0.847, Q2 = 0.847, and RMSE = 0.584 (Table 3), indicating
the model has a good fitting performance. It can be seen from Table 3 that the training
set (70%) and validation set (30%) of simulated external validation have similar statistical
parameters with the MLR model: R2 = 0.842, Q2 = 0.842, and RMSE = 0.618 (training
set); R2 = 0.854, Q2 = 0.847, and RMSE = 0.535 (validation set); R2 = 0.847, Q2 = 0.847,
RMSE = 0.584 (MLR model based on whole dataset). The regression coefficients of the
descriptors in the model established by the training set are also close to those of the MLR
model, 0.031 for α in both models based on training set and the whole dataset; −27.835
and −24.453 for Vs.min for training set and the whole dataset, respectively. Moreover,
Roy et al. [44,45] have pointed out a serial criterion to detect the existence of systematic
error and to judge the predictive ability. We also applied this criterion to our validation
set, and the calculation results were: (1) the ratio of number of positive and negative
errors NPE/NNE = 1.143, no larger than 5; the absolute value of mean positive error /
mean negative error ABS (MPE/MNE) = 0.903, smaller than 2; the difference between the
average absolute error (MAE = 0.438) and absolute of average value (ABS (BIAS) = 0.002) is
0.436, larger than 0.5 × MAE; R2 (ith vs (i − 1)th residuals) = 0.099, smaller than 0.5; R2
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(log KP vs. residuals) = 0.029, smaller than 0.5; (2) after removing the two highest residual
values (5%), the MAE (0.370) is smaller than 0.1 × log KP range of training set (5.21) and
MAE + 3σ (standard deviation of the absolute error, 0.234) is very close to 0.2 × log KP
range of training set. These results show that the developed MLR model has no systematic
error and good predictive ability. In the leave-one-out cross-validation, the average Q2

CV
and RMSECV is 0.906 and 0.625, respectively, which further proves the robustness of the
developed MLR model [46].

Table 3. Statistical parameters of the MLR model and the simulated external validation.

N R2 Q2 RMSE BIAS MAE MPE MNE

MLR model 50 0.847 0.847 0.584 0.000 0.491 1.119 −1.197
Training set 35 0.842 0.842 0.618 0.000 0.509 1.162 −1.259

Validation set 15 0.854 0.847 0.535 0.002 0.438 0.807 −0.961

The fitting plot of the experimental log KP values and the predicted log KP values
by the MLR model (Figure 2) shows they have great agreement. Figure 3 shows that the
predictive errors of log KP are randomly distributed, and they have no dependence on the
experimental value. This conclusion can also be verified by the BIAS = 0.000 of the MLR
model (Table 3).
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(3) SVM model

In order to check whether the machine learning method could improve the statistical
performance of the model, SVM model is further established basing on the descriptors (α
and Vs.min) that are screened by MLR. The contour map of the combination of hyperpa-
rameter γ and penalty factors C is shown in Figure 4. It shows that the smallest predictive
errors of the model (<0.50) exist in the brown area, and the largest predictive errors appear
in the gray area. The optimal combination is γ = 0.1, C = 10, which yields the following
evaluation parameters (N represents the number of data points in the data set):
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SVM model.

N = 35, R2 = 0.908, RMSE = 0.465, Q2 = 0.853 (training set)
N = 15, R2 = 0.813, RMSE = 0.572, Q2 = 0.818 (validation set)
The model also has good fitting ability and robustness, as shown by the high R2 (0.908)

and Q2 (0.853) values. In external validation, both R2 (0.813) and Q2 (0.818) values are
greater than 0.8, further indicating a good predictive ability. Figure 5 also shows a good
agreement between the experimental log KP values and the predictive values calculated by
the SVM model.
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(4) Comparison of the different models

The R2 values of the log KOA model, the MLR model and the SVM model are all greater
than 0.8, indicating every model has good fitting ability. In comparison, the MLR model
has better performance than the log KOA model. The training set of SVM model obtains the
highest R2 value among the three models; however, the R2 of its validation set is relatively
lower than that of MLR model. As a black-box model, the prediction of the SVM model
is an opaque process which cannot provide more information, such as the relationship
between the molecular descriptors and the target endpoint under study, thus limiting its
application. Furthermore, the MLR model based on molecular structure descriptors avoids
the difficulties of experimental measurement, and is a visual model, making it simpler and
more convenient for practical application. According to the comprehensive comparison, the
MLR model is considered as the optimal predictive log KP model for the following analysis.

3.2. Characterization of the Model Application Domain

Figure 6 shows the Williams diagram of the MLR model with threshold h* = 0.180. All
data points locate at the left of h*, and the absolute values of StdR for all compounds are
less than 3, indicating the accurate predictive of this model. Therefore, the MLR model
has good applicability and can be used to predict the log KP values of compounds in the
descriptor domain (α: 99.753~280.623; Vs.min: −9.535 × 10−2~−2.498 × 10−2).
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3.3. Mechanism Analysis

The MLR model contains two descriptors, the average molecular polarization α and
the most negative electrostatic potential on the molecular surface Vs.min. α has the highest
correlation with log KP with the correlation coefficient R of 0.839, indicating the great
importance of average molecular polarizability in affecting the distribution of PAHs and
oxygen/nitrogen derivatives between gas phase and atmospheric particle phase. α char-
acterizes the dispersive interaction between the molecules, and a larger α corresponds to
a stronger intermolecular dispersive effect [47,48]. Because of the great distance between
molecules in the air, the dispersion interaction mainly occurs between atmospheric particles
and chemical molecules. Therefore, a larger α leads to stronger dispersion interactions
between chemical molecules and particles, and further results in a larger log KP. Thus,
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α yields a positive coefficient (0.031) in the model. The second descriptor, Vs.min, shows
negative correlation with log KP (the coefficient of −24.453). Vs.min reflects the contribu-
tion of molecular electrostatic hydrogen bonds; that is, it reflects the ability of molecules
to accept protons to form hydrogen bonds. The smaller Vs.min value indicates a higher
electron density and a stronger ability to accept protons to form hydrogen bonds [49,50].
Therefore, PAHs and oxygen/nitrogen derivatives with smaller Vs.min values are more
likely to combine with atmospheric particulates which have complex compositions.

3.4. Discussion

Yuan et al. [51] constructed a temperature-dependent QSPR model for predicting the
log KP values of 10 PAHs compounds based on molecular structure descriptors and ambient
temperature (T). The model included also the descriptor α as well as variable T; however,
its statistical performance is not satisfactory: R2 = 0.624, Q2 = 0.624, and RMSE = 0.395.
Sun et al. [52] established a Theoretical Linear Solution Energy Relationship (TLSER) model
for some organic compounds, including alkanes, alkalic acids, PAHs, O-PAHs and N-PAHs
(Table 4), in which KP1 and KP2 represent KP values measured by 190 m3 and 25 m3 smoke
chambers, respectively. These models show that dispersion and hydrogen bonding are
important factors affecting KP values, which is consistent with the results of this study.
However, the TLSER models contain fewer PAH, O-PAH and N-PAH data. Furthermore,
the number of descriptors used in this study is less, which makes it easier to apply.

Table 4. Comparison of literature models.

Compound Model Characterization Results References

PAHs log KP = (0.018 ± 0.003) × α + (−0.080 ± 0.033)
× T + (18.245 ± 9.979)

N = 28, R2 = 0.624,
Q2 = 0.624, RMSE = 0.395

[45]

Organic chemicals

log (103 KP1) = −17.426 + 0.406 × d + 0.058 × α
− 0.580 × EHOMO + 10.236 × qH+

N = 15, R2 = 0.971,
Q2 = 0.971, RMSE = 0.185

[46]log (103 KP2) = −21.307 + 0.162 × d + 0.0424 × α
− 1.531 × EHOMO − 0.582 × ELUMO

N = 17, R2 = 0.839,
Q2 = 0.839, RMSE = 0.634

PAHs,
O-PAHs,
N-PAHs

log KP = (0.031 ± 0.002) × α + (−24.453 ± 3.684)
× Vs.min + (−9.358 ± 0.433)

N = 50, R2 = 0.847,
Q2 = 0.847, RMSE = 0.584

This research

4. Conclusions

In this study, the correlation between the log KP and log KOA of PAHs and their oxy-
gen/nitrogen derivatives is first analyzed, and then QSPR models for log KP prediction
are constructed based on quantum chemical descriptors by MLR and SVM algorithms.
The QSPR models have better fitting performance, predictive ability and robustness. The
mechanism analysis shows that the major factors affecting the distribution of PAHs, O-
PAHs, N-PAHs and AZA in the gas and particle phases are intermolecular dispersion and
hydrogen bonding. Although the SVM model is slightly superior to the MLR model, it is
a black-box model with poor transparency and is dependent on the descriptor screening
of MLR process, limiting its further application. In contrast, the MLR model has simple
and visualized mathematical expression, bringing convenience to the analysis of the im-
portant factors that affect the partitioning of these chemicals between gas and atmospheric
particulate phases according to the chemical information carried by the quantum chemical
descriptors. Thus, the MLR model can be used to predict the log KP values of other PAHs
and oxygen/nitrogen derivatives, with the average molecular polarization within 280.623
and 99.753 and the most negative electrostatic potential on the molecular surface Vs.min
within −2.498 and −9.535. The log KP values can provide basic data for their environmental
fate and ecological risk assessment.
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