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Abstract: The kinetics of adsorption phenomena are investigated in terms of local and non-local
kinetic equations of the Langmuir type. The sample is assumed in the shape of a slab, limited by
two homogeneous planar-parallel surfaces, in such a manner that the problem can be considered
one-dimensional. The local kinetic equations in time are analyzed when both saturation and non-
saturation regimes are considered. These effects result from an extra dependence of the adsorption
coefficient on the density of adsorbed particles, which implies the consideration of nonlinear balance
equations. Non-local kinetic equations, arising from the existence of a time delay characterizing
a type of reaction occurring between a bulk particle and the surface, are analyzed and show the
existence of adsorption effects accompanied by temporal oscillations.
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1. Introduction

When a solid surface comes in contact with a liquid in which impurities are dissolved,
according to the interaction energy between these impurities and the surface, they can
either be attracted or repelled from the surface [1,2]. There is also the possibility that will
be handled here in which the particles are attracted to the surface and remain stuck on
it. In the equilibrium state, the number of particles passing from the liquid to the surface
(adsorbed) is equal to that passing from the surface to the liquid (desorbed). A simple
description of the phenomenon, in cases where the particles are neutral and long-range
effects can be neglected, is based on the kinetic equation relating the rate of adsorbed
particles with the adsorption phenomenon of particles from the bulk, and the desorption
of adsorbed particles from the surface [3]. In the approximation whereby the adsorption
energy is independent of the surface density of adsorbed particles and all adsorbing sites
are equivalent [4], the kinetic equation reads

dσ(t)
dt

= k n(t)− 1
τ

σ(t) , (1)

where σ(t) is the surface density of adsorbed particles, n(t) is the bulk density of adsorbable
particles, k and τ are the adsorption coefficient and the desorption time, respectively.
Expression (1) has been widely used to analyze the time-dependence of the surface den-
sity of adsorbed particles under different conditions [5–8]. It has been also employed in
the investigation of the adsorption phenomenon in the presence of an external electric
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field [9–11]. A generalization of Equation (1) is discussed in [12]. The adsorption parame-
ters depend, clearly, from the adsorbing surface and the adsorbable particles. They depend
also on the temperature and on the presence of an external electric field, as reported in
Refs. [7,10,12–16].

Indicating the surface density of adsorbing sites by σ0, in the case of σ � σ0, the
adsorption coefficient is independent of σ [17]. On the contrary, for σ ∼ σ0, the possibility
of a multilayer adsorption has to be considered. In conditions where only the formation of
a monolayer is possible, k→ k(σ) has to be such that for σ ≥ σ0, k(σ) < 0, indicating that
when the surface density overcomes the density of sites, the adsorption phenomenon is no
longer possible. A proposed form for the dependence of k(σ) on σ(t) is [18]

k(σ) = k
[

1−
(

σ

σ0

)p]
, (2)

with p > 1. When the formation of a multilayer is possible, k(σ) and τ can depend on the
number of layers already adsorbed.

The work focuses on the kinetic evolution of the system towards the equilibrium
state, where n(t) and σ(t) are time-independent. To solve the problem, in addition to the
kinetic balance equation, one has to also consider conservation of the total particle number
comprising the bulk plus the surface system.

The analysis deals with a sample limited by two homogeneous planar-parallel surfaces
at a distance d apart. Thus, the bulk density of particles depends only on the distance
of the considered point from the limiting surfaces, i.e., the mathematical problem is one-
dimensional. This is the so-called slab approximation, which is assumed henceforth. It
is also assumed that the surface forces responsible for the adsorption phenomenon are
short range, in such a manner that in the bulk n(t) can be considered uniform. This
approximation is valid if the diffusion time τD is extremely small with respect to the
characteristic times of the adsorption phenomenon. Indicating the diffusion coefficient by
D of the adsorbable particles, τD = d2/D. If d ∼ 10−5 m and D ∼ 10−9 m2/s, τD ∼ 0.1 s.
The analysis presented in the following, works well for samples of few µm in thickness, and
for ordinary diffusion coefficient, such as Na+ in water [3]. In cases where the adsorbing
surface is in contact with a reservoir, fixing the value of adsorbable particles, the quantity
n(t) appearing in the kinetic equation, with or without saturation, coincides with n0, the
bulk equilibrium density. In this case, since d → ∞, it is no longer necessary to impose
conservation of the number of particles. Several measurements reported in the literature
correspond to this situation, and our analysis can be easily generalized and applied to
these cases.

The goal of the paper is to develop a model capable of analyzing interesting data
reported in the literature [5–16] relevant to the dependence on surface density of the
adsorbed particles versus the concentration and the time evolution of the surface density.
Furthermore, a model is proposed that is able to explain the time-oscillating behavior of
the surface density of adsorbed particles [19–26] toward the equilibrium state.

The paper is organized as follows. Section 2 is dedicated to the investigation of local
kinetic equations from three different perspectives. In Section 2.1, the dynamical evolution
of the surface density of adsorbed particles when the kinetic equation is well described by
Langmuir isotherm is analyzed. This limiting case works well when the surface density
of adsorbed particles in the steady state is extremely small with respect to the surface
density of adsorbing sites. The scenario for large adsorption, when saturation effects are
important, is considered in Section 2.2, where the adsorption coefficient depends linearly
on the surface density of adsorbed particles (p = 1) is investigated first. The relevant
problem for which the dependence is quadratic (p = 2) is discussed in Section 2.3. Section 3
deals with non-local kinetic equations involving a time delay. The analysis shows that the
adsorption–desorption process could present a combination of saturation accompanied
by an oscillating behavior, when the time delay is comparable with the desorption time.
Lastly, the conclusions are provided in Section 4.



Molecules 2022, 27, 7601 3 of 14

2. Local Kinetic Equations

In this section, the adsorption–desorption phenomena are analyzed in the presence of
local kinetic equation when saturation and non-saturation regimes are considered. These
equations are local in time because the reaction characterizing the adsorption–desorption
process at the surfaces are assumed to be instantaneous, i.e., there is no time delay charac-
terizing the bulk-surface dynamics.

2.1. No Saturation: k(σ) = k

Let us consider first the simple case in which the kinetic equation describing the
adsorption phenomenon (1) involves an adsorption term proportional to the bulk density
of adsorbable particles n(t), related to the constant adsorption coefficient k, and a desorption
term proportional to the surface density of adsorbed particles, related to the desorption time
τ. Assuming a uniform bulk distribution of the adsorbable particles n(t), the conservation
of the number of particles (bulk plus surface) implies that

n(t) d + 2 σ(t) = n0 d . (3)

For the analysis presented in the following, it is useful to measure the time in units of τ,
i.e., T = t/τ, and to introduce the dimensionless parameter defined as u = τ/τκ = 2 k τ/d,
where k τ is an intrinsic length and τκ = d/2 κ is an intrinsic time, both connected to the
adsorption phenomenon [17], and d is the thickness of the sample. The maximum surface
density of adsorbed particles is σM = n0 d/2. For this reason, in the following, the surface
and the bulk densities of particles will be measured in units of σM and n0, i.e.,

S =
σ

σM
, and N =

n
n0

, (4)

in such a way that Equations (1) and (3) can be rewritten as

dS
dT

= u N − S , (5)

and
N + S = 1 , (6)

respectively. Substitution of Equation (6) into Equation (5) yields

dS
dT

+ (1 + u) S = u . (7)

In the equilibrium state, dS/dT = 0. It follows that in the steady state the dimension-
less surface density of adsorbed particles and bulk density of adsorbable particles are given,
respectively, by

S∗ =
u

1 + u
, and N∗ =

1
1 + u

. (8)

In absolute units, the corresponding surface and bulk particles densities are

σ∗ =
u

1 + u
σM , and n∗ =

1
1 + u

n0 . (9)

The kinetic evolution of S(T) is obtained by solving the differential Equation (7) with
the boundary condition S(0) = 0. Simple calculations give

S(T) =
u

1 + u

[
1− e−(1+u) T

]
. (10)
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The effective relaxation time, τR, of the surface density of adsorbed particles σ(t), in
absolute units, is

τR =
τ

1 + u
=

τ τκ

τ + τκ
. (11)

Note that Equation (11) can be rewritten as

1
τR

=
1
τ
+

1
τκ

, (12)

indicating that, in the case in which τ is very different from τκ , τR is approximatively equal
to the smallest between τκ and τ. When u→ 0, i.e., d→ ∞, τR → τ. This case represents
a surface in contact with a reservoir of particles. The opposite case, in which u→ ∞, i.e.,
d→ 0, yields τR → 0, which is not of experimental interest.

2.2. Linear Saturation: p = 1

A simple generalization of Equation (1) to take the saturation into account is obtained
when one considers k(σ) in Equation (2), for p = 1, namely:

dσ(t)
dt

= k
(

1− σ(t)
σ0

)
n(t)− 1

τ
σ(t) , (13)

where σ0 is the surface density of adsorbing sites. In terms of the dimensionless quantities
defined in (4), Equation (13) can be rewritten as

dS
dT

= u(1− r S) N − S , (14)

where
r =

σM
σ0

=
n0 d
2 σ0

, (15)

is a dimensionless parameter comparing the maximum density of adsorbable particles with
the density of sites on the surface. Note that for a fixed adsorbing surface in contact with
a solution the parameter σ0 is fixed and different values of r correspond to different bulk
equilibrium concentrations of adsorbable particles. In the present case, the conservation of
particles is still represented by Equation (6). The saturation is important only in the case
where r > 1. When r → 0, the analysis presented above has to be recovered.

Substitution of Equation (6) into Equation (14) yields for S(T) the ordinary differential
equation:

dS
dT

= u r S2 − (1 + u + u r) S + u . (16)

As before, in the equilibrium state dS/dT = 0, and the surface density characterizing
the steady state is the solution of the second-order equation

u r S2 − (1 + u + u r) S + u = 0 , (17)

whose solutions are

S1 =
1 + u + r u−

√
(1 + u + r u)2 − 4 r u2

2 r u
, (18)

and

S2 =
1 + u + r u +

√
(1 + u + r u)2 − 4 r u2

2 r u
. (19)

Since
(1 + u + r u)2 − 4 r u2 = [1 + (1−

√
r)2 u] [1 + (1 +

√
r)2 u] > 0 , (20)
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for all meaningful physical parameters, S1 and S2 are real quantities. From Equations (18)
and (19), in the limit of r → 0, one obtains

S1 =
u

1 + u
− u2

(1 + u)3 r +O(r2) , (21)

and

S2 =
1 + u

ru
+

1
1 + u

+
u2

(1 + u)3 r +O(r2) . (22)

Since, in the r → 0 limit, one has to recover the result given by (8), it is possible to
conclude that the actual surface density in the equilibrium state is S1. The dependence of
the equilibrium surface density versus r is shown in Figure 1.

0 2 4 6 8 10

0.0

0.3

0.6

 

 

S

r

Figure 1. Dependence of the dimensionless surface density of the steady state versus the dimension-
less parameter r. Dashed and dash-dotted lines represent the limiting cases corresponding to small
and large r, respectively, as given by Equations (21) and (23). The curves are drawn for u = 0.3 or
τ = 0.3 τκ , i.e., the adsorption time is approximately three-times faster than the desorption time.

Notice that in the limit of r → ∞, corresponding to a sample of infinite thickness, from
Equation (18) one obtains

S1 =
1
r
+O(r−2) . (23)

Taking into account that the actual surface density is given by σ = σM S, if one
expresses σ in terms of σ0, then one has σ/σ0 = rS. It follows that, from Equation (23), in
the considered limit of large r

lim
r→∞

σ1

σ0
= 1 . (24)

which states that, in an infinite sample, all adsorbing sites are occupied.
The evolution of S(T) toward to the equilibrium state is determined by solving

Equation (16). A simple calculation gives

S(T) = S1 S2
1− e−α T

S2 − S1e−α T , (25)

where
α =

√
(1 + u + r u)2 − 4 r u2 > 0, (26)

as it follows from Equation (20). The time dependence of S(T) given by Equation (25) is
shown in Figure 2 for two different values of r.
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0 1 2 3 4
0.0

0.1

0.2

 

 

S

T

  r = 0.5
  r = 2.0

Figure 2. Dependence on the dimensionless surface density of adsorbed particles, S(T), versus the
dimensionless time, T, for u = 0.3, r = 0.5, (dash-dotted line) and r = 2, (full line).

The time dependence of the dimensionless surface density of adsorbed particles
compare qualitatively well with the experimental data reported in Refs. [8,10,14], relevant
to the influence of the equilibrium concentration on the adsorption phenomenon. The
relaxation time, in absolute units for σ(t), is then

τR =
τ√

(1 + u + r u)2 − 4 r u2
. (27)

One notices that the divergence of τR is only apparent because the quantity (1 + u +
r u)2 − 4 r u2 is always positive for all values of r and u physically meaningful, as stressed
above. From Equation (27), in the r → 0 limit, one gets

τR =
τ

1 + u

[
1− 1− u

(1 + u)2 u r
]
+O(r2) , (28)

that, in the same limit, coincides with (11), as expected. The dependence of τR on r is shown
in Figure 3, where are also reported the limiting cases corresponding to small and large
values of r.

0 2 4 6 8 10

0.0

0.5

1.0

1.5

 

 

t R
 / 
t

r

Figure 3. Relaxation time, in τ units, versus the dimensionless parameter r. The dashed and dash-
dotted lines are the limiting cases of large and small r, respectively. The figure is drawn for u = 0.3.
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2.3. Quadratic Saturation: p = 2

Let us consider now the case in which the kinetic equation is represented by

dσ(t)
dt

= k

[
1−

(
σ(t)
σ0

)2
]

n(t)− 1
τ

σ(t) , (29)

where, as before, σ0 is the surface density of adsorbing sites. In terms of reduced quantities,
it takes the form

dS
dT

= u (1− r2 S2) N − S , (30)

and the equation stating the conservation of the number of particles is still represented by
Equation (6). Differential Equation (29), taking into account Equation (6), can be rewritten as

dS
dT

= u r2 S3 − u r2 S2 − (1 + u) S + u . (31)

In this way, the equilibrium value of S is obtained by solving the third-order equation

dS
dT

= 0 . (32)

By inspection, one observes that for all physically meaningful values of r and u,
Equation (32) always contains three distinct real solutions as shown in Figure 4. The
searched solution to the kinetic Equation (29) is the one that, in the limr→0 S∗, reduces to
Equation (8).

-5.0 -2.5 0.0 2.5 5.0
-8

-4

0

4

8

dS
 / 

dT

   r = 0.5
   r = 1.0
   r = 1.5

0.2 0.3
-0.15

0.00

0.15

 

 

 

 

 
 

S

Figure 4. Plot of dS/dT, given by Equation (31), versus S for u = 0.1 and r = 0.5 (dash-dotted), r = 1
(full), and r = 1.5 (dashed). The insert shows a closeup of the three curves around S = 0. Clearly, for
all physically meaningful values of r and u, there are three distinct real solutions.

Indicating by S1, S2 and S3 the three solutions of Equation (32), a simple calculation
shows that in the r → 0 limit they tend respectively to

S1 →
√

1 + u
u

1
r
+O(r−1) , (33)

S2 → −
√

1 + u
u

1
r
+O(r−1) , (34)

S3 → u
1 + u

[
1− u2

(1 + u)3 r2
]
+O(r−1) , (35)

from which one deduces that solutions S3 tends to the value given by (8), as expected. In
the opposite limit of r → ∞, the solutions tend to
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S1 → 1 +
1

u r2 +O(r−2) , (36)

S2 → −1
r
− 1

2 r2u
+O(r−2) , (37)

S3 → 1
r
− 1

2 u r2 +O(r−2) , (38)

at the second order in 1/r. As already mentioned, the surface density in units of σ0, are rS
and tend to

r S1 → ∞, r S2 → −1, and r S3 → 1, (39)

showing again that the solution of the problem also has the correct limit in the case of large
r. The numerical solution of Equation (31) is shown in Figure 5, for u = 0.1 and r = 0.1,
r = 5, and r = 10.

0 1 2 3
0.0

0.1

0.2

0.3

 

 

   r =   0.1
   r =   5.0
   r = 10.0

S

T

Figure 5. Dependence on the dimensionless surface density of adsorbed particles, S(T), versus the
dimensionless time, T, in the case of a quadratic reduction of the adsorption coefficient. The curves
were numerically obtained for u = 0.3 and three values of r: r = 0.1 (dash-dotted), r = 5 (full), and
r = 10 (dashed).

Finally, Figure 6 compares the time evolution of S(T) deduced in the case of no satura-
tion (dash-dotted line), linear saturation (full line), and quadratic saturation (dashed line).

0 1 2 3
0.0

0.1

0.2

 

 

S

T

Figure 6. Comparison (in dimensionless units) of the time dependencies of S relevant to cases where
saturation is absent (dash-dotted), with saturation linear in S (full) and saturation quadratic in S
(dashed). The curves were drawn for u = 0.3 and r = 10.
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3. Non-Local Kinetic Equations

In the previous sections, a few kinetic equations describing the adsorption phe-
nomenon, in the absence of saturation, Equation (1), in the presence of linear, Equation (13)
and quadratic, Equation (29), saturation have been considered. These equations were
solved by taking into account conservation of the number of particles, that we assumed as
represented by Equation (3). This is a rather rough approximation, but allows one to derive
some general properties on the adsorption. These kinetic equations are of the type

dσ(t)
dt

∣∣∣∣∣
t

= H[n(t), σ(t)]− 1
τ

σ(t) , (40)

i.e., they relate the time variation of σ(t) at t with the bulk density of adsorbable particles,
and with the surface density of adsorbed particles, at the same time t. However, since the
adsorption phenomenon implies a form of chemical reaction occurring between a bulk
particle and the surface, the time rate dσ/dt at t depends on n(t) and σ(t) at an antecedent
time t− δ, where δ depends on the particular reaction responsible for the adsorption. This
particular time, δ, can differ from the desorption time, τ. In other words, usually, there is
an intrinsic delay between dσ(t)/dt and, n(t) and σ(t). This delay is related to δ in such a
way that Equation (40) has to be written as

dσ(t)
dt

∣∣∣∣∣
t+δ

= H[n(t), σ(t)]− 1
τ

σ(t) . (41)

Assuming δ small with respect to the observation time t, from Equation (41) one gets

δ
d2σ(t)

dt2 +
dσ(t)

dt
= H[n(t), σ(t)]− 1

τ
σ(t) , (42)

i.e., now the kinetic equation contains a second order derivative in t.
To investigate the effect of the delay on the evolution of the surface density of adsorbed

particles, Equation (1) is now generalized, with the condition (3). In the presence of delay,
Equation (1) becomes

δ
d2σ(t)

dt2 +
dσ(t)

dt
= k n(t)− 1

τ
σ(t) , (43)

that, by taking into account Equation (3) and using dimensionless quantities, assumes the
form:

ε
d2S
dT2 +

dS
dT

+ (1 + u) S = u , where ε = δ/τ . (44)

Equation (44) is the new version of Equation (7) in the presence of a time delay. The
parameter ε compares the delay time δ with the desorption time τ.

To solve Equation (44), one has to impose the initial conditions on dS/dT and S. It
will be assumed, as before, that the adsorption phenomenon begins at t = 0, and hence
S(0) = 0 and, furthermore, that (dS/dT)|t=0 = 0. In this framework, as it is evident
from (44), the case ε = 0 is singular, because the differential equation passes from the
second to the first order. Solution of Equation (44) with the mentioned initial conditions,
when 1− 4 (1 + u) ε 6= 0, is

S(T) =
u

1 + u

[
1− 1

α2 − α1

(
α2 eα1 T − α1 eα2 T

)]
, (45)

where

α1 = − 1
2 ε

[
1−

√
1− 4 (1 + u) ε

]
, (46)

α2 = − 1
2 ε

[
1 +

√
1− 4 (1 + u) ε

]
. (47)



Molecules 2022, 27, 7601 10 of 14

In the particular case in which 1− 4 (1 + u) ε = 0, solution of Equation (44) with the
above mentioned boundary conditions is

S(T) =
u

1 + u

[
1−

(
1 +

T
2 ε

)
e−T/(2 ε)

]
. (48)

The exponents α1 and α2 depend critically on 1− 4 (1 + u) ε. If ε < εc = 1/[4 (1 +
u)], then α1 and α2 are negative real numbers, and the solution S(T) tends uniformly to
u/(1+ u). In this case, the relaxation toward to the equilibrium value of the surface density
of adsorbed particles is characterized by two different relaxation times and the explicit
solution is

S(T) =
u

1 + u

{
1− 1

α

[
sinh

( α

2 ε
T
)
+ α cosh

( α

2 ε
T
)]

e−T/(2 ε)

}
, (49)

where α =
√

4 (1 + u) ε− 1. An expression of the type given by Equation (45) has been
proposed to interpret the adsorption data by Vanegas et al. [27], and used more recently to
analyze adsorption data in [15,16].

In the opposite case, where ε > εc, α1 and α2 are complex conjugate numbers, with
a negative real part. The solution S(T) tends to u/(1 + u) oscillating, and the explicit
solution is

S(T) =
u

1 + u

{
1− 1

α

[
sin
( α

2 ε
T
)
+ α cos

( α

2 ε
T
)]

e−T/(2ε)

}
, (50)

where α =
√

1− 4 (1 + u) ε.
Figure 7 shows the time evolution of S for u = 0.1 and ε = 5 εc (dash-dotted line),

ε = 0.9 εc (full line), and the solution for ε = 0, i.e., assuming no delay (dashed line). As
can be observed, all curves tend to the same limit u/(1 + u). The inset of Figure 7 shows
the evolution of S for small T. From this frame, it is clear that the case corresponding to
δ = 0 does not satisfy the initial condition on dS/dT = 0.

0 3 6 9 12 15
0.00

0.03

0.06

0.09

0.12

0.0 0.5 1.0
0.00

0.03

0.06

 

 

 

 

S

T

   = 5.0 c

   = 0.9 c

   = 0.0

Figure 7. Time evolution (in dimensionless units) of S for ε = 5 εc (dash-dotted), ε = 0.9 εc (full),
and δ = 0 (dashed), with u = 0.1. From the inset, where it is reported the evolution for small T,
it is evident that in the case ε = 0 the initial boundary condition on dS/dT is not satisfied, as a
consequence from the fact that in this case the differential equation passes from the second to the
first order.

The simple analysis presented above to take into account the delay δ was possible
because the governing differential equation is linear. The same generalization in the case
where the adsorption phenomenon is described by Equation (16) or by Equation (31) gives
rise to the differential equations
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ε
d2S
dT2 +

dS
dT

= u r S2 − (1 + u + u r) S + u , (51)

ε
d2S
dT2 +

dS
dT

= u r2 S3 − u r2 S2 − (1 + u) S + u , (52)

respectively. In presence of the saturation effect, it is no longer possible to obtain an
analytical solution, because Equations (51) and (52) are no longer linear. However, a
numerical solution can be easily obtained. Figure 8 compares the time evolution of S
described by Equation (51), (dashed line), and by Equation (52), (dash-dotted line), for
ε = 5 εc with u = 0.1 and r = 100. Furthermore, in this case, the solutions are oscillating
around the stable limiting value.

This oscillating behavior can be qualitatively compared with the ones exhibited by
some acid monolayers whose adsorption is governed by physical forces, but in which the
role of the head group has to be taken into account [19,20]. As pointed out in Ref. [19], an
oscillating behavior such as the ones depicted in Figures 7 and 8 is in agreement with the
behavior found by Fourier transform IR spectroscopy for siloxane polymers chemisorb-
ing to aluminia [20,21]. In these systems, measurements of the variation of physically
adsorbed and chemically adsorbed segments show that the physisorption process is strong
in the first instants, presenting a pronounced maximum and tending to a small value; the
chemisorption process, on the contrary, tends to a saturation value. When these effects are
combined, because they occur during the same process, the resulting curve may present
oscillating behavior. The effect of the non-local term, represented by the second order
time-derivative, may be connected with memory effects. Indeed, it may indicate that the
adsorption process is much better described if one considers the memory of the preceding
state for the molecules being adsorbed at the surface.
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Figure 8. Time evolution (in dimensionless units) of the surface density of adsorbed particles in the
presence of linear (dashed), and quadratic (dash-dotted), saturation effect. The curve are drawn
for u = 0.1, r = 100 and ε = 5 εc. Observed in the inset, comparison between the time evolution
of S in the absence of saturation effect (full), with linear (dashed), and quadratic (dash-dotted)
saturation effect.

An effect of this kind is not unusual and can even be expected because, for instance,
in the adsorption phenomenon by a solid surface, the collision of a molecule can be
represented by different processes [22]. One of these is an elastic scattering, that occurs
when there is no loss in translational energy during the collision; however, if the molecule
is still in a weakly bound state, even if it is on the surface, the thermal motion of the surface
atoms can cause the molecule to desorb and this represents another kind of process. Finally,
when the molecule collides with a surface, it loses energy and is converted into a state
where it remains on the surface for a reasonable length of time [23]. These phenomena
indicate that the actual position of the molecule on the surface has a memory of its incoming
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state, eventually modifying the adsorption–desorption rates. An alternative analysis of this
process has been carried out by considering modified linear kinetic equation in which some
suitable choices for a kernel in the desorption rate accounted for the importance of the
physisorption or of the chemisorption, according to the time scale governing the adsorption
phenomena [19]. In the present analysis, the oscillating behavior is obtained with linear
and nonlinear kinetic equations incorporating an expected time delay in the reaction of the
molecules from the bulk at the surface, during the adsorption process and may be relevant
to understand oscillation phenomena in polymers [24], multicomponent adsorption [25],
surfactant ions [26], among many others.

4. Conclusions

The work approaches the kinetic equation in the Langmuir approximation from two
different perspectives. The first deals with a balance equation that is local in time, but
in which a phenomenological adsorption coefficient intervenes that may depend on the
density of adsorbed particles according to a general power law. After formulating the
problem in more general terms, the conventional case k(σ) = const. is considered and
two other possibilities: a linear and a quadratic dependence. In such cases, the density
of particles at equilibrium is described by algebraic equations and the time evolution by
nonlinear differential equations. Thus, it is possible to analyze various adsorption regimes
that are essentially governed by a saturation phenomenon dictated by the finite number
of sites at the interface. In the second perspective, the adsorption–desorption phenomena
are analyzed in a non-local picture in time, that is, it is assumed that there exists a time
delay between the arrival of the particle in the bulk, but in the vicinity of the interface,
and the adsorption–desorption itself, taking place over the interface. In this case, the
entire kinetics are described by an equation involving a second derivative in time, which
reduces to first-order when the time delay is negligible. In this context, it is found that
the adsorption–desorption regimes could be accompanied by an oscillation phenomenon
in the coverage ratio behavior. A similar phenomenon can be found using linear kinetic
equations, but containing temporal kernels that take memory effects into account. There is,
therefore, a very complete approach to the adsorption–desorption phenomena of neutral
particles (although the extension to the case of charged particles can also be considered
from the same perspective) at the liquid (bulk)–solid (surface) interface.
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Abbreviations

d Thickness of the cell [m].
D Diffusion coefficient [m2/s].
δ Delay time [s].
ε Dimensionless delay time.
k(σ) Adsorption coefficient [m/s].
n(t) Bulk density of adsorbable particles [1/m3].
n0 Bulk density of adsorbable particles in thermodynamic

equilibrium in the absence of adsorption [1/m3].
n∗ Equilibrium bulk density of particles

in the presence of adsorption [1/m3].
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N = n(t)/n0 Reduced bulk density of particles.
N∗ = n∗/n0 Reduced equilibrium bulk density of particles

in the presence of adsorption
r = σM/σ0 Maximum density of adsorbed particles, σM,

in units of surface density of adsorption sites, σ0.
S = σ/σM Reduced surface density of particles.
S∗ = σ∗/σM Reduced equilibrium surface density of particles

in the presence of adsorption.
σ(t) Surface density of adsorbed particles [1/m2].
σ∗ Equilibrium value of the surface density of adsorbed

particles [1/m2].
σM = n0d/2 Maximum density of adsorbable particles [1/m2].
σ0 Surface density of adsorbing sites [1/m2].
τ Desorption time [s].
τD = d2/D Diffusion time [s].
τk = d/2k Intrinsic adsorption time [s].
τR Effective relaxation time [s].
T = t/τ Dimensionless time.
u = τ/τk Desorption time, τ, in units of intrinsic adsorption time, τk.
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