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Abstract: A viable approach to improve the nutritional quality of cereal-based foods is their enrich-
ment with pseudocereals. The aim of this research was to evaluate the antioxidant properties of
amaranth, quinoa and buckwheat, and the heat damage of water biscuits (WB) produced from either
wholemeal or refined flour of einkorn and enriched with 50% buckwheat, amaranth or quinoa whole-
meal. Buckwheat had the highest tocols content (86.2 mg/kg), and einkorn the most carotenoids
(5.6 mg/kg). Conjugated phenolics concentration was highest in buckwheat (230.2 mg/kg) and
quinoa (218.6 mg/kg), while bound phenolics content was greatest in einkorn (712.5 mg/kg) and
bread wheat (675.7 mg/kg). The all-wholemeal WB had greater heat damage than those containing
ﬁ?ﬁ'a(tl(g refined flour (furosine: 251.5 vs. 235.8 mg/100 g protein; glucosylisomaltol: 1.0 vs. 0.6 mg/kg DM;
hydroxymethylfurfural: 4.3 vs. 2.8 mg/kg DM; furfural: 8.6 vs. 4.8 mg/kg DM). The 100% bread
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1. Introduction

Received: 13 October 2022 Bread wheat and durum wheat are the main ingredients of an ever-increasing number of
Accepted: 27 October 2022 cereal-based foods. However, there are other crops which, besides being valid alternatives to
Published: 3 November 2022 wheat cropping in marginal soils, may contribute to the improvement of the nutritional quality
Publisher’s Note: MDPIstaysneutral ~ Of the finished products. Three pseudocereals, i.e., amaranth (Amaranthus spp. L.), quinoa
with regard to jurisdictional claims in  (Chenopodium quinoa Willd.) and buckwheat (Fagopyrum esculentum Moench), stand out for
published maps and institutional affil-  the well-balanced amino-acid profile of their proteins [1] and the presence of minerals,
iations. fibres and antioxidants [2-5]. Buckwheat, a crop originating from the Eastern side of the
Himalayas and south-west China [6], is widely distributed in the temperate areas of the
world. Amaranth and quinoa, from Central America and the Andean region of South
= America, until recently had a more restricted area, but increased demand and insufficient

supply pushed their growth to many new areas [7].

As mentioned above, pseudocereals are a good source of antioxidant compounds, such
as tocols, carotenoids, phenolic acids, flavonoids, etc., which garner considerable interest
for their effect on the reduction in the incidence of aging-related and chronic ailments
such as cancer and neurodegenerative or cardiovascular diseases [8]. Pseudocereals can be
employed to enrich traditional foods or to manufacture new products. However, they lack
the dough-forming gluten needed for the preparation of many popular foods (e.g., bread,
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bakery products, pasta, etc.) with good textural and sensorial properties. On the other hand,
they can be added to wheat flour to improve the nutritional properties of final products,
although excessive quantities may lead to technological challenges and mediocre quality
of foods, mainly due to the diluting of the gluten. Widely consumed products such as
bakery products and pasta are optimal vehicles for the inclusion of nutrients and are, thus,
increasingly employed for the prevention and the management of health disorders [9].

Among bakery products, cookies, biscuits and crackers—characterised by a broad
array of shapes, enticing taste and long shelf-life—are extremely popular. Crackers are
thin and crisp products manufactured from unsweetened and unleavened dough. As such,
they are a perfect model product to evaluate the effects of the addition of nutritionally
valuable compounds. Their preparation, which requires baking at 200 °C or higher tem-
peratures, induces many chemical reactions, including caramelisation and the Maillard
reaction. Caramelisation, favoured by low moisture and temperatures above 120 °C, is
a consequence of carbohydrates degradation [10]. The Maillard reaction, instead, takes
place at intermediate moisture and temperatures above 50 °C, between reducing sugars
and free amino groups: the formation of chemically stable and nutritionally unavailable
lysine derivatives leads to a loss of this essential amino acid.

Specific heat-damage indices, such as furosine, hydroxymethylfurfural (HMF), glu-
cosylisomaltol (GLI) and furfural, as well as colour changes, may be used to monitor
and optimise baking conditions with the aim to minimise the shortage of this amino acid.
Furosine, formed by the acid hydrolysis of Amadori compounds (stable products of the
initial steps of the Maillard reaction), is employed to evaluate heat damage in several
food products [11,12]. HMF, generated by the degradation of both sugars and Amadori
products [13], is used in bread [14,15], pasta [16], baby cereals [17], etc. GLI, formed by
maltose and amino acids, has been proposed as an indicator of a browning reaction in baby
cereals and bread [18]. Furfural, from pentose or HMF degradation, is usefully exploited
for cookie monitoring during baking [13].

The present work, therefore, aims to: (i) characterize the antioxidant properties (carotenoids,
tocols, phenolic acids, antioxidant capacity), protein content and amino acid composition,
sugars content and colour of wholemeals of buckwheat, amaranth, quinoa, bread wheat
(Triticum aestivum L. ssp. aestivum) and einkorn wheat (Triticum monococcum L. ssp. monococcumt);
and (ii) evaluate the heat damage and colour of biscuits produced using 50% wholemeal
or refined einkorn flour plus 50% wholemeal buckwheat, amaranth or quinoa; as con-
trols, water biscuits from 100% wholemeal or refined flour of einkorn and bread wheat
were prepared.

2. Results and Discussion

The wholemeals of the different species were characterized for selected traits that are rele-
vant in terms of nutritional value and susceptibility to the Maillard reaction upon subsequent
processing into water biscuits. The one-way analysis of variance (ANOVA) (Supplementary
Table S1) revealed highly significant differences for all the compounds analysed.

2.1. Tocols

Presence and levels of tocols were extremely dissimilar among pseudocereals (Table 1).
Buckwheat flour showed high concentrations of y-tocopherol and low of «- and é-tocopherol.
Amaranth contained only - and (3-tocopherol, while quinoa had just «- and y-tocopherol. For
buckwheat, the values were slightly higher than those described in previous studies [19,20],
where y-tocopherol varied between 49.0 and 57.0 mg/kg DM. For amaranth, they were
similar to those (15.6-19.1 and 11.4-40.7 mg/kg DM) obtained by different authors [21-23];
however, they also detected y- and 6-tocopherol. Similarly, our quinoa results were in-
line with those of other researchers [20,24,25], who reported contents of 8.0-24.0 and
25.8-49.0 mg/kg, respectively; the aforementioned authors found limited quantities of
other tocols too.
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Table 1. Carotenoid, tocol and phenolic composition (mg/kg DM) of wholemeals of buckwheat,

amaranth, quinoa, bread wheat and einkorn wheat.

Buck Wheat Amaranth Quinoa Bread Wheat Einkorn Wheat
Tocols
«-tocopherol 3504 +0.10 10.41 € + 0.04 30.18 2 4 0.44 12.66 ° + 0.04 13.13> +0.15
B-tocopherol nd 4 29.162 + 0.28 ndd 9.15b + 0.41 5.70 ¢ + 0.05
y-tocopherol 77.632 +0.24 nd € 36.11° 4+ 0.01 nd ¢ nd ¢
d-tocopherol 4.892 £+ 0.05 ndP nd P nd b nd b
a-tocotrienol nd € nd € nd € 415P +0.08 12.382 + 0.04
-tocotrienol nd ¢ nd € nd ¢ 38.22b +1.27 40.812 +£0.02
Carotenoids
(o+B)-carotene nd®© nd ¢ 0.15 + 0.00 0.16® +0.01 0.442 4+ 0.01
B-cryptoxanthin nd P nd? nd P nd P 0.04 2 £ 0.00
Lutein 3.17P +0.01 nd® 1.184 £ 0.00 1.43¢+0.05 4802 + 0.01
Zeaxanthin 0.13P +0.01 nd d 0.06 € 4 0.01 0.15° +0.01 0.332 +0.01
Conjugated phenolics
p-hydroxybenzoic acid 53.723 £ 1.18 43.30° +0.09 32.90 € + 0.08 2.58 4 +0.02 2514 +£0.17
Vanillic acid ndd 6.52°+0.18 83422 +1.14 7.79 b +0.03 8.45P +0.14
Syringic acid 0.12 € 4 0.00 0.12¢ £ 0.00 3.03P +0.01 6.622 +0.26 6.262 +0.33
Syringaldehyde 165.402 £+ 2.13 nd ¢ nd ¢ 1.09° +0.03 2.26° +0.11
p-coumaric acid 10.95° + 0.49 5.41°+0.10 39.472 £+ 0.11 1.28 ¢+ 0.03 2984 4 0.08
Ferulic acid nd® 54.302 + 0.69 59.76 @ + 0.26 29.134 +0.60 36.49 ¢ +0.97
Bound phenolics
p-hydroxybenzoic acid 24462 +0.18 6.56° +0.25 5.36 € 4 0.36 2444 4 0.04 33344048
Vanillic acid 7.802 + 0.07 1.19€ £+ 0.05 3.604 +0.02 6.80P +£0.20 450 € 4+ 0.07
Syringic acid 8.612 +£0.15 3.99¢ 4 0.37 2.864 4+ 0.05 8.66 2 & 0.15 5.87P +0.30
Syringaldehyde 43.04% £0.68 nd ® nd P nd ® nd P
p-coumaric acid 17.10° £ 0.99 9.29°+0.22 3.824 +0.20 1657 +0.32 33.302 £+ 1.01
Ferulic acid 11.62 ¢ + 0.65 84.60° 4+ 2.90 62.880 +2.93 641252 +18.11  665.512 +18.25

Different letters in the same row highlight significant differences (p < 0.05) among samples following Duncan’s
LSD test.

The two Triticum displayed profiles quite different from those of pseudocereals. Both
bread wheat and einkorn contained good concentrations of «- and (3-tocopherols, and no y-
and d-tocopherols; interestingly, they also had remarkable levels of x- and 3-tocotrienol.
The values of tocols in Triticum samples were similar to previous results [26-28]. Overall,
total tocols content (Figure 1) was maximum in buckwheat (86.2 mg/kg DM), followed
by einkorn (72.0 mg/kg DM), quinoa (66.3 mg/kg DM), bread wheat (64.2 mg/kg DM)
and amaranth (39.6 mg/kg DM). While bread wheat and einkorn had a more varied
composition, the pseudocereals showed high concentrations of specific compounds: in fact,
quinoa had the highest content of «-tocopherol, amaranth of 3-tocopherol and buckwheat
of 5-tocopherol.

2.2. Carotenoids

The main carotenoid found in buckwheat (Table 1) was lutein, along with small
quantities of zeaxanthin, while quinoa has a limited content of lutein, zeaxanthin and
(ot+p)-carotene, and amaranth was completely devoid of carotenoids. In general, these
results agree with the literature data. Tuan et al. [29] reported slightly higher concentrations
of lutein (3.71-6.87 mg/kg DM) and zeaxanthin (0.39-0.50 mg/kg DM) in two buckwheat
varieties, plus lower amounts of 3-carotene. Instead, our data of lutein and zeaxanthin in
quinoa were lower than those (8.2-12.4 and 0.6-0.8 mg/kg DM, respectively) described by
Tang et al. [25].
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Bread wheat and einkorn showed a greater variety of carotenoids. The former
presented lutein and traces of («+f3)-carotene and zeaxanthin. The same carotenoids,
with the addition of 3-cryptoxanthin, were recovered in einkorn. Their contents were
similar to those (3.92-12.64, not detected—2.39, 0.29 and 0.10 mg/kg DM) reported in
the literature [27,30-35]. Overall (Figure 1), einkorn had the highest concentration of
carotenoids (5.60 mg/kg DM), followed by buckwheat (3.30 mg/kg DM), bread wheat
(1.74 mg/kg DM) and quinoa (1.40 mg/kg DM). Lutein was by far the most abundant
compound in all samples, except amaranth.

100 8
_ a —
94 a s 7
— o
80 1
E c E g’ 6 - a
2 70 b c gi ]
D 60 - ¥ v 2
E 8
0 50 - ° 4
8 40 d g >
4 o ™
= g 3]
T 30 - ©
0 T 2 c
[ 5 d
20 1 S
10 1 11 H
e
0 T T L T 0 T T T T
BK AM QU BW EI BK AM QU BW EI
300 800
E a
a S 700 3_ -
D 250 { 4 a
E = b 2 600 -
- D
200
8 £ 500
= ®
] o
& 150 - S 400
K c
a c g
g S 300
% 100 A o
o) c
3 d 3 200 A
c e o b b
o) 4
S H H 100 |-| H b
0 T T T T 0 T T ﬂ T
[

BK AM QU BW E BK AM QU BW EI

Figure 1. Total tocols, carotenoids, conjugated phenolics and bound phenolics (mg/kg DM) of the
buckwheat (BK), amaranth (AM), quinoa (QU), bread wheat (BW) and einkorn (EI) wholemeal. The
error bars represent the standard deviation; different letters indicate significant differences (p < 0.05)
among samples.

2.3. Conjugated Phenolic Acids

The conjugated phenolic acids composition of the pseudocereals and of the wheats
is presented in Table 1. Buckwheat contained, in decreasing quantities, syringaldehyde,
p-hydroxybenzoic acid, p-coumaric acid and traces of syringic acid. There are not many ref-
erences of conjugated phenolic acids in buckwheat but these results, apart syringaldehyde,
are similar to those reported for Fagopyrum tataricum, i.e., 9-34 mg/kg p-hydroxybenzoic
acid, 1.5-15.9 mg/kg p-coumaric acid, 4.9 mg/kg syringic acid, 1.7-26.2 vanillic acid and
1.1-33.5 mg/kg ferulic acid [36].
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In amaranth, the conjugated fraction was composed of ferulic acid, p-hydroxybenzoic
acid, vanillic acid, and coumaric acid (along with traces of syringic acid). These very
same phenolic acids were observed in similar quantities (62.1-83.2, 19.7-36.8, 42.8-66.7 and
8.0-9.9 mg/kg) in soluble extracts of four Amaranthus caudatus accessions [37]; in addition,
caffeic, sinapic and protocatechuic acids were recorded.

Quinoa contained vanillic, ferulic, p-coumaric, p-hydroxybenzoic and syringic acids in
quantities comparable to the results (89.7-146.0, 120-200, 22.6-275.0 and 19.2-38.8 mg/kg,
respectively) reported by Repo-Carrasco et al. [37] and to the values (22.84-30.35 mg/kg
ferulic acid, 21.56-34.08 mg/kg p-coumaric acid, 31.97-51.84 mg/kg p-hydroxybenzoic)
found by Tang et al. [38].

The conjugated phenolics composition of the two wheats was similar, as both con-
tained ferulic acid, syringic acid, vanillic acid and, in small quantities, p-hydroxybenzoic
acid, p-coumaric acid and syringaldehyde, although einkorn in general showed higher
concentrations. These results are in the ranges of those (9.4-62.3, 3.9-22.0, 8.8-24.5, 2.3-11.1,
3.0-12.1 and 0.0-2.9 mg/kg, respectively) reported for bread wheat [39] and (34.1-36.1,
3.5-4.8,5.1-6.0, 1.6-2.2, 2.2-2.6 and 1.4 mg/kg) for einkorn [40].

2.4. Bound Phenolic Acids

Table 1 also depicts the bound phenolic acids composition of all the species tested.
Buckwheat contained syringaldehyde, p-hydroxybenzoic acid, p-coumaric acid, syringic
acid, vanillic acid and ferulic acid, in good agreement with previous data (10.0-21.0, 4.8-9.8,
1.1-2.6 and 2.1-5.2 mg/kg for p-hydroxybenzoic, ferulic, p-coumaric and vanillic acids, but
no syringaldehyde) [41] on Fagopyrum tataricum. On the other hand, Zhu et al. [42] did not
observe vanillic acid, p-coumaric acid and syringaldehyde.

Amaranth revealed the presence of ferulic acid (about 80% of total bound phenolic
acids), syringic acid, p-coumaric acid, p-hydroxybenzoic acid and vanillic acid; Okarter [43]
identified a similar profile, rich in ferulic acid (45.24 mg/kg DM) and p-coumaric acid
(11.6 mg/kg DM).

Quinoa had a composition similar to amaranth, rich in ferulic acid (about 80%),
and with small quantities of p-hydroxybenzoic acid, p-coumaric acid, vanillic acid and
syringic acid. A likewise composition, but with higher concentrations of all the compounds,
ie., 68.9-89.0, 19.0-21.0, 14.0-21.5 and 14.0-32.3 mg/kg of ferulic, p-hydroxybenzoic, p-
coumaric and vanillic acid acids, was reported [43,44]. The same compounds, with the
exception of syringaldehyde and the addition of sinapic acid and protocatechuic acid (but
only in coloured quinoa), were also reported [45].

In bread wheat and einkorn wheat, the ferulic acid represented 94-95% of total bound
phenolics, followed by p-coumaric acid, syringic acid, vanillic acid and p-hydroxybenzoic
acid, results similar to those described for bread wheat [39] and for einkorn [40].

The total polyphenols content of the five samples was 342.8 (buckwheat), 215.3 (ama-
ranth), 297.1 (quinoa), 724.2 (bread wheat) and 771.5 (einkorn) mg/kg DM. The values
of the two wheats were 2.1-3.6 times higher to those of pseudocereals. However, the
conjugated phenolics content of buckwheat and quinoa was more than double that of their
bound phenolics, while in amaranth the ratio was almost equivalent; a similar finding
(0.48 vs. 0.26 mg GAE/g) was reported for quinoa [46]. On the contrary, bread wheat and
einkorn showed bound phenolic acids concentrations about 15 times higher than those of
the conjugated phenolic acids. In fact, the pseudocereals contained 1.9-4.8 more conjugated
phenolics than the two wheats, an interesting result because the conjugated form is of better
nutritional value since it is more readily available and can be more easily absorbed by the
human body [47].
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2.5. Antioxidant Capacity

Figure 2 depicts the antioxidant capacity, expressed in mmol Trolox equivalent (TE) /kg
DM, of the butanol (BuOH) and acidified methanol (MeOH:HCI) extracts of the wholemeals
of pseudocereals and wheats. Buckwheat always showed the greatest antioxidant capac-
ity, with remarkably high values for ABTSp,on (21.15 mmol TE/kg DM), FRAP\teom:HC1
(34.68 mmol TE/kg DM) and FRAPg,0n (16.44 mmol TE/kg DM). These results are sim-
ilar to those reported by Lee et al. [48], i.e., 42.5-146 mmol TE/kg DM with ABTS and
14.71-78.2 mmol TE/kg DM with FRAP. The high antioxidant capacity of buckwheat may
be due to both the considerable concentration in conjugated polyphenols and to the pres-
ence of flavonoids such as rutin, not quantified in our research and absent in other species.

40
=
ra) a
> 351 -
<
B 30 -
E
25 -
§_ a
> 204 []
& a
8- —
2 15 -
[&]
€ 10
:8 b ¢b b b p b
s 5 dﬂ H °ryded °
B N | @HED, N (]

ABTS BuOH FRAP MeOH:HCI FRAP BuOH

| OBK SAM 0QU EBW nEl]

Figure 2. Antioxidant capacity tested by the ABTS and FRAP methods, of the buckwheat (BK),
amaranth (AM), quinoa (QU), bread wheat (BW) and einkorn (EI) wholemeal. The error bars represent
the standard deviation; different letters indicate significant differences (p < 0.05) among samples.

Amaranth, quinoa, bread wheat and einkorn had lower, similar, antioxidant capacity.
In amaranth, this varied between 3.94 and 5.50 mmol TE/kg DM, results slightly higher
than those (1.96-1.99 mmol TE /kg) described by Gorinstein et al. [49]; in quinoa, this ranged
between 5.10 and 6.47 mmol TE/kg DM, i.e., was slightly lower than the 8.5-67.8 mmol
TE/kg described for the conjugated fraction [38]; while in bread wheat, this was between
2.97 and 5.76 mmol TE/kg DM and in einkorn between 3.41 and 6.48 mmol TE/kg DM, as
already reported by Brandolini et al. [40].

2.6. Sugars

The content of reducing sugars (fructose, glucose and maltose) and sucrose of whole-
meals and refined flours is shown in Figure 3. The ANOVA (Supplementary Table S2)
described the existence of significant differences between samples for all the sugars.

The reducing sugars were scarce, except glucose in quinoa wholemeal (0.16 g/100 g
DM) and, to a certain extent, maltose in bread wheat and einkorn wholemeals and re-
fined flours (0.07-0.11 g/100 g DM). Sucrose was scarce in refined flour and wholemeal
of bread wheat as well as in refined flour of einkorn (0.80 g/100 g DM); medium in
buckwheat (1.39 g/100 g DM), amaranth (1.56 g/100 g DM) and wholemeal einkorn flour
(1.47 g/100 g DM); and more abundant in quinoa (2.20 g/100 g DM). In summary, the
wheats contained higher amounts of maltose while the pseudocereals contained mainly su-
crose and, in the case of quinoa, glucose. Our values corroborate those described for quinoa
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and amaranth [50], and are similar to those (0.04-0.07, 0.02-0.04, 0.06 and 0.50-0.60 g/100 g
for fructose, glucose, maltose and sucrose, respectively) reported for einkorn and bread
wheat [51]. Slightly higher quantities of fructose (0.11 g/100 g DM), glucose (1.10 g/100 g
DM) and sucrose (2.00 g/100 g DM) in amaranth were sometimes observed [52].
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Figure 3. Fructose, glucose, maltose, sucrose, protein (g/100 g DM) and furosine (mg/100 g protein)
content of the buckwheat (BK), amaranth (AM), quinoa (QU), bread wheat (BW) and einkorn (EI)
wholemeals (grey bars) and of the bread wheat and einkorn refined flours (empty bars). The error
bars represent the standard deviation; different letters indicate significant differences (p < 0.05)
among samples.
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2.7. Protein Content and Amino-Acid Composition

It is a well-established fact that the removal of the pericarp and aleuronic layers
during milling affects the protein content, as evidenced also by the comparison between
wholemeals and refined flours of bread wheat (9.82 vs. 9.31 g/100 g DM) and einkorn
(14.12 vs. 13.56 g/100 g) (Figure 3). Nevertheless, einkorn refined flour had a higher
protein content than amaranth, quinoa and buckwheat wholemeals (12.96, 12.37 and
11.26 g/100 g, respectively). These results are slightly lower than those reported for bread
wheat (12.9-19.9 g/100 g) [53] and for einkorn wheat (14.4-20.7 g/100 g) [54]. Similarly, they
are superior to the values recorded for amaranth, quinoa and buckwheat (13.4, 12.2-16.3 and
13.1 g/100 g, respectively) by Mota et al. [55], and for amaranth (15.1-16.4 g/100 g DM) and
buckwheat (13.9-16.4 g/100 g DM) by De Bock et al. [56]. However, they are higher than the
results reported for amaranth (11.09-12.07 g/100 g DM) found by Repo-Carrasco et al. [37]
and are within the variation observed for quinoa (9.5-16.7 and 11.32-14.72 mg/kg DM,
respectively) by De Bock et al. [56] and Repo-Carrasco et al. [37].

However, the superior nutritional value of pseudocereal proteins over those of wheats
also resides in their balanced composition; they are richer in some essential amino acids,
compared to the two wheats (Table 2). The three pseudocereals share a similar amino-acid
composition, which differs significantly from that of the two cereals. In fact, compared to
the two Triticum, buckwheat, amaranth and quinoa are richer in two essential amino acids,
threonine and lysine, as well as in aspartate, alanine, glycine, and arginine, with the last
two amino acids considered as conditionally essential. Interestingly, in the wholemeal, the
pseudocereals lysine content on average is more than double that of the wheats (56.5 vs.
25.5 g/kg protein, respectively). The content of the essential branched-chain amino acids,
namely, leucine, isoleucine, and valine, is also remarkable in pseudocereals; conversely, they
are low in glutamate and proline. However, it should be underlined that the acid hydrolysis
required for analysing the amino-acidic composition of proteins de facto prevents the
determination of some amino acids. This is the case of glutamine and asparagine, which
upon hydrolysis are deaminated into glutamate and aspartate, respectively, and tryptophan,
which is unstable to acidic conditions and requires alkaline hydrolysis [57]. Overall our
results confirm previous reports on buckwheat [58,59], amaranth [60-62], quinoa [62-64],
bread wheat and einkorn [65,66]. Differences merely concerm the content of methionine
and tyrosine, which are both sensitive to oxidation and, thus, critical to analyse.

2.8. Furosine

The furosine levels of the wholemeals and refined flours tested are presented in
Figure 3. Furosine is a derivative of the Amadori compounds formed from reducing sugars
and the e-amino group of lysine during the initial stages of the Maillard reaction. Thus
furosine may represent a useful indicator of heat damage endured by wholemeals and
refined flours during the milling process. Amaranth did not show any detectable furosine,
while buckwheat, bread wheat and einkorn presented minimal levels (7.8-12.5 mg/100 g
protein), in line with the results (3.5-14.8 mg/100 g protein) reported by Hidalgo and
Brandolini [51] for refined flours of different wheats. Quinoa, on the other hand, had a
greater furosine concentration (41.4 mg/100 g protein), likely as a consequence of its higher
glucose content. Additionally, our quinoa was purchased at the market and its post-harvest
treatments are unknown: it is possible that the seeds were heat-dried, after the preliminary
washing to eliminate endogenous saponins, thus inducing heat damage.
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Table 2. Amino-acid composition (g/kg protein) of wholemeals, refined flours, and water biscuits before (theoretical) and after baking. BK, buckwheat; AM,

amaranth; QU, quinoa; BW, bread wheat cv. Bramante; EI, einkorn wheat cv. Monlis.
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2.9. Water Biscuits Heat Damage

Figure 4 depicts the different water biscuits and their formulations.

Einkorn flour-50%

Einkorn wholemeal-50%

Buckwheat-50%

Amaranth-50%

s A ]
S Sy &

SO ©

Quinoa-50%

SIOG

Controls
Flour Wholemeal
Breadwheat-100% @ ‘\/r%:/@
Einkorn-100% L A 7

NS

’/‘-, N\

Figure 4. Water biscuits prepared with 50% einkorn flour and 50% buckwheat, amaranth, or quinoa
wholemeal, or 100% bread wheat flour or 100% einkorn flour (on the left) and water biscuits prepared
with 50% einkorn wholemeal and 50% buckwheat, amaranth, or quinoa wholemeal, or 100% bread
wheat wholemeal or 100% einkorn wholemeal (on the right).

Supplementary Table S3 reports the two-way ANOVA of heat-damage (furosine, GLI,
HMEF and furfural) and colour-coordinates results of the water biscuits (WB) obtained from
wholemeal flours or refined flours of bread wheat, einkorn and einkorn mixtures with
pseudo-cereal flours. The ANOVA showed significant differences (p < 0.05) for both the
type of flour (refined or wholemeal) and the type of wheat (bread wheat or einkorn or
blend). Figure 5 shows the results for the heat-damage evaluation in different WB. The
furosine values were barely different (p < 0.046) between WB containing only wholemeal
flours and from WB with refined flour, except for those with 50% amaranth and quinoa.
The control WB, obtained only from bread wheat or einkorn, had the lowest values, both
for refined and wholemeal samples.

The GLI content varied depending on the type of flour but also on the pseudocereals.
This compound reached much higher values in WB with einkorn wholemeal than in
WB with einkorn refined flour, apart from those with 50% quinoa. The HMF content
showed the advancement of heat damage but this was lower in the samples with refined
flour than in those with only wholemeal, again with the exception of those containing
quinoa. The WB obtained from the mixtures with buckwheat and amaranth reached
significantly higher values, especially if integral, compared to the controls. The furfural
content, which underscores the further advancement of heat damage, was lower in the WB
from refined wheats flours compared to those from wholemeal wheat flours (on average
5.0 vs. 8.5 mg/kg DM), except in the buckwheat-enriched samples. The control WB from
wholemeal presented furfural concentrations far higher than all the other WB.

Overall, the WB from wholemeal flours suffered greater heat damage than those
obtained from refined flour, regardless the formulation, in agreement with the higher
protein content of the former. Indeed, protein usually represents the limiting reagent for
the Maillard reaction in cereal products [16]. Furthermore, the control WB seemed to have
suffered more heat damage than those obtained from mixtures enriched with pseudocereals,
since they had lower furosine but higher GLI (1.1 vs. 0.7 mg/kg DM) and furfural (9.2 vs.
5.9 mg/kg DM) values, clearly indicating the advanced changes undergone by the products
of the Maillard reaction.

Comparing the levels of furosine in WB with the literature data is difficult because
very few articles report about comparable products (i.e., with no sugar and no lipid
addition). In general, the control WB from refined flour had a furosine level close to the
values (16.5-81.5 mg/100 g protein) reported by Hidalgo and Brandolini [67] for WB of
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Furosine (mg/100 g protein)
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three wheat species baked for 25 min. The levels in WB enriched with pseudocereals
showed a trend (quinoa > amaranth > buckwheat > bread wheat > einkorn) similar to
that observed by Hidalgo et al. [68,69]. The GLI of the WB with refined flour was in the
lower end of the range (n.d.—11.4 mg/kg DM) observed by Hidalgo and Brandolini [67];
however, unlike our results, their HMF and furfural were always below the detection limit.
Interestingly, an HMF content in the WB with pseudocereals greater than in the wheats WB
was reported [68,69].
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Figure 5. Furosine (mg/kg protein), hydroxymethylfurfural (HMF), glucosylisomaltol (GLI), and
furfural (mg/kg DM) levels of the water biscuits. Empty bars: water biscuits prepared with 50% einkorn
flour and 50% buckwheat (BK), amaranth (AM), or quinoa (QU) wholemeal, or 100% bread wheat
(BW) flour or 100% einkorn (EI) flour. Grey bars: water biscuits prepared with 50% einkorn wholemeal
and 50% buckwheat, amaranth, or quinoa wholemeal, or 100% bread wheat wholemeal or 100%
einkorn wholemeal. The error bars represent the standard deviation; different lower-case letters indicate
significant differences (p < 0.05) among samples prepared with einkorn refined flour, while capital letters
indicate significant differences (p < 0.05) among samples prepared with einkorn wholemeal.

Considering the amino-acid profile of water biscuits before (theoretical) and after
baking (Table 2), a slight degradation was observed for almost all these compounds,
particularly in Triticum samples not enriched with pseudocereals, because of the harsh
processing conditions. Beside this, lysine and arginine contents were lower in baked WB
due to the direct involvement of these amino acids in the Maillard reaction, regardless
the type of WB formulation. In contrast, the decreased contents of cysteine, methionine
and tyrosine were likely the result of oxidation phenomena occurring during baking [70].
However, despite the observed losses, the amino-acid profile remained more balanced in
WB fortified with pseudocereals.

2.10. Colour of Flours and Water Biscuits

The ANOVA highlighted the existence of significant differences among wholemeals/flours
(Supplementary Table S2), and among water biscuits (Supplementary Table S3). The values
of the three colour coordinates L* (brightness), a* (red-green) and b* (yellow-blue), as well
as Chroma and Hue angle, are depicted in Figure 6.
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Figure 6. Colour coordinates, chroma and hue angle of the buckwheat, amaranth, quinoa, bread

wheat and einkorn wholemeal and of the bread wheat ad einkorn refined flours (left side) and

of the water biscuits prepared with 50% einkorn flour and 50% amaranth, quinoa or buckwheat

wholemeal, or 100% einkorn flour or 100% bread wheat flour (empty bars) or prepared with 50%

einkorn wholemeal and 50% amaranth, quinoa or buckwheat wholemeal, or 100% einkorn wholemeal

or 100% bread wheat wholemeal (grey bars). The error bars represent the standard deviation; different

lower case letters indicate significant differences (p < 0.05) among samples prepared with einkorn

refined flour, while capital letters indicate significant differences (p < 0.05) among samples prepared

with einkorn wholemeal (right side).
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The L* parameter was smallest in the wholemeal of buckwheat (73.9), characterised
by a greyish flour; slightly higher in that of amaranth (80.7); higher in those of quinoa
(89.7), bread wheat and einkorn (88.0 in both); and much higher in the refined flours of
wheat and einkorn (94.0 in both). The a* component was always low, ranging between
—1.87 (refined einkorn) and 1.92 (amaranth), but the refined flours had negative values
while the wholemeals had positive values. Finally, b* was low in wholemeal of buckwheat,
quinoa, bread wheat and einkorn (9.5, 11.2, 10.1 and 15.0, respectively) and higher in
refined amaranth, bread wheat and einkorn (15.6, 10.2 and 14.3, respectively). Overall,
refined flours were lighter than wholemeals due to the removal of the dark outer layers of
the kernels.

The trend in the flours was noticed also in the WB: those enriched with buckwheat
wholemeal were darkest, followed by the quinoa and amaranth-enriched WB and the
controls; Hidalgo et al. [68] observed the same situation. Similarly, the samples with refined
flour were brighter and had lower a* than those with only wholemeal, while the differences
in b* were mainly species-specific. The colour coordinates were not strictly related to the
heat damage, because they were influenced by the seeds’ colour: for example, the WB with
buckwheat wholemeal had the lowest luminosity (53.5 vs. the average 69.2 of all the others)
and b* (21.2 vs. 30.9) but showed also low heat-damage values.

In the flours, the Chroma and the Hue angle ranged from 9.7 to 15.7 and from 79.2° to
97.4° (approximately corresponding to the yellow region, i.e., 90°), respectively. The highest
Chroma values were observed in amaranth wholemeal and einkorn wholemeal and flour.
After baking, the saturation (Chroma) increased. Minimal differences existed between the
pseudocereals-enriched WB prepared from einkorn flour and from einkorn wholemeal.
The quinoa-enriched WB showed the highest Chroma, followed by the 100% einkorn,
amaranth-enriched, 100% bread wheat and buckwheat-enriched WB. The refined flours
had the highest Hue scores, and the buckwheat wholemeal exhibited the lowest values.
After baking, the Hue decreased towards a redder region: 74.1-90.9° in the pseudocereals-
enriched WB from einkorn flour and 70.6-77.2° in the enriched WB from einkorn wholemeal.
Significant, but small, differences were noticed among the pseudocereals-enriched WB
prepared from einkorn wholemeal. All the changes in Chroma and Hue observed after
baking are attributable to the formation of brownish compounds [71].

3. Materials and Methods
3.1. Materials

Amaranth (Amaranthus cruentus L.) cv. MT-3, buckwheat Italian local population
Seis, einkorn cv. Monlis and biscuit-type bread wheat cv. Bramante were cropped in the
Sant’Angelo Lodigiano (LO) fields of CREA-ZA, while the quinoa seeds were purchased
from the commercial circuit.

3.2. Methods
3.2.1. Wholemeal and Refined Flour Preparation

After harvesting, the seeds were stored at 5 °C. Immediately prior to milling, the
kernels of Monlis were de-hulled with an Otake FC4S thresher (Satake, Hiroshima, Japan).
The wholemeal flours of the two wheats and three pseudocereals were prepared using a
Cyclotec 1093 laboratory mill (FOSS Tecator, Hillered, Denmark), while the refined flours
of bread wheat and einkorn wheat were made using a Bona 4RB (Bona, Monza, Italy)
experimental mill, which separates the flour fraction from bran and germ.

3.2.2. Water Biscuits Production

A flowchart of water-biscuit preparation and analyses is presented in Supplementary
Figure S1. Ten different water-biscuit types were prepared: five were made with 50%
einkorn flour and 50% amaranth, quinoa or buckwheat wholemeal, or 100% einkorn flour
or 100% bread wheat flour, while five were prepared with 50% einkorn wholemeal and
50% amaranth, quinoa or buckwheat wholemeal, or 100% einkorn wholemeal or 100%
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bread wheat wholemeal. The WB were prepared using only deionized water and flour, to
unambiguously determine flour role in the Maillard reaction. In particular, for each type
of biscuit, 80 g of flour (or combinations of flours) at 14% moisture and 35 mL of water
were mixed for 90 s using a Hobart C-100 electric mixer (National MFG Co., Lincoln, NE,
USA). Subsequently, the dough was rolled to a 7 mm homogeneous sheet and cut with a
die-cutter (internal diameter of 60 mm) to obtain two WB, and baked in an Ovenlab rotary
oven (National MFG Co., Lincoln, NE, USA) at 205 °C for 30 min. After cooling at room
temperature for 30 min, the WB were stored at —20 °C. Just before analysis, they were
ground with a laboratory mill (Braun, Waiblingen, Germany). Two batches of each WB
type were prepared.

3.3. Analyses

The following analyses were performed on the wholemeals: dry matter (DM), content
of sugars, proteins, tocols, carotenoids, soluble conjugated phenolic acids, bound insoluble
phenolic acids, antioxidant capacity, amino-acids composition, furosine and colour. The
water biscuits were characterised for dry matter, protein, amino-acids composition, the
heat damage parameters furosine, GLI, HMF and furfural, and colour.

The dry matter was determined gravimetrically according to the official method
44-15A [72]. Fructose, glucose, maltose and sucrose were investigated by HPLC [51]. The
protein content was computed multiplying by the factor 5.70 the total nitrogen content
determined with the Kjeldahl 46-10 method [72]. Tocols, carotenoids [73], soluble conju-
gated and bound insoluble phenolic acids [74] were extracted and quantified by HPLC.
Antioxidant capacity of the butanol extracts was evaluated by the ABTS [75] and FRAP [76]
methods, while acidified methanol extracts (80:20, methanol:HCI 1%) were assessed only
by FRAP because the very acidic pH of the extract rapidly discoloured the ABTS solu-
tion, making the analysis impossible. The extractions were performed as described by
Yilmaz et al. [74]. Furosine, HMF, GLI and furfural were determined by HPLC [51].

Amino-acid composition was assessed following the method described by
Hogenboom et al. [77]. Briefly: the hydrolysed samples were purified by solid-phase ex-
traction on a C18 cartridge previously activated with 5 mL of methanol and 10 mL of water.
One mL of filtrate was transferred to a 25 mL flask and added with approximately 20 mL
of 0.2 M lithium citrate buffer at pH 2.20. The pH was adjusted to 2.20 and the volume was
made up with the lithium citrate buffer. Before injection into the chromatograph, the sample
was filtered on an 0.2 um RC filter. Amino-acids separation was performed by ion exchange
chromatography (IEC) using a Biochrom 30+ Amino Acid Analyzer (Biochrom Ltd., Cam-
bridge, UK) chromatograph, under the conditions indicated by the manufacturer. Detection
was performed at 570 nm for the primary amino acids (AA) and at 440 nm for the secondary
ones (proline), after post-column derivatization with ninhydrin. The separation of AA was
achieved by injecting 100 puL of sample in an ion exchange column (120 mm x 4.6 mm)
packed with a sulphonic resin supplied by Biochrom. For the quantification of AA, 4-point
calibration lines of the reference standards were used.

Colour, measured with a reflectance Minolta Chroma meter II colorimeter (Minolta
Italia SpA, Milan, Italy), was expressed using the CIE L¥, a*, b* coordinates system, where
L* is lightness, a* is redness and b* is yellowness. Chroma and Hue angle were calculated
considering the equations [78]: Chroma = v/a*? + b*2; Hue angle = arctan (b* /a*).

All analytical measurements were performed twice; the results are presented as means
(£standard deviation).

3.4. Statistical Analysis

To evaluate the influence of the species and their mixtures on composition, heat
damage and colour of wholemeals, refined flours, and WB, the data were processed by
one-way analysis of variance (ANOVA). The WB data were also evaluated by two-way
ANOVA, considering the type of flour (refined or wholemeal) and the blend as factors.
When significant differences (p < 0.05) were found, Fisher’s lowest significant difference
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(LSD) at a significance level of 95% was determined. ANOVA and LSD test were performed
with the Centurion XVI statistical package (Statgraphics Technologies, Inc., The Plains,
VA, USA).

4. Conclusions

The analysis of wholemeal flours showed that all the tested pseudocereals were
particularly rich in soluble conjugated phenolic acids, while the wheats contained mainly
insoluble bound phenolic acids. Buckwheat had the highest content of total tocols and
einkorn the highest content of total carotenoids. While the protein content did not differ
much between species, the pseudocereals confirm a more balanced amino-acid profile,
characterized by good levels of lysine. All the WB obtained using einkorn wholemeal
suffered greater heat damage than those obtained from einkorn refined flour, regardless
the presence of a pseudocereal. However, the control WB produced with bread wheat and
einkorn showed greater heat damage than those enriched with pseudocereals. The colour
coordinates were mostly influenced by the characteristic colour of the seeds of each species.
The significant content of antioxidant compounds, the better amino-acid composition and
the lower susceptibility to heat damage of the WB enriched with pseudocereals support a
better nutritional value of such bakery products.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /molecules27217541/s1, Table S1: Analysis of variance (ANOVA)
of antioxidants content and antioxidant capacity of the wholemeals of buckwheat, amaranth, quinoa,
bread wheat and einkorn (***, p < 0.001); Table S2: Analysis of variance (ANOVA) of sugars, ash,
protein and furosine content, and colour coordinates of the wholemeals of buckwheat, amaranth,
quinoa, bread wheat and einkorn (***, p < 0.001); Table S3: Analysis of variance (ANOVA) of the heat-
damage indices and colour coordinates in water biscuits from wholemeal or refined flour of einkorn
or bread wheat and from 50:50 blends of einkorn wholemeal or refined flour and pseudocereals
wholemeal (* p < 0.05, *** p < 0.001); Figure S1: Research flowchart.
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