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Abstract: Indonesia has high biodiversity of algae that are under-utilised due to limitations in the
processing techniques. Here, we observed the effect of two different extraction methods (cold mac-
eration and ultrasonic-assisted extraction (UAE)) on multiple variables of Indonesian brown algae
ethanol extracts (Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium and Turbinaria
ornata). The variables observed included metabolites screening by untargeted metabolomics liquid
chromatography-high-resolution mass spectrometry (LC-HRMS), observation of total phenolic con-
tent (TPC), total flavonoid content (TFC), anti-oxidant and B16-F10 melanoma cells cytotoxicity. UAE
extracts had higher extraction yield and TPC, but no TFC difference was observed. UAE extract had
more lipophilic compounds, such as fatty acids (Palmitic acid, Oleamide, Palmitoleic acid, Eicosapen-
taenoic acid, α-Linolenic acid, Arachidonic acid), lipid-derived mediators (11,12-Epoxyeicosatrienoic
acid ((±)11(12)-EET)), steroid derivatives (Ergosterol peroxide), lipophilic metabolite (Fucoxanthin),
and lipid-soluble vitamins (all-trans-retinol). Principle component analysis (PCA) revealed that
TPC, not TFC, in the UAE extracts was correlated with the anti-oxidant activities and cytotoxicity
of the extracts towards B16-F10 melanoma cells. This means other non-flavonoid phenolic and
lipophilic compounds may have contributed to its bioactivity. These results suggest that out of the
two methods investigated, UAE could be a chosen method to extract natural anti-melanogenic agents
from brown algae.

Keywords: marine; brown algae; lipophilic; antimelanoma; antioxidant activity; untargeted metabolomics;
multivariate analysis

1. Introduction

The marine habitat has gained wide popularity for study due to its high biodiversity,
which provides more than 25,000 potential sources of bioactive metabolites [1]. One known
potential marine source is the brown algae. These algae have been studied for various
bioactivities, including its use in skin health related to UV exposure. Massive exposure
of UV light could cause damage to cellular components that leads to non-melanoma
skin cancers, basal cell carcinoma, squamous cell carcinoma, Merkel cell carcinoma, and
cutaneous malignant melanoma [2]. Cutaneous melanoma is a highly dangerous skin
cancer, which could even lead to mortality. A total of 325,000 melanoma cases were reported
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in 2020, and 57,000 of the cases have led to death. If this continues, it is estimated that in
2040, there will be a 50% increase in the melanoma cases, with 68% of the cases potentially
leading to death [3]. This causes an urgent need for a potential natural anti-melanogenic
agent that could possibly come from marine sources, such as brown algae.

Sargassum serratifoilum, a brown algae harvested from the coastal areas of Busan, Korea,
has been reported to reduce melanin synthesis in α-melanocyte-stimulating hormone
(α-MSH)-stimulated B16-F10 melanoma cells [4]. More specifically, other studies have
shown that several compounds isolated from brown algae, including dioxinodehydroeckol
from Ecklonia stolonifera [5] and fucoidan, a lipophilic metabolite, isolated from Fucus
vesiculosus [6], have anti-melanogenic activity. Another species of brown algae, Sargassum
cristaefolium, harvested in the western coastal area of Lombok, Indonesia, also has potential
skin health effects. It was found to induce the skin healing process after UV radiation, where
this algae effectively inhibited proinflammatory TNF-α and IL-6 expression and induced
IL-10 production in BALB/c mice skin [7]. A brown algae phenolic compound known as
dieckol is also shown to suppress UVB-induced skin damage [8]. Moreover, another study
has shown that not only hydrophilic metabolites that has bioactivities, but the lipid extracts
from brown algae, such as Ulva rigida, Codium tomentosum, Palmaria palmata, Gracilaria
gracilis, Porphyra dioica, and Fucus vesiculosus, also has anti-oxidant activity [9]. There is
also growing evidence that interaction between hydrophilic antioxidants and lipophilic
antioxidants increases the anti-oxidant capacity of a plant extract, which suggests that
ethanol could be a promising extraction solvent. Increased anti-oxidant capacity could also
contribute to anti-cancer activity, including anti-melanoma activities.

These brown algae are found in coastal areas in numerous countries, including In-
donesia. Lombok, Nusa Tenggara Barat (NTB) is one of the coastal areas of Indonesia that
has reported owning numerous marine biotas, including algae [10]. Despite the abundant
amount of these algae on the NTB coast, it is still under-utilised by the society or the indus-
try. This is due to the limited information of the processing technique. This increases the
need for an efficient extraction method. Choosing an appropriate pre-processing technique
of natural products is important. Moreover, algae processing requires a more effective
extraction technology, which not only results in a higher yield, but also more potential
bioactivity, while also reducing the use of toxic chemicals and generation of waste [11]. It
has been reported that various factors, including temperature, pH, and extraction time,
significantly affect the yield of fucoidan, an active component of algae [12]. The algae’s algi-
nates are also affected by the manufacturing process [13]. The choice of extraction condition
has also been found to affect phlorotannin content in the brown algae, Silvetia compresa,
where phlorotannin yield was greatly enhanced by ultrasound power density, meanwhile
the polysaccharide yield was enhanced when ethanol was presented in a low amount in
the solvent [14]. Therefore, in processing these brown algae, choosing an extraction method
is a critical step which includes the consideration of various factors such as equipment
convenience, cost, extraction efficiency, and time consumption [15]. Here, we describe the
effect of using two common extraction methods, cold maceration and ultrasonic-assisted
extraction (UAE) for extraction of bioactive compounds from different species of brown
algae found in Lombok coast, NTB, Indonesia, which are Sargassum polycystum, Sargassum
cristaefolium, Sargassum aquifolium and Turbinaria ornata. This method used a safe extraction
solvent, ethanol, which could also extract both hydrophilic and lipophilic compounds.
Multiple variables were observed, including phytochemical components analysis by untar-
geted metabolomics, total flavonoid contents and total phenolic contents determination,
extraction yield determination, and bioactivity including antioxidant ability and cytotoxic
effect towards B16-F10 melanoma cells of the ethanol extracts. A multivariate analysis was
conducted to examine the correlation between these variables.

2. Results and Discussion

The quantity of secondary metabolites measured are affected by various factors includ-
ing geographic location, collection time, and extraction protocol [15]. Extraction method
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optimisation is the most critical and important stage in drug development from natural
recourses. Different extraction methods and solvents are normally compared to obtain the
most efficient and optimum method, which could provide the highest yield of the active
compounds from the solid matrix, which also results in better bioactivity [14,16]. Cold
maceration and UAE techniques are both common extraction protocols used in extracting
phytochemical components from natural resources. They differ in terms of time needed,
technique and equipment used. Cold maceration is more time-consuming than UAE, but
it requires less advanced equipment. Meanwhile UAE extraction protocol needs a more
advance equipment. In general, UAE is known to be preferable compared to the con-
ventional cold maceration technique. It requires less solvent extraction compared to cold
maceration [17,18]. Moreover several other studies have also shown that UAE also results
in higher recovery yields of algae metabolites, such as algal lipids [19], algae phenolic
compounds [20], and algae carotenoids [21]. It has also been shown to result in 6–35%
more of polyphenolic compounds being produced compared to traditional methods [22,23].
Various factors may affect the decision making of choosing the optimum protocol, including
the intended pharmacology activity. Therefore, in this study, Sargassum polycystum, Sargas-
sum cristaefolium, Sargassum aquifolium and Turbinaria ornata, collected from the Indonesian
coast, were extracted with ethanol with two common extraction methods, cold maceration
and UAE. Then, multiple variables were observed in order to choose the most optimum
method.

2.1. Untargeted Metabolomics LC-HRMS Analysis

Due to the complexity of a crude extract, the bioactive compound responsible for its
activity could not be concluded straightforwardly. Therefore, in this study, we profiled the
chemical compositions of brown algae samples extracted with ethanol and two common
extraction technique, UAE and cold maceration (Figure 1). The analysis was performed by
using untargeted metabolomics liquid chromatography-high-resolution mass spectrometry
(LC-HRMS). This also gave a description of how the extraction technique might affect the
phytochemical components of the extract, especially the lipophilic compounds. Figure 1
shows the difference in the variability of the compounds found in four brown algae between
two extraction techniques, UAE and cold maceration. Overall, the untargeted metabolomics
study revealed that the UAE extracts contained more potential lipophilic compounds com-
pared to the cold macerated extracts. The LC-chromatograms are shown in Supplementary
Materials: Figure S1.

2.1.1. Sargassum polycystum Ethanol Extract Phytochemical Compounds

The UAE extract of Sargassum polycystum contained 17 metabolites. Among the de-
tected species, several are classified as lipophilic, fatty acids and fatty acids-derivative
including Palmitic acid (PA), 11,12-Epoxyeicosatrienoic acid ((±)11(12)-EET), Myristamide,
Stearamide, Oleamide, Stearoyl-ethanolamide, and γ-Linolenic acid ethyl ester. Fatty acids
and its derivatives have been reported to have activity towards melanoma cells [24–26].
Meanwhile, Hexadecanamide was also detected in this extract. It is a PA derivate, another
form of lipophilic compound. Unfortunately, its role in melanoma cells is not yet under-
stood. Another compound of interest detected in the UAE Sargassum polycystum extract was
Ergosterol peroxide, a steroid derivate, which has anti-melanogenic activity in the mouse
melanoma cell line [27]. Meanwhile the macerated extract of Sargassum polycystum con-
tained 21 metabolites, and most of them are also fatty acid derivates. PA was not detected
in this extract, however several other fatty acid derivates were detected including 1-1-
Tetradecylamine, Lauramide, Hexadecanamide, Stearamide, N,N-Diethyldodecanamide,
Ceramide (d18:1/16:0), and N-octodecanoylsphinganine. Ceramides are beneficial to induc-
ing cell apoptosis in melanoma cells, where it induced JNK activation, leading to melanoma
cell apoptosis [28]. The pharmacological role of other lipids and lipid derivates presented
in the macerated extract of Sargassum polycystum are not yet understood.
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Figure 1. Circular plot showing the variability of chemical compounds compositions in brown algae 
extracts in two different extraction methods, sonication or ultrasonic-assisted extraction (UAE), and 
cold maceration. Each plot consists of compounds found in algae that have been extracted with two 
different methods that are shown side by side on the circular plot. The linear line between each 
circular plot corresponds to the identic compound found in both type of extraction method. (a) Sar-
gassum polycystum; (b) Sargassum cristaefolium; (c) Sargassum aquifolium; (d) Turbinaria ornata; Spl = 
Sargassum polycystum; Scr = Sargassum cristaefolium; Saq = Sargassum aquifolium; Tor = Turbinaria or-
nata. Abbreviations and complete datasets could be seen in Supplementary Materials: Table S1 (a–
h). 
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Figure 1. Circular plot showing the variability of chemical compounds compositions in brown algae
extracts in two different extraction methods, sonication or ultrasonic-assisted extraction (UAE), and
cold maceration. Each plot consists of compounds found in algae that have been extracted with
two different methods that are shown side by side on the circular plot. The linear line between
each circular plot corresponds to the identic compound found in both type of extraction method.
(a) Sargassum polycystum; (b) Sargassum cristaefolium; (c) Sargassum aquifolium; (d) Turbinaria ornata;
Spl = Sargassum polycystum; Scr = Sargassum cristaefolium; Saq = Sargassum aquifolium; Tor = Turbinaria
ornata. Abbreviations and complete datasets could be seen in Supplementary Materials: Table S1 (a–h).

2.1.2. Sargassum cristaefolium Ethanol Extract Phytochemical Compounds

In the UAE Sargassum cristaefolium extract, 24 metabolites were detected. As seen in the
Sargassum polycystum UAE extract, Sargassum cristaefolium also contained several lipophilic
compounds such as fatty acids and fatty acid derivates, some of which had potential
activity on melanoma cells, including Palmitoleic acid [29]; additionally, α-Eleostearic
acid, a conjugated fatty acid, also found in the extract, had tumor growth suppression
activity via lipid peroxidation in human colon cancer cells [30]. Other than fatty acids,
Fucoxanthin, a well-known algal carotenoid and a lipophilic compound, was also detected.
Fucoxanthin was able to inhibit the growth of melanoma cell lines and limit melanoma
tumour growth [31,32]. Oleamide and γ-Linolenic acid ethyl ester, which both have
activity in cancer cells including melanoma cells [33], are also found in UAE Sargassum
cristaefolium extract. Another compound detected was N-eicosanoylsphinganine, a free
form of ceramides. Even though its direct activity in melanoma cells has not been reported,
it is part of the ceramides group, which is known to have anti-tumour activity on melanoma
cells [28]. Meanwhile in the macerated extract of Sargassum cristaefolium, 12 compounds
were detected, including Palmitic acid, Myristamide and Stearamide.
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2.1.3. Sargassum aquifolium Ethanol Extract Phytochemical Compounds

In the UAE Sargassum aquifolium extract, 14 metabolites were detected including
lipophilic compounds such as Sphinganine, a fatty acid derivative which has been reported
to have a role in non-melanoma skin cancer [34]. Eicosapentaenoic acid, also detected,
is an unsaturated fatty acid that is known to have potential benefits in UVR-related skin
disorders [35–37]. Meanwhile, α-Linolenic acid was also detected. It has the most potential
anti-melanoma activity compared to PA, linoleic acid and palmitoleic acid in SK-Mel23
cells [38]. No other information was obtained related to anti-melanoma activity of the
other detected compounds. In the Sargassum aquifolium macerated extract, 23 metabolites
were detected which had anti-melanoma activity, including lipophilic compounds such as
α-Linolenic acid, Arachidonic acid [38], and Fucoxanthin [31,32].

2.1.4. Turbinaria ornata Ethanol Extract Phytochemical Compounds

The UAE and cold macerated Turbinaria ornata extract were also analysed. The UAE
extract of Turbinaria ornata contained 15 metabolites, mainly consisting of fatty acid and
its derivates, such as Arachidonic acid and Arachidonic acid ethyl ester. Arachidonic
acid has toxicity towards B15-F10 murine melanoma cells [38]. All-trans-retinol was also
detected in the UAE Turbinaria ornata extract, which is known to have the ability to induce
apoptosis in primary and metastatic melanoma cells [39–41]. Callystatin A, a polyketide
found in this extract, has cytotoxicity on tumour cell line [42]. Meanwhile, the macerated
extract of Turbinaria ornata contained 15 metabolites. Several fatty acids and fatty acids
derivates detected include Oleamide and γ-Linolenic acid ethyl ester. Oleamide [33] has
cytotoxicity towards melanoma; meanwhile, γ-Linolenic acid ethyl ester and the other fatty
acids detected in this extract have not been reported yet to have anti-melanoma activity.

2.2. Determination of Extraction Yield, Total Phenolic Contents (TPC), Total Flavonoid Contents
(TFC) of Brown Algae (Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium
and Turbinaria ornata)

The extraction yield, total phenolic contents (TPC) and total flavonoid contents (TFC)
of these extracts were then analysed. As mentioned, the cold maceration used a traditional
technique, which required 3 days; meanwhile, the UAE used a much more advanced
equipment and only required 90 min. The results showed that the difference in the ex-
traction protocol used had a significant effect on the extraction yield of the four brown
algae (Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium and Turbinaria
ornata). In all four brown algae, the extraction yield achieved by UAE was significantly
higher compared to the cold maceration extraction. These brown algae extracted with
UAE also resulted in a higher TPC compared to the brown algae extracted with the cold
maceration technique. However, there was no significant difference in the TFC between
both techniques (Figure 2).

Similar results were also shown in the literature where UAE resulted in a higher
extraction yield, TPC and even TFC in several other types of brown algae extract, such
as Fucus serratus, Fucus vesiculosus, Fucus spiralis, Himanthalia elongata, Halidrys siliquosa,
Laminaria digitata, Laminaria saccharina, Laminaria hyperborea, Ascophyllum nodosum, Alaria
esculenta and Pelvetia caniculata, which were harvested from the Irish Sea [43]. The UAE
process alone has been able to extract various compounds from macroalgae, including
polysaccharides (FSPs, glucans and other antioxidant compounds) [44–46]. It is also found
to be more efficient in extracting phenolic compounds with a higher molecular weight [46].
Slight differences in the results obtained in the present study compared to the study
conducted by Ummat V [43] might be due to the difference in the frequency used: in
this study we used 30 kHz, while in the study conducted by Ummat V, 2020, they used
35 kHz. It could also be due to the difference in the species of the samples analysed, as it
has also been showed in the previous study that the result of the extraction technique was
species-specific [43].
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Figure 2. (a) Extraction yield, (b) Total flavonoid contents (TFC), and (c) Total phenolic contents
(TPC) from four brown algae; Sargassum polycystum (Spl), Sargassum cristaefolium (Scr), Sargassum
aquifolium (Saq) and Turbinaria ornata (Tor), extracted with two different extraction techniques, namely
cold maceration and sonication, or ultrasonic-assisted extraction (UAE). Data are represented as
mean± SD, and the statistical difference in bioactive compounds for each brown algae are represented
as ** p ≤ 0.01.

2.3. Antioxidant Activity

Marine algae have long been known as a rich source of anti-oxidant compounds [47].
Therefore, we here assessed the antioxidant activity of the ethanol extract of four brown
algae, Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium and Turbinaria
ornata, by an ABTS method in response to the different extraction protocols used. The
results showed that the antioxidant activity of the algae differs in different extraction
protocols. The four brown algae (Sargassum polycystum, Sargassum cristaefolium, Sargassum
aquifolium and Turbinaria ornata), extracted with UAE, had significantly higher antioxidant
activity compared to the cold maceration extraction (Figure 3). This significant difference
in antioxidant activity was most shown in the Sargassum aquifolium extract, where the
percentage (%) of radical scavenging activity of the cold macerated Sargassum aquifolium
extract was only 38.02% at the highest concentration, 10,000 µg/mL. Conversely, the UAE
Sargassum aquifolium extract reached 100% at only 4000 µg/mL, with the IC50 value of
987.75 ± 2.74 µg/mL. The IC50 values of the other brown algae, Sargassum polycystum,
Sargassum cristaefolium, and Turbinaria ornata, were also significantly lower in the UAE
extract compared to the cold macerated extract (Table 1).

The UAE had higher antioxidant activity and also more variability and higher amounts
of lipophilic compounds compared to the macerated extract, where the phenolic content
was also higher. Phenolic compounds have been known for having antioxidant activity,
radical scavenging activities, and also have the ability to induce antioxidant enzyme
levels [47]. Therefore, we could assume that the high antioxidant activity in the UAE
extract was due to its phenolic and lipophilic contents. This was an interesting issue to
study further.
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cold maceration, on the percentage of radical scavenging activity of four brown algae; Sargassum
polycystum (Spl), Sargassum cristaefolium (Scr), Sargassum aquifolium (Saq) and Turbinaria ornata (Tor).
Results are expressed as mean ± SD.

Table 1. IC50 values for ABTS scavenging of four brown algae species.

Sample
IC50

Sonication Maceration

Spl 936 ± 1.61 µg/mL a 1025 ± 1.30 µg/mL b

Scr 1873 ± 7.19 µg/mL a 2258 ± 8.90 µg/mL b

Saq 987.75 ± 2.74 µg/mL *
Tor 737.89 ± 7.82 µg/mL a 913 ± 5.43 µg/mL b

Sargassum polycystum (Spl), Sargassum cristaefolium (Scr), Sargassum aquifolium (Saq) and Turbinaria ornata (Tor).
Results are expressed as mean ± SD. Values with different upper case letters (a,b) are significantly different at
p < 0.01. (*) Indicates that IC50 could not be calculated, as the radical scavenging activity did not reach 50% at the
highest concentration.

2.4. B16-F10 Melanoma Cell Cytotoxicity

Antioxidant activity also correlates with various pharmacology activities, including
the cytotoxicity towards B16-F10 melanoma cell line, which could also lead to the discovery
of a potential anti-melanogenic compound needed to combat skin cancer. Oxidative stress
is one of the causes of skin component damage which leads to skin cancer [48]. To assess
whether the extraction technique also affected the cytotoxicity towards B16-F10 melanoma
cell line of these four brown algae species, B16-F10 melanoma cells were treated with the
four brown algae extracts and analysed by an MTT assay. B16-F10 melanoma cell is one of
the most used tumor models, which is utilized to understand the mechanisms underlying
melanoma progression and also its treatment discovery [49]. Interestingly, the brown
algae extracted with the UAE method showed a higher cytotoxic activity towards B16-F10
melanoma cells, compared to the brown algae extracted with the cold maceration technique
shown by microscopic observation. At 48 h, it is shown that the cells were less viable
after treatment with the four brown algae extracted with UAE, compared to the macerated
extracts (Figure 4). MTT assay also showed that the UAE extract was significantly more
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cytotoxic compared to the macerated extract towards B16-F10 melanoma cell line (Figure 5),
as was also shown by a significant difference in the IC50 value of both extracts (Table 2).
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100 µg/mL, and 200 µg/mL); (Scale bar = 100 µM).
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with MTT assay. Results are expressed as mean ± SD.
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Table 2. IC50 values of brown algae cold maceration and UAE (sonication) extract towards the
B16-F10 melanoma cell line observed with MTT assay.

Sample
IC50

Sonication Maceration

Spl 70.89 ± 1.851 µg/mL a 259.5 ± 2.414 µg/mL b

Scr 84.01 ± 1.924 µg/mL a 237.8 ± 2.376 µg/mL b

Saq 96.73 ± 1.986 µg/mL a 256.9 ± 2.410 µg/mL b

Tor 26.33 ± 1.421 µg/mL a 39.02 ± 1.591 µg/mL b

Sargassum polycystum (Spl), Sargassum cristaefolium (Scr), Sargassum aquifolium (Saq) and Turbinaria ornata (Tor).
Results are expressed as mean ± SD. Values with different upper case letters (a,b) are significantly different at
p < 0.01.

2.5. PCA Analysis

To further understand the overall influence of the extraction method on total phenolic
contents (TPC), total flavonoid contents (TFC), antioxidant effects and cytotoxicity towards
B16-F10 melanoma cells, all the data were further analysed using Principal Component
Analyses (PCA). In a PCA analysis, the dimensions of the dataset are reduced and the
responses were analysed as a result of sample treatment based on the correlation between
the data [50]. PCA could also identify the variable that causes the most variation in
the dataset [51]. The PC1 is the component that best approximates the data in the least
square sense, and the analysis describes the correlation between the variables. Figure 6
shows loading plots with several experimental variables including brown algae species,
antioxidant activity, cytotoxicity towards B16-F10 melanoma cell line, and phytochemical
compounds (TPC and TFC). PCA is used to see the correlations between the studied
variables by using loading plots (Figure 6).

The loading plots describe how vectors may be pinned from the origin point which
are PC = 1 and PC = 2. The results could be interpreted by how close the two vectors are. If
the vectors form a small angle, this means there is a positive correlation between the two
variables. If the vectors form a 90◦ angle, most likely there is no correlation between the
two variables. Meanwhile if the vectors are far from each other and forms a 180◦ angle, this
means the correlation between the two variables are negative.

In the UAE extracts shown in Figure 6a, PC1 (46.92%) and PC2 (26.7%) contribute to
the largest variation in the dataset (PC1-PC2 75.62%). Moreover, in Figure 6a, the UAE
extracts showed that there was a positive correlation between antioxidant and cytotoxicity,
which means the two variables affected each other. Meanwhile, there was a negative
correlation between these two variables with the total phenolic contents (TPC). This nega-
tive correlation between TPC and IC50 of antioxidant and cytotoxicity indicates a positive
correlation between TPC and anti-radical scavenging activities and cytotoxicity towards
B16-F10 melanoma cell line. This also means TPC affected towards all anti-radical scav-
enging activities and cytotoxicity towards significantly B16-F10. Furthermore, the TFC
variable in this extract showed positive correlation towards the IC50 of anti-oxidant activity
and cytotoxicity, which means TFC does not affect significantly towards all anti-radical
scavenging activities and anti-melanogenic activity.

In the macerated extracts (Figure 6b), this correlation was not shown. Figure 6b shows
PC1 (55.57%) and PC2 (28.86%) contribute to the largest variation in the dataset (PC1-
PC2 84.43%). There was a positive correlation between TPC and IC50 of cytotoxicity, as
well as a positive correlation between TFC and IC50 of anti-oxidant activity. This means
that the TPC does not affect the anti-radical scavenging activities and the TFC does not
affect the anti-melanoma activity. On the other hand, a negative correlation was also seen
between TPC and IC50 of antioxidant activity, and between TFC and cytotoxicity activity,
which means TPC affects the anti-radical scavenging activities. Meanwhile, TFC affects
the anti-melanoma activity. There was also less correlation between the two activities, the
anti-oxidant activity and cytotoxicity towards B16-F10 melanoma cell line.
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Figure 6. Principle Component Analysis (PCA) of multiple variables, total phenolic contents (TPC),
total flavonoid contents (TFC), antioxidant and cytotoxicity towards B16-melanoma cells of the
four brown algae species, Sargassum aquifolium, Sargassum cristaefolium, Sargassum polycystum and
Turbinaria ornata, in two different extraction methods. (a) Sonication or ultrasonicated extract (UAE),
(b) macerated extract.

Analysis of PC1-PC2 75.62% in the UAE extracts also showed that the majority of the
Turbinaria ornata and Sargassum aquifolium (positive area of x axis) were separated from
the other two species, Sargassum cristaefolium and Sargassum polycystum. The analysis also
showed that the TFC amount had no effect on the other variables. The PCA analysis on the
UAE extracts also showed that Turbinaria ornata had the highest TPC amount and has the
most antioxidant activity and cytotoxicity towards B16-F10 melanoma cells compared to the
other species (Figure 6). In the macerated extracts, PC1-PC2 84.43% showed that TPC and
TFC had no effect on either antioxidant or the cytotoxic activity. Furthermore, as shown in
the UAE extracts, the macerated extract also showed that the majority of the Turbinaria ornata
and Sargassum aquifolium were separated from the other two species, Sargassum cristaefolium
and Sargassum polycystum. This could also mean that the species coupled together share
the same nature. Considering that the TFC did not differ significantly between the two
methods (Figure 2), and how the PCA analyses have shown that TFC did not directly affect
the antioxidant activity nor the cytotoxicity towards B16-F10 melanoma cells, we assume
that the antioxidant or cytotoxic compound might not be a flavonoid group, but rather that
it belongs to other compound groups in the extract which are non-flavonoid phenolic and
lipophilic compounds.
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3. Materials and Methods
3.1. Collection and Extraction of the Brown Algae

Brown algae samples (Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium
and Turbinaria ornata) were collected at Lendang Luar, North Lombok, Indonesia (8◦27′23.1′′ S
116◦02′07.7′′ E). Collected samples were identified with reference to algae electronic
database [52]. Upon collection and before transportation to the Laboratorium, brown
algae were rinsed with freshwater to remove any sand debris. Clean brown algae were then
air-dried and ground into a fine powder before used for extraction. The dried and powdered
algae were kept in an air-tight glass container in room temperature until extraction.

3.2. Extraction of the Brown Algae

Maceration was conducted as follows: 40 g of dried and powdered brown algae
samples were macerated with 400 mL (1:10) of ethanol 96% for 24 h, and this process
was repeated three times. At each 24 h, the solution was mixed at every hour only at the
first 6 h and then left for 18 h. The solution was then filtered every 24 h with mori cloth.
The filtrates obtained from all three repetitions were collected, and then the solvent was
evaporated with the vacuum rotary evaporator. Thick filtrates obtained from this process
were then used for further experiments. Meanwhile ultrasonic-assisted extraction (UAE)
was conducted as follows: 40 g of dried and powdered brown algae samples were soaked in
400 mL of ethanol 96%, then extracted with ultrasonicator (Elmasonic S. Elma Schmidbauer
GmbH, Singen, Germany) for 30 min at 30 kHz. This extraction process was repeated three
times. At each step, filtrates were filtered with mori cloth and accumulated together; this
was followed by solvent evaporation with a vacuum rotary evaporator until thick extracts
were obtained, which were then used for further experiments.

3.3. Evaluation of Phytochemical Constituents of the Brown Algae
3.3.1. Untargeted Metabolomic Analysis by LC-HRMS

Untargeted metabolomic analysis of the brown algae extracts was conducted using a
Q ExactiveTM High Resolution Accurate Mass LC-MS/MS (Thermo ScientificTM, Waltham,
MA, USA) attached to a Thermo ScientificTM VanquishTM Flex UHPLC system. The HPLC
solvents used were 0.1 percent formic acid in H2O MS grade as solvent A, and 0.1 percent
formic acid in Acetonitrile MS grade as solvent B. The HPLC system was as follows: a
gradient of 5 percent to 90 percent B in 16 min, an isocratic of 90 percent B for 4 min, and
an additional 5 min 90 percent to 5 percent B, and a flow rate of 0.3 mL/min. A volume
of 5 µL of sample was injected into the system. The separation was then carried out on
a 2.6 m AccucoreTM Phenyl Hexyl 100 × 2 mm column, with an MS acquisition range of
150 to 1800 m/z. A sheath gas flow rate of 15 was used, and an auxiliary gas flow rate
of 5, a spray voltage of 3.6 kV, a capillary temperature of 320 ◦C, an auxiliary gas heater
temperature of 30 ◦C, and an S-lens RF level of 50 were used in this assay. The resolution
was set to 70,000 for the entire MS, with an AGC target of 3 × 106 and a maximum IT of
250 ms. Moreover, the resolution for dd-MS2 was set to 17,500, with an AGC target of
1 × 105 and a maximum IT of 60 ms, and the loop count was set to 5; the (N) CE/steeped
was 18, 35, 53, with the TopN and isolation window set to 5 and 1.0 mz, respectively. The
minimum AGC target 9 × 103 was used for dd setting, with an intensity of 1.3 × 105 and a
charge exclusion of 4–8, >8. The exclude isotope was enabled, and the dynamic exclusion
time was set to 10 s. Caffeine was used as a calibrant in the study. The compounds were
detected based on the Compound Discoverer Library version 3.2.

3.3.2. Determination of Total Phenolic Content

The total phenolic contents (TPC) of the brown algae samples was determined by
using the modified Folin–Ciocalteu colorimetric method [53]. A total 10 mg of Gallic acid
(GAE) solution in 10 mL of ethanol (1 mg/mL) was used as the reference standard. A series
dilution of GAE (10–500 µg/mL) was then prepared, and approximately 100 µL of the
sample (1 mg/mL) was combined and mixed with 0.75 mL of the Folin–Ciocalteu reagent
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(diluted 10-fold in dH2O before use). After incubation in room temperature for 5 min, the
mixture was then added with 750 µL sodium carbonate (Na2CO3), which was followed by
90 min incubation. Absorbance was measured at 725 nm with UV-Vis spectrophotometer.
TPC of sample was presented as Gallic acid equivalents in milligrams per 100 g of the
extract.

3.3.3. Determination of Total Flavonoid Content

Colorimetric assay as described in [54] was used to analyse the total flavonoid content,
where 100 µL of sample was diluted with 4 mL of dH2O. A volume of 300 µL of 5% sodium
nitrite was then added to this mixture and incubated for 5 min. This was then followed by
the addition of 300 µL of 10% aluminium chloride and with 6 min incubation. A volume of
2 mL 1 M sodium hydroxide was then added and, immediately, the mixture was diluted by
the addition of 3.3 mL dH2O and vortexed. The absorbance was determined at 510 nm, and
Quercetin was used as the standard for the calibration curve. The total flavonoid content of
the sample was presented as mg quercetin equivalents per gram of sample (mg/g).

3.4. ABTS Radical Scavenging Assay for Antioxidant Capacity Analysis

The scavenging activity of the brown algae extracts in this study was measured against
ABTS radical cation according to the method of [55] with minor modifications. Fresh ABTS
solution was prepared for each assay. The stock solutions were prepared as follows: 7 mM
ABTS aqueous solution and 2.4 mM potassium persulfate solution. The working solution
was prepared as follows: two stock solutions were mixed in equal quantities, followed
by 16 h incubation at room temperature in the dark. The solution was then diluted as
follows: 250 µL ABTS was mixed with 12 mL ethanol to obtain an absorbance around
0.700 units at 734 nm. A volume of 1 mL of the sample extracts in various concentrations
(10–4000 µg/mL) was mixed with 1 mL ABTS solution, followed by the 7 min incubation.
Then, the absorbance was measured at 734 nm with a spectrophotometer. The ABTS
scavenging activity was calculated with the equation below:

Scavenging effect (%) =

[
1− (Abs sample−Abs blank)

Abs control

]
× 100%

3.5. B16-F10 Melanoma Cell Line Viability Assay

B16-F10 melanoma skin cancer cell lines were cultured in Dulbecco’s modified EaGLE
medium (DMEM, Wako), supplemented with 10% fetal bovine serum (FBS) at 37 ◦C in a
5% CO2 humidified incubator. Plated cells were then incubated overnight in DMEM, then
incubated in DMEM supplemented with specific concentrations of the brown algae extract,
and the morphology of the cells was observed at 24 h, 48 h and 72 h after treatment. Cell
images were taken by inverted microscope Zeiss Axio Observer Z1 (ZEISS, Oberkochen,
Germany). Cytotoxicity of the brown algae extracts was analysed by MTT cytotoxic assay
(Cao et al. 2018). Cells were cultured in 96-well culture plate overnight. The next day, the
cell culture medium was discarded and changed with a new medium containing several
concentrations of brown algae extracts (5–200 µg/mL) then incubated for 72 h. After
incubation, cells were added with 50 µL MTT reagent and with 50 µL serum-free medium.
Plates were then incubated again in 37 ◦C 5% CO2 for 3 h. After 3 h incubation, MTT
solvent was added to the wells, and the wells were shaken for 15 min. The absorbance was
then measured at 590 nm and cytotoxicity was calculated.

3.6. Statistical Analyses

Data were expressed as mean ± standard deviation (SD). Statistical analyses were per-
formed using multiple t tests using the GraphPad Prism (version 9.0, San Diego, CA, USA).
Data were considered significantly different if p value < 0.05. Principle component analysis
(PCA) was utilized to analyse the effect of the extraction method on TPC, TFC, antioxidant
and anti-melanoma, and also to learn the correlations between these variables. PCA was
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carried out using R software (R. software Inc., San Francisco, CA, USA). Metabolomic data
presentation was produced using R software (R. software Inc., San Francisco, CA, USA).

4. Conclusions

Collectively, the results in this study indicate that the purpose of using the brown
algae collected from West Nusa Tenggara Coast, Indonesia, including Sargassum aquifolium,
Sargassum cristaefolium, Sargassum polycystum and Turbinaria ornata, as a potential natural
source of anti-melanogenic agents would be better achieved by extracting the bioactive
compounds using the UAE method compared to the conventional maceration technique.

The UAE technique resulted in statistically significant higher extraction yield and total
phenolic contents (TPC). The untargeted metabolomic study also revealed that the UAE
extraction had resulted in more potential lipophilic compounds, such as fatty acids (Palmitic
acid, Oleamide, Palmitoleic acid, Eicosapentaenoic acid, α-Linolenic acid, Arachidonic
acid), lipid-derived mediators (11,12-Epoxyeicosatrienoic acid ((±)11(12)-EET)), steroid
derivatives (Ergosterol peroxide), lipophilic metabolite (Fucoxanthin), and lipid-soluble
vitamins (all-trans-retinols). The UAE extracts also had better antioxidant and cytotoxicity
activity towards B16-F10 melanoma cells compared to the extracts obtained from the cold
maceration technique. Furthermore, PCA revealed that TFC in the brown algae extract
did not contribute to the anti-oxidant or the anti-melanogenic activity of the brown algae
extract, which means that other non-flavonoid phenolic and lipophilic compounds may
have played the anti-melanogenic role provided by these extracts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27217509/s1, Supplementary Figure S1: Chromatogram of
Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium and Turbinaria ornata; Table S1 (a–h).
Compounds in Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium and Turbinaria
ornata extracted with maceration and UAE method detected by LC-HRMS.
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