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Abstract: The aim of the present study was to determine the major anthocyanins of blueberry extracts
from northeast China and explore their vision health improvement effects. HPLC-Q-TOF-MS/MS
results suggested that six different anthocyanins were accurately identified, among which the Cy-3-
glu (C3G) was the most abundant, ranging from 376.91 ± 7.91 to 763.70 ± 4.99 µM. The blueberry
extract contained a higher purity of anthocyanins, and the anthocyanosides reached 342.98 mg/kg.
The anti-oxidative stress function of C3G on HG-treated ARPE-19 cells were evaluated, and showed
that the GSSG level of HG-cells pretreated with 10 µM C3G was significantly decreased, while the Nrf2
and NQO1 gene expression levels were increased. Further molecular docking (MD) results indicated
that the C3G displayed favorable binding affinity towards REDD1, and only the B-ring of the C3G
molecule displayed binding interactions with the CYS-140 amino acids within the REDD1 protein. It
implied that the oxidative stress amelioration effects of C3G on the ARPE-19 cells were related to the
REDD1 protein, which was probably via the Nrf2 pathways, although further studies are needed
to provide mechanism evidence. The present study provides novel insights into understanding the
roles of blueberry anthocyanins in ameliorating oxidative stress-induced BRB damage in the retina.

Keywords: blueberry anthocyanins; cyanidin-3-O-glucoside; diabetic retinopathy; REDD1; molecular
docking

1. Introduction

Vision health problems are one of the most important public health threats worldwide.
The International Diabetes Federation (IDF) reported that the global prevalence of diabetes
retinopathy (DR) was as high as 27% during the period 2015 to 2019, and 12.5% in Southeast
Asia [1]. DR has become one of the leading vision health problems, and more attention
must be paid to DR prevention.

Blueberry belongs to the genus Vaccinium and subgenus Cyanococcus, and is known
as a ‘super fruit’; it is considered to have outstanding commercial value due to the high
antioxidant capacity of abundant polyphenolic compounds [2,3]. They are rich in flavones
and other phenolic compounds, and can be used as the raw materials for manufacturing
functional foods. In recent years, they have attracted much attention for exhibiting a
broad array of biological functions, such as antioxidant and anti-inflammatory capabilities,
preventive neurodegeneration and cardiovascular disease properties, and the amelioration
of vision effects, etc. [4–6]. The anthocyanins are the most important group of bioactive
compounds in plants, including blueberries and bilberries, and polyphenols of the flavonoid
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group [7]. Many previous studies demonstrated that high doses of anthocyanins showed
potential for prevention or treatment of type 2 diabetes [8,9]. Whereas, anthocyanins played
more important roles in DR improvement than their hypoglycemic effect. For instance, in a
double-blind, monocentric, randomized, and prospective study, Macuprev® supplement
(containing anthocyanosides 90 mg) increased the function of the macular pre-ganglionic
elements, which possibly contributed to reduce inflammation in DR lesions [10]. Therefore,
anthocyanins, due to their strong anti-oxidation effects, might be an alternative relief
strategy in the early stage of DR progression, apart from the medical interventions.

Extensive studies have been conducted to explain the mechanism of DR progres-
sion [11]. They have shown that the vascular endothelial growth factor (VEGF) plays an
important role in vasculogenesis and angiogenesis, and affects the blood retinal barrier
(BRB) under DR pathological conditions [12]. Clinical research has shown an important
relationship between BRB and retinopathy; consequently, many animal studies and in vitro
studies mainly focused on the effects of anthocyanins on BRB. For example, bilberry ex-
tracts displayed outstanding effects in the prevention of diabetes-induced retinal vascular
dysfunction in a diabetic rat model, and the content of the total anthocyanins under the
optimal dose for the vision BRB breakage inhibition was estimated as 36 mg/kg [13].

Although a previous study showed that the blueberry anthocyanin extract and its
predominant constituent (malvidin-3-glucoside) can decrease the angiogenesis of the cell
model induced with DR by decreasing the VEGF level and inhibiting the Akt pathway [4],
these results did not indicate that blueberry extracts or anthocyanin monomer compound
showed effects on relieving DR. Most probably, the anti-VEGF therapy mainly targeted the
microvascular defects and neovascularization that occur in the advanced stage of DR, and
there was evidence that the VEGF level remained low and relatively unchanged compared
with nondiabetic controls in the early stage of the DR [14]. Therefore, it is necessary to find
new targets to clarify the effect of anthocyanins in DR.

Regulated in development and DNA damage 1 (REDD1), a stress response protein,
was required for upregulating translation of the mRNA encoding VEGF, whose expression
was increased in diabetes-induced visual dysfunction [15]. Moreover, it showed that
REDD1 could characterize the initial deficits of neuro-glial in the early hyperglycemia
phases of diabetes [16]. According to the research results, REDD1 was not only required for
VEGF overexpression induced by diabetes, but also contributed to inflammatory signaling
related to DR. Therefore, REDD1 might be a target of DR treatment [16,17]. Notably,
REDD1 expression was positively correlated with the overproduction of reactive oxygen
species (ROS) induced by high-glucose in cell studies [17]. It provides a theoretical basis
for studying the blueberry extracts or anthocyanin monomer compounds effect on BRB
through regulation of REDD1.

Therefore, in the present study, firstly, the chemical structures of anthocyanins from
different blueberry extracts, which were obtained from Northeast China, the main region of
blueberry planting, were identified by high performance liquid chromatography coupled
with tandem mass spectrometry (HPLC-Q-TOF-MS/MS), and their content were qualified
by high performance liquid chromatography coupled with a diode array detector (HPLC-
DAD). Secondly, the antioxidant activity of the different blueberry extracts was evaluated by
Ferric-reducing antioxidant power (FRAP) and DPPH radical scavenging capacity (DPPH),
followed by GSSG and GSH assay for evaluation of the effect of the monomer compound
cyanidin-3-O-glucoside (C3G) treatment on the ARPE-19 cell redox environment. Thirdly,
the possible role of the different anthocyanins from blueberry extracts in REDD1 production
inhibition was explored by using molecular docking technique. The overall purpose of
the present study was to provide theoretical guidance for the anthocyanin identification of
the commercial blueberry extract products; furthermore, we lay the foundations for DR
prevention by using anthocyanins-enriched dietary supplements.
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2. Results and Discussion
2.1. Identification of Major Anthocyanin Compounds from the Blueberry Extracts

The phenolic compounds from blueberry extracts are typically divided into flavonoids
and non-flavonoids. The anthocyanins are a class of natural bioactive substances that
contain a wide variety of subspecies and belong to the flavonoid categories [2]. Different
compounds can be detected by an HPLC detector under a specially designed detection
wavelength; for instance, the accurate qualitative and quantitative analysis of flavan-3-ols,
flavanols, and anthocyanins could be realized at 280, 360, and 520 nm by HPLC with a
photo-diode-array-detector, respectively [18]. Presently, we firstly used the HPLC-DAD for
the isolation of the total anthocyanin compounds, which were subsequently identified by
the HPLC-Q-TOF-MS/MS for uncovering their detailed chemical structures.

As shown in Figure 1A, anthocyanins detected at 520 nm were the major phenolic
compounds in the S1 sample from Northeast China, and the retention time was 8–14 min
(Figure 1A(b)). Additionally, the S1 sample contained a small amount of flavan-3-ols
and flavanols, which were detected at 280 and 360 nm, respectively (Figure 1A(a)). By
comparing different blueberry extract samples, the results showed that all four of the
other samples showed similar phenolic compound profiles as the S1 sample, in which
the anthocyanins were dominant, while a small number of phenolic acids and flavone
glycosides were also found in the S2–S5 samples (Figure S1).
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of six different skeletons of anthocyanin compounds in five blueberry extracts under positive ion 
mode [M+] by HPLC-MS/MS spectra. 
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Figure 1. Identification and analysis of anthocyanins in five blueberry extracts. (A) HPLC chro-
matogram with UV detection at 280, 360, and 520 nm of S1 from Northeast China. (B–G) +MS and
+MS2 of six different skeletons of anthocyanin compounds in five blueberry extracts under positive
ion mode [M+] by HPLC-MS/MS spectra.
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Therefore, the isolated primary anthocyanins at 520 nm were identified by MS, and the
results are shown in Figure 1B–G and Table 1. Peak 3 was identified by external experiments
with the same authentic standards as cyanidin-3-O-glucoside (C3G) (RT = 10.55 min)
(Figure S2). According to the above results, C3G was the most abundant anthocyanin in
the anthocyanin-rich extract from the five samples. Peaks 2, 3, and 5 showed the [M+] ion
with m/z values of 449.1027, 449.1085, and 419.0899, respectively. In the MS/MS product
ion scan, the anthocyanins contained common sub-ions with an m/z of 287.055, which
indicated that they included the basic parent structure of cyanidin. Galactose, glucose,
and arabinose are common aglycones linked to the parent structure, and the retention
time from short to long was galactose, glucose, and arabinose [19]. According to their
retention time and documentary evidence, these compounds were positively identified as
cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, and cyanidin-3-O-arabinoside. Peak
4 showed the [M+] ion m/z value of 595.1651, which suggested that it was disaccharide
derivatives of anthocyanins. The MS/MS product ion scan produced a fragment ion with
an m/z of 287.055, corresponding to loss of a hexose and a pentose molecule attached at the
same position. The most common pentose glycosides in nature are arabinose and xylose,
with the former usually preferred [20]. Thus, on the basis of the UV−vis profile and MS
data, peak 4 was proposed to be cyanidin-3-O-rutinoside. Peak 6 showed an ion with
an m/z of 433.1183 and fragment ion with an m/z of 271.0473, coincident with formula
C21H21O10, which was identified as pelargonidin-3-O-hexose. All four compounds had
been identified in blueberries (Vaccinium uliginosum L.) and bilberries (Vaccinium myrtillus
L.) [19]. For peaks 6, the hexose was probably the epimers galactose or glucose, each
presenting different polarities as shown by the difference in retention time and structure.
Lacking sufficient information, the specific identity could not be determined. In a similar
manner, Peak 7 showing an ion with an m/z of 463.1223 and fragment ion with an m/z of
301.0634 was identified as peonidin-3-O-hexose; it was previously reported in wild Chinese
blueberries [21].

Table 1. Identification of anthocyanins in five blueberry extracts and peak numbers as in Figure 1A(b).

Peak No. RT (min) MW MS (m/z) MS2 (m/z) Aglycon Sugar Moiety Formula Identification *

2 10.073 449 449 287 Cy Hexose C21H21O11 Cy-3-gal
3 10.547 449 449 287 Cy Hexose C21H21O11 Cy-3-glu

4 11.123 595 595 287, 449 Cy Hexose +
deoxyhexose C27H31O15 Cy-3-rut

5 11.273 419 419 287 Cy Pentose C20H19O10 Cy-3-ara
6 11.727 433 433 271 Pg Hexose C21H21O10 Pg-3-hex
7 12.54 463 463 301 Pn Hexose C22H23O11 Pn-3-hex

* Note: Cy, cyanidin; Pg, pelargonidin; Pn, peonidin; gal, galactoside; glu, glucoside; rut, rutinoside; ara,
aranoside.

These results were consistent with those of previous studies characterizing the detailed
compositions of the phenolic compounds from the blueberry, and it was also suggested that
the flavonoid polyphenolic compounds were mainly anthocyanins (up to 60%), followed by
procyanidins and flavanols [3]. Notably, the anthocyanin content of sample S1 from North-
east China seems to be much higher than that of anthocyanins reported in other studies.
Subsequently, the contents of anthocyanins of different blueberry extracts were accurately
quantified to provide valuable information for explaining the function of anthocyanins in
performing redox balance regulation.

2.2. Quantitative Analysis of the Total Phenols and Anthocyanins Contents of Different
Blueberry Extracts

Anthocyanins are a class of phenolic compounds. In in order to identify the spe-
cific proportion of anthocyanins in blueberry extracts, the content of total phenols and
anthocyanins was determined, respectively. The total phenolic content (TPC) of the five dif-
ferent blueberry extracts samples was quantitatively measured by using the Folin-Ciocalteu
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reagent, and their concentrations were expressed as micrometer (µM) gallic acid equivalents
(GAE). The content of the total anthocyanins, as well as the individual anthocyanins from
different blueberry extract samples, were analyzed by HPLC-DAD, and the results were
expressed as C3G equivalents (C3GE) (µM), according to the European Pharmacopoeia
principle [22].

The results showed that the TPC of the studied blueberry extract samples ranged
from 758.03 ± 27.11 to 878.10 ± 35.13 µM GAE (Figure 2A). The TPC of the S4 sample
was found to be the highest (878.10 ± 35.13 µM GAE), and the S5 sample was the lowest
(758.03 ± 27.11 µM GAE). Furthermore, no significant difference was shown between
the S1 sample sourced from Northeast China (838.38 ± 3.25µM GAE) and other samples.
As shown in Figure 1, the five samples contained similar anthocyanosides, which were
Cy-3-gal, Cy-3-glu, Cy-3-rut, Cy-3-ara, Pg-3-hex, and Pn-3-hex; and the six anthocyanosides
were mainly Cy-based anthocyanins. However, the anthocyanin contents of five blueberry
extracts were different. As demonstrated in Figure 2B, the total anthocyanins content
(TAC) of the different samples ranged from 376.91 ± 7.91 to 763.70 ± 4.99 µM C3GE. The
types of anthocyanins in blueberries reported in the literature were different because there
were high variations among blueberry cultivars for total anthocyanin content and their
species, which were reported mainly due to their genotypes and growing conditions [23].
Although only 6 major anthocyanins were identified in this study, the content of total
anthocyanins had obvious advantages. In particular, the S1 sample contained the highest
level of anthocyanosides (763.70 ± 4.99 µM C3GE), which was equivalent to 342.98 mg/kg
in anthocyanins. This was much higher than the content of anthocyanins used in many pre-
vious large-scale clinical studies (25 or 36 mg/kg in anthocyanins) [10]. Studies suggested
that highly purified anthocyanin-rich extracts showed higher potential in terms of antioxi-
dants [24], which might be of benefit in the amelioration of the vision function disorders
related with oxidative stress [25]. Furthermore, the C3G was the dominant anthocyanins
monomer among the others (201.61−548.36 µM), and the C3G content of the S1 sample
was significantly higher compared with that of the other samples, about twice that of the
other blueberry extract samples. This might imply that the S1 sample could be used as
an alternative natural bioactive ingredient to ameliorate oxidative stress related to retinal
disorders.

Figure 2. Concentration of anthocyanins and total phenol content (TPC) from five blueberry extracts.
(A) TPC expressed as gallic acid equivalents (µM); (B) total anthocyanins content expressed as
cyanidin-3-O-glucoside equivalents (µM). Different letters were significantly different (p < 0.05).

Collectively, it was demonstrated that the blueberry extract from Northeast China
contained relatively higher content of anthocyanins compared with the others. The bioavail-
ability of the anthocyanins had been considered an important problem for the utilization
of this bioactive product, which might lead to their poor functionality for relieving ox-
idative stress-related disorders [26]. However, previous studies suggested that the antho-
cyanins showed appreciable biological functions in protecting RPE cells from oxidative
stress-induced damage when they were treated at very high dosages of individual antho-
cyanins [27,28]. Therefore, the antioxidant properties of the individual anthocyanins might
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deserve to be re-evaluated, which is also important for illustrating their bio-functional roles
for improving host health.

2.3. Antioxidant Activities of Five Blueberry Extracts and the Anthocyanin Monomer C3G

The antioxidant capacity of anthocyanins is generally relatively lower than that of
other phenolic compounds, such as flavanols and phenolic acids [29]. This lower capacity
can be unfavorable when evaluating the antioxidant activity of the S1 sample. In order
to explore the antioxidant activity of high-purity anthocyanin extracts in vitro, the Ferric-
reducing antioxidant power (FRAP) and DPPH radical scavenging capacity of the five
different blueberry extract samples were assessed, and the results were expressed as gallic
acid equivalent (GAE) [30]. Simultaneously, we also used the same methods to measure
the antioxidant activity of the anthocyanin monomer C3G for reference.

As shown in Figure 3A, the results from the FRAP and DPPH assays showed similar
trends. Specifically, the antioxidant capacity of sample S1, which was qualified by the FRAP
assay, was slightly but significantly lower than that of the other four samples (p < 0.05);
moreover, no significant difference could be observed between the S2, S3, S4 or S5 samples
(Figure 3A(a)). The DPPH scavenging abilities of S1 showed a significant difference with
S2 and S4 (p < 0.05), but no significant difference with S3 and S5 (Figure 3A(b)). Overall,
sample 1 had poor antioxidant capacity compared with the other four samples, which might
be due to the fact that it contained less phenolic acids and flavone glycosides compared
with other samples. However, this did not mean that the S1 sample had no advantage in
antioxidant capacity. One study showed that the antioxidant capacity of blueberries was
mainly owing to the contained anthocyanins, which accounted for as much as 84% of the
total antioxidant capacity [31]. Figure 3A shows that the antioxidant capacity of sample 1
was only slightly different from that of the other samples.
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Finally, the antioxidant capacity of the most abundant monomer compound C3G
detected in the different samples was evaluated, and it showed that the DPPH scavenging
ability was 80.58 ± 1.95 µM GAE and FRAP was 359.92 ± 32.62 µM GAE (Figure S4),
confirming that the monomer compound C3G displayed stronger antioxidant capacity. One
study showed that C3G reduced retinal degeneration induced by diabetes by scavenging
ROS [32]. Therefore, we speculated that anthocyanins may protect retinal barrier cells from
damage by reducing ROS.

2.4. Effect of C3G Treatment on ARPE-19 Cells Redox Environment

This section analyzes the redox status of ARPE-19 cells pre-treated with C3G before the
high glucose (HG) culture to further determine the biological function of the most abundant
anthocyanin monomer C3G in blueberry extract. First, the content of the glutathione
disulfide-glutathione couple (GSSG/GSH), an important index for evaluating the cellular
redox environment, was measured. Next, the mRNA expression levels related to oxidative
stress were determined considering the effect of C3G on gene level.

As shown in Figure 3B, the intracellular GSSG level was significantly increased
(p < 0.05) from 0.308 to 0.507 µM after HG treatment, while the GSH level was decreased
(p = 0.092), indicating weakened cellular glutathione metabolism after HG induction. How-
ever, anthocyanin pretreatment restored the disordered glutathione metabolism. Compared
with the HG model groups, the GSSG level of HG-cells treated with 10 µM C3G was
significantly decreased (p < 0.05) and the GSH levels were also increased by about 30%,
which was recovered to the levels in the blank control, suggesting that the GSH signaling
was involved during this recovering process. Furthermore, the ARPE-19 cells treated with
10 µM of C3G alone displayed a significant increase in the GSH level (p < 0.001) and a
significant decrease in the GSSG level (p < 0.01), which indicated that the 10 µM C3G
intervention could perform cellular oxidative stress recovery functions without leading to
cytotoxicity.

The Nrf2 was the central control factor of the expression of its downstream oxidases
NQO1 under normal homeostasis and oxidative stress [33]. Therefore, the expression levels
of Nrf2 and NQO1 was measured on a transcriptional level for confirming the effects of C3G
for alleviating the HG-induced cellular oxidation stress (Figure 3C). The mRNA expression
levels of both Nrf2 and NQO1 in ARPE-19 cells were significantly decreased in response
to the 30 mM HG exposure for 24 h (p < 0.001). Whereas, the Nrf2 and NQO1 mRNA
expression levels were increased after C3G pretreatment, and these were inconsistent
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with the GSSG and GSH results. The results showed that HG-induced ARPE-19 cellular
oxidative damage could be effectively restored, and the redox balance was also improved.

Because the oxidative stress played an important role in the pathogenesis and patho-
physiology of DR development, intervention by natural phenolic compounds for regulating
the cellular redox balance might be a new proposed relief strategy for DR [34]. Furthermore,
researchers have well documented that Nrf2 activation by anthocyanins can upregulate
expression levels of antioxidant enzymes and proteins, such as glutaredoxin1 (Grx1), heme
oxygenase-1 (HO-1), thioredoxin 1 (Trx1), and NADPH dehydrogenase 1 (NQO1) [35];
and lower blood sugar via the Nrf2/Keap1 pathway [36]. The retinal pigment epithe-
lium (RPE) is the outer barrier of the retina, which could protect the retina from oxidative
stress-induced impairment. The above results indicated that C3G protected the barrier
cells (ARPE-19) from oxidative stress. Another study further confirmed that ROS level and
endoplasmic reticulum stress in ARPE-19 cells induced by HG was notably restored by
blueberry extract, and the development of DR in diabetes rat models was alleviated [37].

Collectively, these data provide evidence that blueberry extracts, which are rich in C3G,
might protect ARPE-19 cells against HG-induced oxidative stress via the Nrf2 pathway,
although the underlying mechanisms need to be explored on the gene translation level.

2.5. Molecular Docking between Anthocyanin Monomer Compounds and REDD1

Numerous previous studies have suggested that REDD1 was not only a positive regu-
lator of cellular reactive oxygen species (ROS), but also a negative regulator of antioxidant
response [17,38]. Diabetes can lead to an increase in ROS production and antioxidant
defense system impairment, and these changes are closely connected with the endogenous
oxidative stress of the local microenvironment, for example, in the local retina. One study
found that REDD1 could maintain a high ∆Ψ m via suppression of Akt/GSK3β signal-
ing [17]. GSK3β also directly phosphorylated the transcription factor Nrf2 to promote its
nuclear exclusion and attenuated expression of antioxidant genes with antioxidant response
element (ARE) promoters [39]. These indicated that the REDD1 sensed the changes in
Nrf2, which were interfered with by the turbulence of oxidation stress, which meant Nrf2
and REDD1 share the same signal pathway and can translate the pathological condition
associated with the vision disorders. These mechanism signal paths play key roles in DR
development and progression, and have been widely explored in many previous stud-
ies [39]; however, recent studies investigating the roles of anthocyanins for vision health
promotion, or eyesight protection mainly focused on the Nrf2 rather than the REDD1. A
study showed that baicalein, as a natural flavone, caused a marked induction of DDIT4,
which also called REDD1 that mediated mTOR inhibition and growth inhibition in can-
cer cells [40]. Therefore, we speculated that anthocyanins might be closely related to the
production of REDD1.

If there are connections between the anthocyanins and REDD1, and whether the
anthocyanins can directly act on the REDD1 protein is still uncovered. Therefore, to
provide a more in-depth understanding about the roles of anthocyanins for vision health
improvement in view of the REED1 protein, molecular docking between the different
anthocyanins and REDD1 protein was analyzed. Five different anthocyanidins were docked
into the catalytic site of REDD1. The predicted binding modes of five main anthocyanidins,
including Cy-3-glu, Cy-3-rut, Cy-3-ara, Pg-3-glu, and Pn-3-glu docked into REDD1 are
shown in Figure 4A–E, respectively.
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Figure 4. Use of Autodock software to analyze 100 docking models of five anthocyanin monomer
compounds and proteins. Panoramic view showing the binding mode between Cy-3-glu (A), Cy-3-rut
(B), Cy-3-ara (C), Pg-3-glu (D), Pn-3-glu (E), and REDD1.

Figure 4 shows that REDD1 encapsulated anthocyanins in the structural cavity, and
the five anthocyanin molecules docked with the amino acid residues of REDD1 through the
hydrogen bond. According to the conformational analysis of the binding action between
REDD1 and anthocyanins, the binding affinities of the five anthocyanidins were presented
in Table 2. The results showed that Pg-3-glu exhibited the strongest binding affinity of
REDD1 (−7.69 kcal/mol), followed by Cy-3-glu (−7.54 kcal/mol, C3G); and Cy-3-rut was
the worst (−6.21 kcal/mol).

Table 2. Predicted binding affinity for anthocyanidins present in extracts docked with REDD1.

Name Docking Score (kcal/mol) Numbers of H-Bonds Amino Acid Residue

Cy-3-glu −7.54 6 ALA-164, LEU-165, CYS-140, GLU-138,
ALA-135 and TYR-136

Cy-3-rut −6.21 6 GLN-106, SER-103 and GLN-162
Cy-3-ara −7.30 6 LEU-109, SER-111 and ARG-113
Pg-3-glu −7.69 10 GLN-206, SER-205, ARG-116 and PRO-114
Pn-3-glu −6.92 10 GLN-206, SER-205, ARG-116 and PRO-114
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According to previous studies, the antioxidant capacity of anthocyanins was related to
the number of hydroxyl groups in the B-ring, and the hydroxyl groups on the carbon site 4
of the B-ring are the most active groups [41]. The number of H-bonds of C3G and Pg-3-glu
was found to be 10 and 6, respectively; however, only the B-ring of the C3G molecule was
linked to the hydroxyl groups with CYS-140 on REDD1, indicating that C3G might be the
optimal anthocyanin for inhibiting REDD1 activity, and further perform BRB protection
effects under oxidative stress. Additionally, the anthocyanins consist of anthocyanidins
and aglycons, and the activity of anthocyanins largely depends on the anthocyanidins and
their extent of glycosylation. Liu et al. reported that the different glycosides within the
anthocyanins affected the chemical structure of anthocyanins; for example, the addition of
disaccharide to the pure anthocyanin molecule affected the polarity of anthocyanins, and
these might enhance or decrease the activity of anthocyanins [42]. Therefore, Cy-3-rut might
not be as effective as C3G to act on REDD1, and the lower binding energy (−6.21 kcal/mol)
between Cy-3-rut and REDD1 might be related with connected disaccharide. Furthermore,
C3G was the most dominant anthocyanin in blueberry extracts, and its binding affinity
toward REDD1 was relatively higher than the others. Thus, it can be concluded that C3G
might be used as an alternative natural bioactive ingredient for amelioration of retinal
oxidative stress by interacting with REDD1. However, more studies should be conducted
in the future to verify these mechanisms using modern molecular analysis methods.

3. Materials and Methods
3.1. Materials and Reagents

The blueberries came from local varieties in the Great Khingan Mountains (China) and
were harvested in 2021. Blueberry extracts were obtained from Daxinganling Lingonberry
Boreal Biotech Co., Ltd. (Qiqihaerz, Heilongjiang, China), using the ethanol extraction
method, acquired by multiple extraction. The samples were frozen immediately after
picking and stored at −20 ◦C until use. Cyanidin-3-O-glucoside standard (>98%) was
purchased from Standard Biotechnology Co., Ltd. (Shanghai, China). 2,4,6-tri(2-pyridyl)-
s-triazine (TPTZ), 2,2-diphenyl-1-picrylhydrazyl (DPPH), methanol (HPLC grade), and
formic acid (reagent grade) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Folin-Ciocalteu (reagent grade) was supplied by Sinopharm Chemical Reagent. All other
chemicals were of analytical or chromatographic grade and purchased from Sinopharm
Chemical Reagent Co. Ltd. (Shanghai, China) and Thermo Fisher Scientific (Waltham, MA,
USA). Milli-Q water (Milli-Q Direct 8, Millipore, Burlington, MA, USA) was used in the
present study.

3.2. Quantification of the Total Phenols and Anthocyanins Content of the Blueberry Samples
3.2.1. Standard Solutions Preparation

Stock solutions of the cyanidin-3-O-glucoside (C3G) standard and five blueberry
extracts were prepared in acidified water (2% HCl) at concentrations of 1 mM. These
solutions were stored in brown bottles and kept at −20 ◦C in darkness. Working standard
solutions were freshly prepared by diluting a certain volume of stock standard solutions
with MeOH according to the concentration demanded before analysis.

3.2.2. Total Phenolic Content Quantification

The total phenolic content (TPC) of the different blueberry extracts was determined
using Folin-Ciocalteu reagent, following the method of Singleton and Rossi with slight
modification [43]. In brief, 1 mL of blueberry extract was mixed with 1 mL of Folin-Ciocalteu
reagent followed by the addition of 5 mL of distilled water in a volumetric flask. Then,
3 mL of sodium carbonate (7.5% w/v) was added. After 5 min of vortex, the reaction
was undertaken at room temperature for 120 min. The absorbance values at 750 nm were
detected using a UV-VIS spectrophotometer. The total phenolic content of the samples
was calculated from the calibration curve of standard gallic acid (0–1.5 mM) and their
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concentrations were expressed as gallic acid equivalents (Y = 0.0013x + 0.0902, R2 = 0.9981)
(Figure S3A).

3.2.3. Anthocyanins Component Quantification

The HPLC system was equipped with an UltiMate3000 diode array detector (Thermo
Fisher Scientific, Massachusetts, American). Chromatographic separations were conducted
on a 150 mm × 4.6 mm, 5 µm Athena C18-WB column (ANPEL Laboratory Technologies,
Shanghai). The mobile phase consisted of two solvents: formic acid (3%, v/v) in water
(A) and methanol (B) with gradient elution at a flow rate of 1 mL/min. The gradient
program of the mobile phase was as follows: 0–2 min, 6% B; 2–5 min, 6–10% B; 5–10 min,
10–16% B; 10–16 min, 16% B; 16–22 min, 16–24% B; 22–26 min, 24–32% B; 26–30 min, 32–40%
B; 30–32 min, 40–90% B; 32–34 min, 90% B; 34–39 min, 90–0% B; and 39–40 min, 0% B.
The injection volume was 10 µL for extracts of blueberries, and the column temperature
was maintained at 40 ◦C. Specifically, spectral data from all peaks were accumulated in
the range 190–600 nm, and chromatograms were recorded at 280 nm for flavan-3-ols, at
360 nm for flavanols and at 520 nm for anthocyanins. For quantification anthocyanins, their
concentrations were expressed as C3G equivalents (C3GE) (µM), and the calibration curve
of Y = 0.4924x − 5.0662 (R2 = 0.9991) (Figure S3B).

3.3. The Structure Identification of the Different Anthocyanins from Blueberry Samples by
HPLC-Q-TOF-MS/MS

A Waters ACQUITY high-performance LC system equipped with a Waters Xevo TQS
mass detector was employed for anthocyanins analysis [44]. The separation chromato-
graphic column was a reversed-phase Hypersil GOLD C18 (100 mm × 2.1 mm, 1.9 µm;
Thermo Scientific, Waltham, MA, USA). The mobile phase consisted of two solvents: formic
acid (0.5%, v/v) in water (A) and methanol (B) with gradient elution at a flow rate of
0.3 mL/min. The gradient program of the mobile phase was as follows: 0–2 min, 5% B;
2–5 min, 5–10% B; 5–10 min, 10–16% B; 10–12 min, 16–95% B; 12–15 min, 95% B; 15–16 min,
95–5% B; 16–20 min, 5% B. The injection volume was 3 µL, and the column temperature
was maintained at 40 ◦C.

The mass spectrometer was operated in a positive-ion mode by scanning ions between
m/z 100 and 1000. The ESI inlet conditions were as follows: capillary voltage, 0.6 kV;
cone voltage, 30 V; extractor voltage, 2 V; source temperature, 120 ◦C; and desolvation
temperature, 350 ◦C. Data acquisition of anthocyanins and further determinations were
done by the OS 1.8 software (Waters).

3.4. Evaluation of Antioxidant Capacity In Vitro
3.4.1. DPPH Assay

The antioxidant capacity of five blueberry extracts was evaluated by 2,2-diphenyl-1-
picrylhydrazyl (DPPH) radical scavenging capacity assay and ferric-reducing antioxidant
power (FRAP) assay, respectively. The DPPH assay was performed according to the method
reported in the previous studies with some modifications [29]. In brief, 270 µL of freshly
prepared DPPH radical (80 µM in methanol) was mixed with 30 µL of blueberry extracts
(200 µM in methanol). The reaction was conducted in a 96-well microplate at 25 ◦C. The
absorbance values at 515 nm were detected at 30 min of the reaction by a plate reader
(Model: SpectraMax190, Molecular Devices Inc., San Jose, CA, USA). The absorbance values
of gallic acid in methanol ranging from 10 to 100 µM were used to construct the calibration
curves. The antioxidant activity was expressed as gallic acid equivalent (µM).

3.4.2. FRAP Assay

The FRAP assay was performed using the method described by Yang, et al. [30]. The
freshly prepared FRAP reagent (300 mM acetate buffer at pH 3.6, 10 mM TPTZ in 40 mM
HCl, 20 mM FeCl3·6H2O in H2O, 10:1:1, v/v/v) was diluted to one-third with acetate buffer
(300 mM acetate buffer at pH 3.6) and incubated at 37 ◦C. A total of 270 µL of diluted
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FRAP reagent was mixed with 30 µL of blueberry extracts (200 µM in methanol) in a
96-well microplate (Model: SpectraMax190, Molecular Devices Inc., USA). The reaction was
undertaken at 37 ◦C for 4 min, and the absorbance values were measured at 593 nm against
the blank, which consisted of 270 µL of diluted FRAP reagent and 30 µL of methanol.
The absorbance values of gallic acid in methanol ranging from 20 to 200 µM were used
to construct the calibration curves. The reduction ability was expressed as gallic acid
equivalents (µM).

3.5. Redox Environment Evaluation of the ARPE-19 Cells Treated with Anthocyanin Monomer C3G

ARPE-19 cells (National Collection of Authenticated Cell Cultures, Shanghai, China)
were cultured in Dulbecco’s modified Eagle’s medium (Sigma, USA) with 10% FBS, and the
cell culture protocols were referred from Ma, et al. [45]. To examine the effects of C3G on a
high glucose-induced cellular redox state, the cells were cultured in Minimum Essential
Medium (MEM) without FBS for 12 h, then pretreated with C3G (10 µM) for 1 h, followed
by 30 mM glucose treatment for another 24 h. The cells were used for GSSG/GSH assay, in
order to evaluate the cellular redox environment by using the GSH and GSSG Assay Kit
(Beyotime Biotechnology, Shanghai, China), respectively, according to the manufacturer’s
protocols. Normal glucose (5.5 glucose) groups without C3G pretreatment were used as the
control. The high glucose (30 mM glucose) groups without C3G pretreatment were used as
the oxidative model.

3.6. The Expression Levels of Genes Related with Redox Balance by Quantitative Real-Time PCR
(RT-qPCR)

MolePure® cell total RNA kit was used for total RNA preparation from ARPE-19 cells.
The total RNA was used for cDNA preparation by using the Haifair® III 1st Strand cDNA
Synthesis SuperMix for qPCR (gDNA digester plus). The cDNA preparation was conducted
following the manufacturer’s protocols. RT-qPCR was performed on an appliedbiosystems
thermocycler (QuantStudio 3, Thermofisher, Waltham, MA, USA) using Hieff® qPCR SYBR®

Green Master Mix (No Rox). The target primers were obtained from PrimerBank, which
are displayed in Table S1. The cycling conditions were as follows: the initial denaturation
at 95 ◦C for 5 min, then 60 cycles at 95 ◦C for 10 s, plus 55–60 ◦C for 20 s, and finally at
72 ◦C for 20 s, which was performed for RT-PCR parameters: The GAPDH gene was used
as an internal control to normalize target gene expression. The relative gene-expression
value was calculated based on the 2 −∆∆CT method, in which the ARPE-19 cells treated
with 5.5 mM glucose was set as the control, and each sample was run in triplet.

3.7. Molecular Docking Analysis between the REDD1 Protein and Different Anthocyanin Monomers

In order to determine the interactions between the stress response protein regulated in
development and DNA damage 1 (REDD1) and anthocyanins, molecular docking analysis
was conducted. The structure of the REDD1 (PDB code: 3LQ9) was downloaded from
the PDB Protein Data Bank (https://www.uniprot.org/), accessed on 23 March 2022. For
the optimization of the protein, the removal of the water molecules, and the addition
of all the hydrogen atoms, the AutoDock Tools was used. A 3D structure of Cyanidin-
3-O-glucoside (Cy-3-glu, CID: 197081), Cyanidin-3-O-rutinoside (Cy-3-rut, CID: 441674),
Cyanidin-3-O-arabinoside (Cy-3-ara, CID: 12137509), Pelargonidin-3-O-glucoside (Pg-3-glu,
CID: 3080714) and Peonidin-3-O-glucoside (Pn-3-glu, CID: 443654) were obtained from
the National Centre for Biotechnology Information (NCBI) PubChem compound database
and employed for ligand docking. The optimal docking results were obtained and further
analyzed based on the principle of minimum binding energy and the maximum number of
junctions in the operation results. The details of the interactions were displayed by using
Pymol 3.7.7 (Python Software Foundation, Wilmington, DE, USA).

https://www.uniprot.org/
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3.8. Statistical Analysis

The data was expressed as means ± standard deviation. Differences between groups
were statistically analyzed using one-way analysis of variance (ANOVA) followed by
Tukey’s post hoc test using SPSS (Version 22.0, SPSS Inc., Chicago, IL, USA) and considered
statistically significant at p < 0.05 (*) and p < 0.01 (**). Pearson’s R correlation was also
calculated using SPSS. The GraphPad Prism 9.0 (USA, GraphPad Software) was used for
graphic design in the present work.

4. Conclusions

The structure of the typical blueberry anthocyanins from commercial products was
identified and their potential for diabetic retinopathy amelioration was explored by using
a molecular docking technique. The results suggested that all the samples were rich in
anthocyanins, and six major anthocyanosides were isolated and identified by HPLC-Q-
TOF-MS/MS, among which the C3G was dominant and accounted for more than 50% of the
total anthocyanins in different samples. Notably, the monomer compound C3G within the
blueberry extracts showed high antioxidant capacity, and the C3G might perform oxidative
stress amelioration effects through the Nrf2 pathways. Further molecular docking studies
demonstrated that the C3G exhibited good binding affinity toward REDD1 (−7.54 kcal/mol)
among the others, and only the B-ring within the C3G molecule displayed favorable
binding interactions with the CYS-140 amino acids of the REDD1 protein, implying that
the oxidative stress amelioration effects of C3G on HG-treated ARPE-19 cells was also
connected with the REDD1 protein. The present study might provide some new insights
into understanding the roles of blueberry anthocyanins for ameliorating oxidative stress-
induced BRB damage in the retina. However, the underlying molecular mechanisms of
natural anthocyanins in ameliorating the BRB injuries by regulating the REDD1 expression,
and the relationships between Nrf2 and REDD1 still need to be further explored.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217475/s1, Figure S1: Chromatograms of extracts of
blueberries monitored at 280 nm, 360 nm, and 520 nm for optimal detection of flavan-3-ols, flavanols
and anthocyanins; Figure S2: Chromatograms of extracts of Cyanidin-3-O-glucoside at 520 nm
(RT = 10.55 min); Figure S3: Calibration curve of standard gallic acid (A) and cyanidin-3-O-glucoside
(B). Figure S4: The FRAP and DPPH radical scavenging capacity of the C3G; Table S1: The primer
sequences.
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