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Abstract: Transition-metal sulfides exaggerate higher theoretical capacities and were considered a
type of prospective nanomaterials for energy storage; their inherent weaker conductivities and lower
electrochemical active sites limited the commercial applications of the electrodes. The sheet-like nickel
cobalt sulfide nanoparticles with richer sulfur vacancies were fabricated by a two-step hydrothermal
technique. The sheet-like nanoparticles self-combination by ultrathin nanoparticles brought active
electrodes entirely contacted with the electrolytes, benefiting ion diffusion and charges/discharges.
Nevertheless, defect engineers of sulfur vacancy at the atomic level raise the intrinsic conductivities
and improve the active sites for energy storage functions. As a result, the gained sulfur-deficient
NiCo2S4 nanosheets consist of good specific capacitances of 971 F g−1 at 2 A g−1 and an excellent
cycle span, retaining 88.7% of the initial capacitance over 3500 cyclings. Moreover, the values of
capacitance results exhibited that the fulfilling characteristic of the sample was a combination of the
hydrothermal procedure and the surface capacitances behavior. This novel investigation proposes a
new perspective to importantly improve the electrochemical performances of the electrode by the
absolute engineering of defects and morphologies in the supercapacitor field.

Keywords: NiCo2S4; sulfur nanoparticle; electrode materials; supercapacitor; energy storage performance

1. Introduction

Worldwide, research is rising investigating safe, portable, renewable electrochemical
electrical applications, and lightweight electrical gadgets, such as supercapacitors (SCs),
which consider eco-friendly stabilities as well as higher energy/power densities [1–3]. In
energy storage applications, supercapacitors (SCs) attained widespread consciousness on
account of their extraordinary benefits in terms of rapid charging/discharging procedures,
high reliability, excellent power densities, cheaper price, and environmental natures [4–7].
Meanwhile, the weaker energy densities of SCs have constricted them from laboratory
scales to practical-span productivity [8–10]. Thus, higher performance sample-electrodes
are worth finding for enhancing the energy densities of SCs.

Among them, transition-metal sulfides were advised as an essential source for the
SCs application, owing to their higher capacity results, cheaper prices, innate abundances,
and eco-friendliness [11]. Comparable to binary metal sulfides, bimetallic sulfide types
(e.g., CuCo2S4 [12], NiCo2S4 [13], FeCo2S4 [14], MnCo2S4 [15]) normally manifest good
added electrochemical behaviors for the given two causes: (i) the synergetic reaction of
bimetallic sulfide types would consider a richer redox reaction; and (ii) bimetallic sulfide
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types normally exhibit higher conductivities [16–18]. Nevertheless, the insufficient energy
storage active sites and weaker ion diffusion kinetics were reasoned by the limit of ion
diffusion connections, which led to poorer rate capabilities and specific capacities [19].
Recent research has been maintained to enhance the electrochemical performances of the
samples’ electrodes by morphology optimization and defect formations [20–22]. For in-
stance, Wan et al. constructed NiCo2S4 porous nanotubes using sacrifices precursors to
reason redox reactions at intrinsic activate sites, allow for faster ion transportations in the
aqueous electrolyte, and represent a higher specific capacity of 933 F g−1 at 1 A g−1 [23];
Chen et al. fabricated caterpillar-type NiCoS crystals, exhibiting the higher specific ca-
pacitance of 1777 F g−1 at 1 A g−1 and retaining a 90.9% capacity of the starting cycles
over 3000 cycles at 10 A g−1 [24]; Zhou et al. synthesized oxygen-deficient (Vo-ZnO/CoO)
nanowires [25], in which the oxygen defect improves the redox processes, allowing for faster
electron transportation rates; and Huang et al. fabricated NiS@C with a sulfur vacancy
(H-NiS1−X/C−50), where the sulfur vacancy formations provide lattice distortion reac-
tions, exhibiting improved conductivities and good electrochemical activities (1728 F g−1,
1 A g−1) [26]. Evidentially, the combination of sulfur-deficient NiCo2S4 with a conductive
matrix-type nickel foam can enhance the cycling performances and rate capabilities of
materials. Meanwhile, it has been noted that bimetallic nickel cobalt sulfide consists of
numerous redox sites and abundant valence states [27]; therefore, it might be a favoring
electrode applicant for SCs, in which its less efficient ion/electron transportations hin-
der the electrochemical activity. To the best of our understanding, the performances of
a sulfur-deficient NiCo2S4 were not adequate, and it was the main endeavor to further
boost the electrochemical activities of SCs. Compared to the recently reported composited
bimetallic sulfides, it could be anticipated that the sulfur-deficient NiCo2S4 composite
might provide stronger cooperative effects and assist volume alterations, promising to
enhance the electrochemical performances for SCs applications.

Based on the above findings, we integrate deficient engineering with rational nano-
morphology construction to grow sheet-like nickel cobalt sulfide nanoparticles, self-assembling
by ultrathin nanoparticles with richer sulfur vacancies through hydrothermal treatment. The
fabricated electrode consists of higher conductivities and numerous abundant activation sites,
providing good specific capacitances of 971 F g−1 at 2 A g−1 and the 88.7% retained rate of the
prior capacitances over 3500 long cycles. Moreover, the sulfur-deficient NiCo2S4 nanosheets
electrode exhibits lower resistances, revealing the extraordinary current conductivity of the
sample material. In the investigation, the interconnected nanoparticle-type sulfur-deficient
NiCo2S4 nanosheets composite was illustrated to be perfect for SCs applications.

2. Materials and Methods
2.1. Reagents and Chemicals

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O, 99.0%), cobalt nitrate hexahydrate
(Co(NO3)2·6H2O, 98.6%), and sodium sulfide nonahydrate (Na2S·9H2O, 98.0%] were
purchased by Sigma-Aldrich. All the chemicals were analytically graded and used without
any further procedure. The nickel foam was pre-treated before being utilized.

2.2. Preparation of Sheet-like NiCo2S4 Nanoparticles with Richer Sulfur Vacancies on Ni Foam

In the preparation of sulfur-deficient sheet-like NiCo2S4 nanoparticles, 0.5 mmol
Ni(NO3)2·6H2O, 0.9 mmol Co(NO3)2·6H2O, and 1.17 mmol Na2S·9H2O were dissolved
in 40 mL of DI water under continuous stirring to gain a pink product. Next, the Ni foam
with product precursors was kept in a Teflon-lined stainless autoclave and optimized at
110 ◦C for 13 h. After reaching room temperature, the samples were rinsed with DI water
and subjected to the drying process to gain the needed products. After being dried, the
black precipitate product was annealed at 400 ◦C for 1 h in a furnace in a continual Ar
atmosphere. The representative mass load of the sulfur-deficient NiCo2S4 composite was
∼2.6 mg cm−2.
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2.3. Characterizations and Instruments

The surface morphology and structures of the samples were observed using a scanning
electron microscope (SEM, JSM-7800F equipping) and transmission electron microscopy (TEM,
JEM-2100F, Busan, Korea). The crystal structures of the samples were determined using
characteristic diffraction peaks measured by X-ray diffraction (XRD) analysis, which was
performed using Bruker D8 Advance. X-ray photoelectron spectroscopy (ESCCALAB 250Xi,
Busan, Korea) was organized to investigate the chemical bonding details of the electrodes.

2.4. Electrochemical Performance Test

The evaluation of all the electrochemical calculations for the electrodes was organized
in 3: an electrode setup employing the current precursor products as the working electrodes,
Platinum (Pt) sheet as the counter, and Ag/AgCl as the references electrode. Moreover,
the current working electrode was assessed utilizing a 3-electrode cell with 2 M KOH
electrolytes. Galvanostatic charge–discharge (GCD), cyclic voltammetry (CV), and electro-
chemical impedance spectroscopies (EIS) are evaluated by an electrochemical workstation.
The specific capacitances (Csp, F g−1) of the samples were calculated by Equation (1) based
on CD plots [28–30]:

Cs = (I × ∆t)/m × ∆V (1)

where ∆t (s), I (A), m (g), and ∆V (V) designate the discharge times, currents, the mass of
the electrode, and the applied potential, respectively.

3. Results and Discussion
3.1. Structure Characterization

The fabrication of the sulfur-deficient sheet-like NiCo2S4 nanoparticles on nickel foam
is reported in Figure 1. The Ni foam consists of a porous nature composed of interconnected
nickel skeletons, which possess the benefits of excellent electrical conductivities and richer
porosity, consequently supplying numerous active sites for the redox process. Thus, the
growth of sheet-like NiCo2S4 particles on the nickel skeleton was a reasonable possibility.
First, the NiCo2S4 particles were acquired by a hydrothermal process accompanied by
annealing at 400 ◦C for 1 h in the Ar atmosphere. The gained thin nanosheets were collected
from nanosheets with a porous nature.
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Figure 2 displays the microscopic morphology of the as-synthesized pure NiCo2S4
nanoparticles electrode and sulfur-deficient NiCo2S4 nanosheet composite samples. As
illustrated in Figure 2a,b, the pure NiCo2S4 nanoparticles sample holds slightly incom-
plete developed and shapeless particle-type morphologies. Dissimilar to the pure NiCo2S4
nanoparticles, the sulfur-deficient NiCo2S4 nanosheets composite was made up of ultrathin-
type nanosheets, self-assembling sheet-like particles with a median diameter of around
7 µm (Figure 2c,d). This hierarchical nano-micro unique construction would supply
abundant redox sites with higher active sites, condensing the diffusion networks of
electrons/ions throughout the electrochemical reactions. In addition, the hydrothermal
treatment affected the microstructure and crystallinity of the sulfur-deficient NiCo2S4
nanosheets composite, with the composite leading to the agglomeration of metallic nanopar-
ticles and the electrochemical reactions of the electrode.
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Figure 2. (a,b) SEM and FESEM images of pure NiCo2S4 nanoparticles electrode; and (c,d) SEM and
FESEM images of the sulfur-deficient NiCo2S4 nanosheets composite.

Figure 3 displayed the TEM and HRTEM images of sulfur-deficient NiCo2S4 nanosheet
composites. TEM images in Figure 3a further clarified that the metallic particles were flat
and immobilized on the nickel foam skeleton porous structure. Figure 3b shows that, in
the high-resolution TEM images, sulfur-deficient NiCo2S4 nanosheet composites possess
lattice fringes, such that spaces of 0.24 and 0.28 nm were acquired; which are in excellent
accordance with the (400) and (511) planes of NiCo2S4, respectively [31,32]. On the other
hand, the EDS elemental maps in Figure 3c–e depicted the uniform distributions of Ni, C,
and S, revealing that the sulfur-deficient NiCo2S4 nanosheet composites are victoriously
synthesized by a two-pot hydrothermal route.

The diffraction phase and purity of the as-reported pure NiCo2S4 nanoparticles elec-
trode and sulfur-deficient NiCo2S4 nanosheet composites are investigated using X-ray
diffraction analysis (Figure 4). The characteristic peaks at 26.7◦, 31.5◦, 38.4◦, 47.5◦, and
50.6◦ are attributed with the (220), (311), (400), (422), and (511) planes of the cubic NiCo2S4
phases, respectively (PDF#20-0782) [33,34]. It is obvious that all the good diffraction peaks
of the NiCo2S4 would be ascribed to NiCo2S4 without clear diffractions correlated to the im-
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purities, which evidences the successful preparation of sulfur-deficient NiCo2S4 nanosheet
composites. Moreover, no additional peaks from the remaining crystallized planes could
be gained from the electrode, noticing the excellent form of a pure NiCo2S4 sample.
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The chemical composition and elemental bonding states of the as-reported electrodes
are fixed by using XPS spectra (Figure 4b–e). Figure 4b indicates a survey spectra of the
sulfur-deficient NiCo2S4 nanosheets composites., which reports a dominance of Ni, C, and
S [35]. The typical spectrum of Ni 2p (Figure 5b) and Co 2p (Figure 5c) corroborate the
binary spin-orbits, respectively. In Figure 5b, in which there are the Ni 2p spectra, the
875.7 and 856.5 eV peaks are located from the Ni 2p1/2 and Ni 2p3/2, respectively [36,37].
Accordingly, the Co 2p spectra in Figure 5c illustrate that the 802.4 and 783.3 peaks are
located therein and associated with Co 2p [38–40]. Figure 5d displays the XPS spectrum of
S 2p, revealing the existence of sulfide ions in the binary Ni-Co-S. The foremost peaks of
S 2p were allocated at 168.9 eV. These noticed data were related to the earlier reporting [41].
The XPS findings recognize that the atomic ratios of Ni, Co, and S elements in the NiCo2S4
nanosheets were 1:2.93:4.94, which correlates with the findings output of the NiCo2S4
samples. The XRD and XPS results were fitting, considering the chemical elemental states
and the formation compositions of the pure NiCo2S4 phases. Furthermore, the XPS spectra
displayed the mixed chemical elemental states necessity of Ni 2p/Ni 3p and Co 2p/Co
3p, which play an important role in developing the entire electrochemical activities of the
NiCo2S4 sample.
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3.2. Electrochemical Performance

The CV and GCD plots were first organized to find out the electrochemical activities
of the pure NiCo2S4 nanoparticles electrode and the sulfur-deficient NiCo2S4 nanosheet
composites in the three-electrode setup. As illustrated in Figure 5a, a symmetric Faraday
redox pairs plot was noticed from the CV plot, which is because of their highly reversible
redox process amid Ni3+/Ni2+ and Co3+/ Co2+ beneath alkaline solutions, resulting in
the typical nature of PCs. The Faradaic possible reaction of the sulfur-deficient NiCo2S4
nanosheets composite was suggested as given [42,43]:

Ni3S4 + OH− ↔ Ni3S4 (OH) + e−

Ni3S4 (OH) + OH− ↔ Ni3S4O + H2O + e−

CoO2 + e− + H2O↔ Co(3+) OOH + OH−

The CV plot region of the sulfur-deficient NiCo2S4 nanosheet composites was much
larger than that of the pure NiCo2S4 nanoparticles electrode, revealing its high charg-
ing storing capability. Figure 5b illustrates the GCD plots of both electrodes, and clear
charge/discharge platforms were denoted in all the particulars, further proposing its PCs
properties. As expected, the sulfur-deficient NiCo2S4 nanosheet composites showed longer
discharging times, which disclosed their higher capacitances.

Figure 6a discloses the CV plots of sulfur-deficient NiCo2S4 nanosheet composites
at various sweep rates. Acquiescing with the polarizing effects of the sample electrodes,
improving the sweep rates (5 to 100 mV s−1) led to the cathode’s peak shifting to fewer
potentials, whereas the anode, peaking according to the reverse trends, moved to a higher
potential. Figure 6b displays the GCD plot of the sulfur-deficient NiCo2S4 nanosheets
composite electrode at different current values (2 to 20 A g−1). The plot shapes are nearly
similar and symmetrical, indicating its good electrochemical reversibility. Figure S1 demon-
strates the CV and GCD plots of the pure NiCo2S4 nanoparticles electrode at various scan
rates (5 to 100 mV s−1) and current densities (2 to 20 A g−1) in the 2M KOH aqueous elec-
trolyte; this further exhibited its superior rate capabilities. According to the GCD results,
the measured specific capacitance of both electrodes was reported in Figure 6c. At 1 A/g,
the specific capacitances of the pure NiCo2S4 nanoparticles electrode and sulfur-deficient
NiCo2S4 nanosheet composites were 564 and 971 F g−1, respectively. These data values
confirm that the hydrothermal route significantly overblows the specific capacitances of
the composite. On the contrary, the higher sulfur-deficient NiCo2S4 nanosheets composite
leads to the agglomeration of the metallic particle; thus, hindering the electrical migra-
tions and holding back their electrochemical process. When the sulfur-deficient NiCo2S4
nanosheets composite is at 2 A g−1, a specific surface region is large enough to reveal the
required electrochemical active speeds to enhance the networks of the electrode sample
and electrolytes.

In Figure 6d, the pure NiCo2S4 nanoparticles electrode and sulfur-deficient NiCo2S4
nanosheet composites reported smaller semi-circled diameters in the higher-frequencies
area, and have roughly vertical lines in the lower frequencies region; this hinted that the
sulfur-deficient NiCo2S4 nanosheet composites have optimal conductivities as well as
quick charging transportation capabilities. The EIS curve is composed of the equivalent
series resistance (Rs), the charge transfer resistance (Rct), and Warburg diffusion resistance
(Rw), which is related to the resistance of ionic diffusion in the electrolyte. The fitting
results show that the Rct values of the sulfur-deficient NiCo2S4 nanosheets composite
and pure NiCo2S4 are 0.145 and 0.194 Ω, respectively. Therefore, it can be determined
that the charge transfer resistance of the sulfur-deficient NiCo2S4 nanosheets composite is
the smallest. Furthermore, the equivalent series resistance values of the sulfur-deficient
NiCo2S4 nanosheets composite and pure NiCo2S4 are 1.732 and 0.831 Ω, respectively.
The slope of the sulfur-deficient NiCo2S4 nanosheets composite is the largest, indicating
that it has a high diffusivity of the electrolyte. In both cases, the Rs and Rct values of
the sulfur-deficient NiCo2S4 nanosheets composite has a strong dynamic response and
electrical conductivity.
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Figure 7 illustrates the long cycles of the sulfur-deficient NiCo2S4 nanosheet compos-
ites at 3 A g−1. After 3500 long cycles of charges/discharges, the capacity retention of the
sulfur-deficient NiCo2S4 nanosheet composites is still retained at 88.7%, further illustrating
the outstanding life span of cycling stability analysis. From Table 1, the specified capaci-
tance results data of the electrodes are demonstrated for comparison. Figure S2 illustrates
the EIS curves of the sulfur-deficient NiCo2S4 before and after 3500 cycles of the stability
test at 3 Ag−1.
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Table 1. Comparison of the specific capacitance of the sulfur-deficient NiCo2S4 nanosheets composites
electrode prepared in the present work and other reports in the literature.

Electrode Preparation Method Capacitance Current Density Ref.

NiCo2S4 hollow hexagonal nanoplates Sacrificial template method 437 F g−1 1 A g−1 [44]

NiCo2S4 nanotube arrays Hydrothermal method 738 F g−1 4 A g−1 [45]

NiCo2S4 nanoflakes Ionic layer adsorption 1076 F g−1 1 A g−1 [46]

NiCo2S4 hollow nanoprisms Sacrificial template method 895.2 F g−1 1 A g−1 [47]

NiCo2S4 nanotube arrays Electrodeposition 2.86 F cm−2 4 mA cm−2 [48]

NiCo2S4 nanostructure Precursor transformation method 1050 F g−1 2 A g−1 [49]

Sulfur-deficient NiCo2S4 nanosheets Hydrothermal method 971 F g−1 2 A g−1 This Work

4. Conclusions

We demonstrated a higher-efficiency approach to enhance the higher-performance
electrode materials for supercapacitors by constructing rational nanomorphologies and
increasing sulfur vacancies in NiCo2S4. The physical morphology data results exhibited
that the hydrothermal route corresponds to the composite material crystallinity. By the data
values, the as-developed sulfur-deficient NiCo2S4 nanosheet composites display a superior
specific capacitance of 971 F g−1 at 2 A g−1 and capacitance retentions of 88.7% at 3 A g−1

over 3500 long cycles. The excellent electrochemical capabilities would have corresponded
to the involvement of sulfur vacancies and well-constructive superior specific area particle-
like morphology that improves the electrode’s conductivities, enhances activated sites for
the electrochemical reactions, and encourages the electrolyte penetrations into the sample
material. This study would open unique and favoring paths for the succession of future
generations of high-performance materials for SCs. The developed electrode exhibited
attractive potential in SCs applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27217458/s1, Figure S1: CV and GCD plots of pure NiCo2S4
nanoparticles electrode at various scan rates and current densities in aqueous electrolyte; Figure S2: EIS
curves of the sulfur deficient NiCo2S4 before and after 3500 cycles of stability test at 3 Ag−1.
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