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Abstract: Advanced technologies of electronics industries have led to environmental contamination
concerns, especially waste print circuit boards containing a very high concentration of copper (II)
ions, which can be discharged in wastewater containing many contaminated metals. A low pH is a
necessity for treating industrial wastewater containing heavy metals to meet engineering process
design. A novel polymeric bispicolamine chelating resin, Dowex-M4195, was applied as an alternative
for investigating the behavior of copper (II) in acidic solution via an ion exchange method in a batch
experiment system. Characterization of physical and chemical properties before and after ion
exchange were also explored through BET, SEM-EDX, FTIR and XRD. Response surface methodology
was also applied for optimization of copper (II) removal capacity using design of experiment for
selective chelating resin at a low pH. The results indicate that H+ Dowex-M4195 chelating resin
had a high-carbon content and specific surface area of >64% and 26.5060 m2/g, respectively. It was
predominantly macropore porous in nature due to the N2 gas adsorption isotherm and exhibited type
IV with insignificant desorption hysteresis loop of H1-type. It was spherical and cylindrical. After
the ion exchange process of copper (II)-loaded H+ Dowex-M4195, the specific surface area and total
pore volume decreased by about 17.82% and 5.39%, respectively, as compared to H+ Dowex-M4195.
Hysteresis loop, isotherm and pore size distribution were also similar. Regarding the functional group,
the surface morphology and crystalline structures of H+ Dowex-M4195 showed copper (II) compound
based on the structure of chelating resin that confirmed effective ion exchange behavior. The design
of optimization indicated that copper (II) removal capacity of about 31.33 mg/g was achieved, which
could be obtained at 6.96 h, pH of 2 (a desirable low pH), dose of 124.13 mg and concentration of
525.15 mg/L. The study indicated that the H+ Dowex-M4195 (which is commercially available on the
market) can successfully be applied as an alternative precursor through the ion exchange method
for further reuse and regeneration of the copper (II) in the electronic waste industries and other
wastewater applications needed to respond the policy of biocircular green economy in Thailand.
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1. Introduction

Various types of chelating resins are well known and widely used in several applica-
tions for water and wastewater treatment plants, especially in industrial estates for remov-
ing metals selectively via commercially available ion exchange processes. In recent years,
different functional groups of chelating resin were widely used for base metal purification
and separation [1] through the ion exchange process, especially for rare earth elements such
as Amberlite XAD-4 (styrene divinyl benzene copolymer) [2], Dowex-M4195 and Dow-4196
(bis-picolylamine) [3], Lewatit TP 207 and SIR-300 (iminodiacetate) [4,5], SIR-500 (amino
phosphonic) and Dowex XUS43605 (hydroxypropylpicolylamine) [6,7]. These chelating
resins were applied for extraction of various metals such as Pb(II)/lead, Cu(II)/copper,
Cd(II)/cadmium, Zn(II)/zinc, La(III)/lanthanum, Ni(II)/nickel, Cr(III, IV)/chromium,
Fe(II)/iron and Co(II)/cobalt ions [8,9] from aqueous solutions and especially in electronics
waste applications at a low pH. As mentioned above, the literature reported that Dowex-
M4195 chelating resin showed the best results in removing/ion exchange Cu(II) at a low
pH of less than 2 [10] as compared to other functional groups of chelating resin. However,
the selective chelating resins in terms of ionic form such as Na+ and H+ are still limited
regarding information in the literature for removing of Cu(II) in the electronics industries.
In addition, alternative approaches for extraction of Cu(II) were mentioned from the point
of view of environmental friendliness and economy such as using microorganisms as leach-
ing agents for the removal and recovery of metal from electronic waste. Therefore, using
microorganisms has become an alternative choice for extraction of metal from industrial
wastewater through an ion exchange process.

Currently, the rapid expansion/advanced technologies of electronics industries have
led to environmental contamination concerns, especially waste print circuit boards
(PCBs)/E-waste containing a very high concentration of Cu(II) ions, which can be dis-
charged in wastewater containing many contaminated metals [11]. PCBs are electronic
devices(≥1.4 million tons discarded/year) [12] that contain metals (40%), polymer (30%)
and ceramics (30%) [11], and the Cu concentration is higher than in nature in wastewater
sources as compared with other metal types. There have been many studies investigating
the use of different physicochemical methods in removal, reuse and recovery of copper
from electronic waste, such as adsorption [13–16], incineration [17], landfill dumping [18],
advanced/chemical oxidation [19] and precipitation [20]. Although such approaches could
minimize the effect of electronics waste, they nonetheless have limitations [21] and lack
cost-effectiveness. On the other hand, Igiri et al. [22] reported bioleaching that is an eco-
friendly technology as a circular economy for extracting valuable divalent metals such as
Cu(II) ions from electronic waste [23–25]. It can be seen that E-waste is an important source
of Cu that can be utilized as artificial ores using chemical precipitation, solvent extraction,
adsorption and ion exchange processes for reuse and recovery of divalent metal from E-
waste wastewater. The ion exchange approach is an alternative technology for removal and
recovery of the leaching metal from E-waste [26,27] via chelating resin of bispicolylamine
functional groups such as Dowex-M4195 that provide efficient ion exchange between a
liquid and solid phase of Cu(II) and resin. However, characterization and optimization of
bispicolamine Dowex-M4195 chelating resin performance evaluation of ion exchange via
response surface methodology have not been investigated and a low pH is a necessity for
electronic waste removal from wastewater. A few studies and detailed knowledge have
been reported on the physical properties of Dowex-M4195 before and after ion exchange
with Cu(II) leaching by acetic acid (a low pH < 2).

Hence, this work aimed to investigate the behavior of Cu(II) adsorbed/ion exchanged
onto Dowex-M4195 chelating resin bispicolylamine functional groups for sodium and
hydrogen form in a batch adsorption experiment. The characterization of physical and
chemical properties before and after ion exchange was also explored. Response surface
methodology (RSM) was also applied for optimization of Cu(II) removal capacity via an ion
exchange process in design of experiment (DOE) for further reuse and recovery of selective
chelating resin.
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2. Results and Discussion
2.1. SEM Images of H+ Dowex-M4195 and Cu(II)-Loaded H+ Dowex-M4195 Chelating Resin

The morphology and structure of obtained samples of H+ Dowex-M4195 and Cu(II)
loaded onto H+ Dowex-M4195 were investigated using SEM. As shown in Figures 1 and 2,
SEM images illustrate that both H+ Dowex-M4195 and Cu(II)-loaded H+ Dowex-M4195 had
a spherical form. The external surface was rough and not smooth with a large number of
macropores (Physical properties of H+ Dowex-M4195 and Cu(II)-loaded H+ Dowex-M4195
obtained from a different method of BET and BJH methods), however, Cu(II) loaded onto
H+ Dowex-M4195 was smoother than with normal H+ Dowex-M4195. In addition, it can
be seen that the dimensions were different as shown in Figures 1 and 2 (SEM images
of H+ Dowex-M4195 chelating resin, 361 µm, 0.631 mm) and Figure 1 (SEM images of
Cu(II) loaded onto H+ Dowex-M4195 chelating resin, 399 µm, 0.399 mm). After the ion
exchange process, the demission size of H+ Dowex-M4195 increased by around 9.52% with
a high-magnification SEM inset scale bar of TM4000 15 kV 12.1 mm × 200 BSE M. It can be
concluded that H+ Dowex-M4195 performed well for ion exchange between Cu(II) in the
ion exchange process.

Molecules 2022, 27, 7210 3 of 24 
 

 

2. Results and Discussion 
2.1. SEM Images of H+ Dowex-M4195 and Cu(II)-Loaded H+ Dowex-M4195 Chelating Resin 

The morphology and structure of obtained samples of H+ Dowex-M4195 and Cu(II) 
loaded onto H+ Dowex-M4195 were investigated using SEM. As shown in Figures 1 and 
2, SEM images illustrate that both H+ Dowex-M4195 and Cu(II)-loaded H+ Dowex-M4195 
had a spherical form. The external surface was rough and not smooth with a large number 
of macropores (Physical properties of H+ Dowex-M4195 and Cu(II)-loaded H+ Dowex-
M4195 obtained from a different method of BET and BJH methods), however, Cu(II) 
loaded onto H+ Dowex-M4195 was smoother than with normal H+ Dowex-M4195. In ad-
dition, it can be seen that the dimensions were different as shown in Figures 1 and 2 (SEM 
images of H+ Dowex-M4195 chelating resin, 361 μm, 0.631 mm) and Figure 1 (SEM images 
of Cu(II) loaded onto H+ Dowex-M4195 chelating resin, 399 μm, 0.399 mm). After the ion 
exchange process, the demission size of H+ Dowex-M4195 increased by around 9.52% with 
a high-magnification SEM inset scale bar of TM4000 15 kV 12.1 mm × 200 BSE M. It can be 
concluded that H+ Dowex-M4195 performed well for ion exchange between Cu(II) in the 
ion exchange process. 

 
Figure 1. High-magnification SEM images of H+ Dowex-M4195 chelating resin at a magnification of 
×200; (a) average dimensions, (b) spherical form and (c) the surface of resin  

 
Figure 2. High-magnification SEM images of Cu(II)-loaded H+ Dowex-M4195 chelating resin at a 
magnification of ×200; (a) average dimensions, (b) spherical form and (c) the surface of resin.  

2.2. Leica Microscope Image Analyses of H+ Dowex-M4195 and Cu(II)-Loaded H+ Dowex-
M4195 Chelating Resin 

To confirm the investigation of the ion exchange process, a stand-alone Leica micro-
scope was applied to depict the size and color of the samples as shown in Figure 3. It can 
be seen that the H+ Dowex-M4195 had a green-yellow color with a demission of around 
0.3511–0.3793 mm (Figure 3a). After the ion exchange process, Cu(II)-loaded H+ Dowex-
M4195 chelating resin had dimensions of 0.3774–0.3985 mm (Figure 3b) with a blue-green 
color. This can be seen in the SEM images (Section 2.1 SEM images of H+ Dowex-M4195 
and Cu(II)-loaded H+ Dowex-M4195 chelating resin) depicted in this range. Figure 3c,d 
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Figure 1. High-magnification SEM images of H+ Dowex-M4195 chelating resin at a magnification of
×200; (a) average dimensions, (b) spherical form and (c) the surface of resin.
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Figure 2. High-magnification SEM images of Cu(II)-loaded H+ Dowex-M4195 chelating resin at a
magnification of ×200; (a) average dimensions, (b) spherical form and (c) the surface of resin.

2.2. Leica Microscope Image Analyses of H+ Dowex-M4195 and Cu(II)-Loaded H+ Dowex-M4195
Chelating Resin

To confirm the investigation of the ion exchange process, a stand-alone Leica micro-
scope was applied to depict the size and color of the samples as shown in Figure 3. It can
be seen that the H+ Dowex-M4195 had a green-yellow color with a demission of around
0.3511–0.3793 mm (Figure 3a). After the ion exchange process, Cu(II)-loaded H+ Dowex-
M4195 chelating resin had dimensions of 0.3774–0.3985 mm (Figure 3b) with a blue-green
color. This can be seen in the SEM images (Section 2.1 SEM images of H+ Dowex-M4195
and Cu(II)-loaded H+ Dowex-M4195 chelating resin) depicted in this range. Figure 3c,d
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visually confirmed that Cu(II) adsorbed onto the surface of the chelating resin before and
after ion exchange.
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2.3. Elemental Analysis of Compositions of H+ Dowex-M4195 and Cu(II)-Loaded H+
Dowex-M4195 Chelating Resin

Figures 4 and 5 present the SEM-EDX results illustrating the images with the elemental
composition of H+ Dowex-M4195 and Cu(II) loaded onto H+ Dowex-M4195 chelating
resin, which were used for physical morphology and approximation of the elemental
compositions of before and after materials. The EDX spectra before and after ion exchange
revealed the elements C, O, N, S, F and Cu of both chelating resins. Figure 4 indicates
that SEM-EDX image analysis of H+ Dowex-M4195 chelating resin shows C (64.50%),
O (20.26%), N (11.77%), F (0.38) and S (3.01%) as shown in Table 1. It shows no Cu(II)
adsorbed or ion exchange bound onto the surface of H+ Dowex-M4195 chelating resin,
while Cu(II)-loaded H+ Dowex-M4195 demonstrated that the ions of Cu(II) were exchanged
onto the surfaces of chelating resin at about 4.66 percent. It could be summarized that ion
exchange was possibly the main mechanism/process for Cu(II) adsorption as presented in
Figure 6 (RHn + Cu2+ � R-Cu2+ + nH+) [28].
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Table 1. Elemental analysis of compositions of H+ Dowex-M4195 and Cu(II)-loaded H+ Dowex-
M4195 chelating resin.

Element H+ Dowex-M4195 (wt %) Cu(II)-Loaded H+

Dowex-M4195 (wt %)

Carbon (C) 64.50 58.51
Oxygen (O) 20.26 24.82

Nitrogen (N) 11.77 11.00
Fluorine (F) 0.38 ND

Sulfur (S) 3.01 1.01
Copper (Cu) ND 4.66

Note: ND = Not detected.
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2.4. Nitrogen Adsorption–Desorption Isotherms of H+ Dowex-M4195 and Cu(II)-Loaded H+

Dowex-M4195 Chelating Resin

Figure 7 presents the shape adsorption–desorption isotherms of H+ Dowex-M4195
chelating resin before and after Cu(II) removal via the ion exchange process. The bulk of N2
was absorbed at a constant pressure of about 101.3250 kPa with an equilibration interval
of about 10 s and a sample density of 1.000 g/cm3. The quality of N2 adsorbed (mmol/g)
is presented as a function of the relative pressure (P/P0) at 77.3 K, where the adsorption
point is at 0.1–0.99 and the desorption point is at 0.96–0.99 P/P0. The adsorption isotherm
before and after Cu(II) removal was close to type IV [29] following the International Union
of Pure and Applied Chemistry (IUPAC) classification guidelines [29–31]. The physical
adsorption isotherms both before and after exchanging did not exhibit a saturation as type I
(monolayer adsorption) [32], II (multilayer adsorption) [33] or III (adsorbate–adsorbate
attractive interactions, convex) [34,35]. However, type IV was well defined due to the
N2 adsorption–desorption curves showing the insignificant desorption hysteresis loop
(H1-type, spherical and cylindrical) [36], suggesting that the samples had a mesopore
volume or uniform mesoporous/macropore structure. Moreover, the desorption hysteresis
loop illustrated a very clear curve with a relative pressure (P/P0) over 0.90, indicating that
H+ Dowex-M4195 chelating resin had a structure of macropores as shown in Table 2. The
resin had a very low total pore volume that was 0.2698 cm3 g−1 (H+ Dowex-M4195) and
0.2372 cm3 g−1 (Cu (II)-loaded H+ Dowex-M4195) as shown by the different size of the
desorption hysteresis loop in Figure 7, where a small loop indicates the mass of Cu(II) was
adsorbed/ion exchanged to the pore or the surface of the chelating resin used.
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Figure 7. N2 adsorption–desorption isotherms of H+ Dowex-M4195 chelating resin: (a) before ion
exchange and (b) after ion exchange.

Table 2. Physical properties of H+ Dowex-M4195 and Cu(II)-loaded H+ Dowex-M4195 obtained from
a different method.

Method Physical Properties H+ Dowex-M4195 Cu(II)-Loaded H+

Dowex-M4195

BET

Specific surface area (m2/g) 26.5060 21.7810
Total pore volume (cm3/g) 0.2892 0.2687
Micropore volume (cm3/g) LD LD
Mesopore volume (cm3/g) LD LD
Macropore volume (cm3/g) 0.2892 0.2687

Average pore diameter Å (angstrom) 493.6370 436.5590

BJH

Specific surface area (m2/g) 28.2635 24.2043
Total pore volume (cm3/g) 0.2690 0.2545
Micropore volume (cm3/g) LD LD
Mesopore volume (cm3/g) LD LD
Macropore volume (cm3/g) 0.2690 0.2545

Average pore diameter Å (angstrom) 380.7060 420.6690

Note: LD = Less detection.

2.5. Physical Properties of H+ Dowex-M4195 and Cu(II)-Loaded H+ Dowex-M4195
Chelating Resin

Two approaches were used to explore physical porous properties: Brunauer–Emmett–
Teller theory (BET) and Barrett–Joyner–Halenda (BJH) methods, which have been widely
used for specific surface area, total pore volume and pore size distribution (PSD) of ma-
terials and the results obtained in this work are presented and compared in Table 2. BET
and BJH adsorption cumulative specific surface area of pores of 17–3000 Å range was
investigated. It can be seen that the H+ Dowex-M4195 had a comparably higher specific
surface area (26.5060 m2/g) than the Cu(II)-loaded H+ Dowex-M4195 (21.7810 m2/g) for
the BET method with about a 17.82% difference. The BJH method result was the same
as that of the BET method with a difference of about 14.36% whereas the specific surface
areas of H+ Dowex-M4195 and Cu(II)-loaded H+ Dowex-M4195 were about 28.2635 and
24.2043 m2/g, respectively. The specific surface area can be decreased simply due to the
Cu(II) adsorbed/ion exchange onto the surface of the H+ Dowex-M4195 chelating resin
used. However, the effects on the surface area and other physical properties, such as
functional groups and crystal structure of H+ Dowex-M4195 chelating resin, are considered
in the next section.
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2.6. Pore Size Distribution and Pore Volume of H+ Dowex-M4195 Chelating Resin

Total pore volume and pore size (17–3000 Å width) distribution at P/P0 = 0.9950
relative pressure were investigated. The pore size distribution of materials obtained was
determined using BJH methods as shown in Figure 8, in which results both before and
after ion exchange showed that H+ Dowex-M4195 chelating resin consisted mainly of a
macroporous structure with ASTM standard size (micro < 20, 20 < meso > 50, macro > 50).
It can be seen that the average pore width of H+ Dowex-M4195 chelating resin (380.7060 Å)
was less than Cu(II)-loaded resin (420.6690 Å). In addition, total pore volume also confirmed
that H+ Dowex-M4195 chelating resin was fully ion exchanged with Cu(II) owing to the
pore volume decrease of about 5.39% as presented in Table 2. These results indicated clearly
that the H+ Dowex-M4195 chelating resin had exchanged the ions of Cu(II) onto the surface
and was macroporous in nature.
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and (b) after ion exchange process.
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2.7. Functional Groups before and after Ion Exchange Study of the H+ Dowex-M4195
Chelating Resin

FTIR analysis was used to determine changes in the structure of surface functional
groups before and after the ion exchange process for the H+ Dowex-M4195 chelating resin
at the wavenumber range of 400–4000 cm−1. The functional group has a significant role in
ion exchange behavior due to its largely regulating specific affinities toward various metal
pollutants in water and wastewater sources. Figure 9 presents the plotted FTIR spectra for
before and after the ion exchange process of the resin. It shows the strong absorption bands
at 1449 and 1622 cm−1 (H+ Dowex-M4195 chelating resin) indicating the bispicolamine func-
tional group or polystyrene–divinylbenzene matrix (pyridine rings) functional groups [37]
of the chelating resin before the ion exchange process. The peaks at 1715 and 1608 cm−1,
which appeared in the spectra after the ion exchange process (Cu(II)-loaded H+ chelating
resin Dowex-M4195), had been transformed into new broad absorption peaks. It indicated
that those peaks may be attributed to the interactions/occurrence/combination [38,39]
between nitrogen (protonated) and Cu(II) (divalent metal) [10]. In addition, the stretching
vibration of the alkane groups (CH3, CH2 and CH, 2 or 3 bands) was exhibited at around
2923 cm−1 and other fundamental peaks before and after the ion exchange process were
almost the same. It is suggested that the ion exchange process of Cu(II) corresponds to the
stretching vibration of Cu (II)=O or Cu (II)-O and showed predominantly N=Cu, N-Cu,
N-O or N=O groups.
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Figure 9. FTIR spectrum before and after Cu(II) was loaded onto H+ Dowex-M4195 chelating resin.

2.8. Crystal Structure before and after Ion Exchange Study of the H+ Dowex-M4195
Chelating Resin

The crystal structure before and after the ion exchange process of the resin was investi-
gated using X-ray powder diffraction by measuring the intensity of radiation reflected at
various angles from 5◦ < 2θ < 90◦ with registering of Cu Kα at 1.54060 as shown in Figure 10.
The maximum diffraction peaks were observed at 2θ = 19.72◦, which is the same as reported
in the literature [40]. The figure shows that the intensity of the peak detected for Cu(II)
loaded onto H+ Dowex-M4195 chelating resin was higher than that for H+ Dowex-M4195
chelating resin, whereas the maximum diffraction was related to the crystalline region.
Cu(II) loaded onto H+ Dowex-M4195 chelating resin showed two broad peaks at 43.28◦ and
50.40◦ [41] which can be indexed as the (111) and (200) [42] plane reflections, respectively,
which indicated the cubic lattices of the copper. The diffraction peak (hairy appearance)
results also showed the presence of cubic lattices of copper crystalline structure in the
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H+ Dowex-M4195 chelating resin after the ion exchange process that increases the size of
chelating resin as has been explored in the literature [43].
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2.9. RSM and Model Fit for Cu(II) Removal onto H+ Dowex-M4195 Chelating Resin

Thirty observed responses of qe (mg/g) were obtained from the design RSM-CCD ma-
trix (non-center point 24 and center point 6). Obtained qe responses were utilized to generate
the empirical model terms using RSM to formulate the model summary statistics for Cu(II)
loaded onto H+ Dowex-M4195 chelating resin. The adsorption capacity/removal capability
(qe (mg/g)) of H+ Dowex-M4195 chelating resin was investigated as a quadratic model
computed using software. We focused on the model with the highest R-squared value,
adjusted R-squared or predicted R-squared and order polynomial where the additional
terms are significant and the model is not aliased, as presented in Table 3.

Table 3. Model summary statistics for Cu(II) loaded onto H+ Dowex-M4195 chelating resin.

Source Sequential
p-Value

Lack of Fit
p-Value

Standard
Derivative R-Squared Adjusted

R-Squared
Predicted

R-Squared PRESS

Linear 0.0055 0.0023 18.06 0.4316 0.3407 0.1624 12010.91
2FI 0.3545 0.0023 17.66 0.5866 0.3690 −0.3035 18690.54

Quadratic <0.0001 0.2775 5.82 0.9645 0.9314 0.8553 2075.51 Suggested
Cubic 0.1563 0.9968 4.33 0.9921 0.9620 - * Aliased

Note: * cases (s) with leverage of 1.0000: PRESS statistic not defined.

Analysis of variance (ANOVA) suggested a quadratic model, which was related to
four actual variable factors of Time (x1), pH (x2), Dose (x3), and Conc. (x4), as illustrated
by Equation (4). Negative and positive signs shown in the coded equation model terms
indicate antagonistic and synergistic effects.

qe (mg/g) = 40.65 + 12.41x1 + 0.6341x2 − 1.99x3 + 12.75x4 + 0.3950x1x2 − 1.19x1x3 + 11.52x1x4 − 0.0050x2x3 +
0.3950x2x4 − 1.56x3x4 − 20.73x1

2 + 1.32x2
2 + 7.89x3

2 − 17.66x4
2 (1)
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Table 4 demonstrates the ANOVA of the regression model for Equation (4). F-value
and p-value statistical significance were used to indicate if the regression model was
significant using Student’s t-test. It can be seen that the model F-value used (29.13)
implies the quadratic model is substantial whereas the p-value was less than 0.05
(the error probability <0.0001) and the lack of fit (F-value = 1.76) was not significant rel-
ative to the pure error [44–46]. The higher R-squared (0.9645, close to 1) also confirmed
the order polynomial model of Equation (4) that Cu(II) loaded onto the H+ Dowex-M4195
chelating resin can be explained by the selected quadratic model which was computed
using the software system. In addition, the fit statistic of the adjusted R-squared (0.9314)
and predicted R-squared (0.8553) had a difference of less than 0.2, indicating that the model
qe is in reasonable agreement and significant for predicting the response of maximum ion
exchange capability Cu(II) removal through the ion exchange approach.

Table 4. ANOVA results for an obtained quadratic model of Equation (4).

Source Sum of
Squares df Mean

Square F-Value p-Value

Model 13,830.46 14 987.89 29.13 <0.0001 significant
x1-Time 2770.33 1 2770.33 81.69 <0.0001
x2-pH 7.24 1 7.24 0.2134 0.6508

x3-Dose 69.06 1 69.06 2.04 0.1741
x4-Conc. 3011.38 1 3011.38 88.79 <0.0001

x1·x2 2.50 1 2.50 0.0736 0.7899
x1·x3 22.47 1 22.47 0.6625 0.4284
x1·x4 2121.52 1 2121.52 62.56 <0.0001
x2·x3 0.0004 1 0.0004 0.0000 0.9973
x2·x4 2.50 1 2.50 0.0736 0.7899
x3·x4 40.30 1 40.30 1.19 0.2929
x1

2 1188.83 1 1188.83 35.05 <0.0001
x2

2 4.81 1 4.81 0.1417 0.7118
x3

2 120.71 1 120.71 3.56 0.0787
x4

2 756.00 1 756.00 22.29 0.0003
Residual 508.72 15 33.91

Lack of Fit 395.98 10 39.60 1.76 0.2775 not significant
Pure Error 112.73 5 22.55
Cor Total 14,339.18 29

Table 5 presents code and actual variable factors related to observed and predicted
responses qe via a batch ion exchange process of thirty runs. Observed and predicted re-
sponses qe were compared in terms of the residual plots that are detailed in the next section.

The plots of actual value vs. predicted values and Box–Cox plot power transforms for
Cu(II) loaded onto H+ Dowex-M4195 chelating resin obtained from the quadratic model
are presented in Figure 11a,b. It can be seen in Figure 11a that this scenario might be
considered to provide adequate confidence in the experimental batch system. It was found
that the distribution characteristics of the data were distributed near the regression line,
indicating that this quadratic model term is significant whereas the F-value < 0.005 and
p-value < 0.00001 (Table 4) were not. Box–Cox Plot for Power Transforms statistical tool
was also used for determining the precision of the selected quadratic model terms. It
found that the power of lambda was between 0 and 1 (Figure 11b), indicating the extreme
acceptance percentage of the quadratic model term or main hypothesis. On the other hand,
it can be concluded that the regression model terms fit with reasonable precision between
the observed values and the predicted values from the selected quadratic model.
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Table 5. Code and actual variable factors related to observed and predicted responses of Cu(II) loaded
onto selected H+ Dowex-M4195 chelating resin.

Run
Code Variable Actual Variable Responses qe (mg/g)

x1 x2 x3 x4 x1 x2 x3 x4
Observed Predicted Residual

Value Value Value

1 −1 −1 1 1 0 1 500 2000 0.00 −2.70 2.70
2 −1 −1 1 −1 0 1 500 0 0.00 −1.25 1.25
3 0 0 −1 1 12 5 100 2000 53.20 47.18 6.02
4 0 0 0 1 12 5 300 2000 39.20 35.75 3.45
5 1 0 0 0 24 5 300 1000 39.07 32.33 6.74
6 1 1 −1 −1 24 9 100 0 0.00 1.86 −1.86
7 0 0 0 −1 12 5 300 0 0.00 10.25 −10.25
8 0 0 0 0 12 5 300 1000 40.93 40.65 0.28
9 0 0 0 0 12 5 300 1000 37.07 40.65 −3.59

10 0 0 0 0 12 5 300 1000 37.73 40.65 −2.92
11 −1 1 1 −1 0 9 500 0 0.00 −1.57 1.57
12 1 −1 −1 −1 24 1 100 0 0.00 0.58 −0.58
13 −1 0 0 0 0 5 300 1000 0.00 7.51 −7.51
14 −1 −1 −1 1 0 1 100 2000 0.00 2.02 −2.02
15 −1 1 −1 1 0 9 100 2000 0.00 3.30 −3.30
16 1 1 1 −1 24 9 500 0 0.00 −1.37 1.37
17 −1 1 −1 −1 0 9 100 0 0.00 −3.08 3.08
18 1 1 −1 1 24 9 100 2000 52.40 54.30 −1.90
19 1 −1 −1 1 24 1 100 2000 69.20 51.44 −2.24
20 −1 1 1 1 0 9 500 2000 0.00 −1.44 1.44
21 0 0 0 0 12 5 300 1000 50.13 40.65 9.48
22 1 −1 1 1 24 1 500 2000 79.76 41.98 −2.22
23 1 1 1 1 24 9 500 2000 42.88 44.82 −1.94
24 0 0 0 0 12 5 300 1000 43.07 40.65 2.41
25 0 0 0 0 12 5 300 1000 43.33 40.65 2.68
26 1 −1 1 −1 24 1 500 0 0.00 −2.63 2.63
27 0 −1 0 0 12 1 300 1000 67.04 41.34 −2.30
28 0 1 0 0 12 9 300 1000 44.13 42.61 1.53
29 −1 −1 −1 −1 0 1 100 0 0.00 −2.78 2.78
30 0 0 1 0 12 5 500 1000 39.76 46.55 −6.79

Note: x1 = Time, x2 = pH, x3 = Dose and x4 = Conc.
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Figure 12a–d denote the normal plot of residuals, Cook’s distance, residual vs. pre-
dicted and residual vs. run plots, respectively. Figure 12a implies that the normal probabil-
ity plots produced a good correlation with a straight line that assured the model term had
significance. Figure 12b illustrates Cook’s distance plot; it can be observed that each run
number was lower than the red straight-line plot (<1), indicating strong influence of fitted
values of the selected quadratic model. In addition, other statistical tools such as residual
vs. predicted and residual vs. run plots were also used to confirm the selected model. It
can be seen that distributed data points did not detect outliers of the red straight-line plots
(3.87982). It is suggested that the selected quadratic model is accurate and adequate for the
selection of copper removal via an ion exchange process with the selected chelating resin for
sustainable water reuse and can be applied in engineering water treatment process design.
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Acceptable precision was also subtracted from the measurement of the signal to noise
ratio obtained from the fit statistics. The results showed that there was adequate precision
of about 13.93 (>greater than 4), indicating that it can be used to navigate the design space
in reasonable agreement. Therefore, the selected quadratic model (Equation (4)) can be
utilized in the engineering process design to navigate the removal of divalent metals from
water or wastewater treatment plants through the ion exchange method. In addition, the
lack of fit F-value of about 1.76 indicates the lack of fit was not significant relative to the
pure error (see Table 4). Therefore, the confidential selected quadratic model was utilized
to represent the 3D dimensional plots of Cu(II) removal efficiency onto H+ Dowex-M4195
chelating resin related to the pH, Time, Dose, Conc. and qe as shown in Figure 13. Response
qe or Cu(II) removal was computed and depended on the inputs of operating variables. The
results of 3D dimension plots found that the removal capability for Cu(II) removal had an
effect on all variable factors, especially pH (B) and Dose (C) as indicated in the perturbation
plot (Figure 14). It can be concluded that the Cu(II) removal efficiency was affected by those
variables that were related to the previous discussion above.
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2.10. Optimum Conditions of Cu(II) Removal at a Low pH with RSM and Model Fit

Various water and wastewater treatments, primary testing before engineering process
design and optimization using the design of experiment have been widely applied to
overcome operational restrictions to achieve the highest Cu(II) removal in the treatment
process. In general, a software tool (DOE) has been applied to stipulate code and actual
variable factors related to observed and predicted responses of Cu(II) removal onto H+

Dowex-M4195 obtained in the general area of this research. The highest elimination
efficiency achieved can be set as a desirable target of maximizing or minimizing, in a range
or equal to the response and factor. This research focused on ion exchange at a low pH
that was set as the target (pH 2) as shown in Figure 15 (B: pH). The desirabilities were
designated to reflect the optimum conditions for the ion exchange method for all factors
(Time, pH, Dose and Conc.) and response (qe) that were selected as 1. The optimization
results found that Cu(II) removal capacity of about 31.33 mg/g was achieved, which could
be obtained at a Time of 6.96 h, pH of 2, Dose of 124.13 mg and Conc. of 525.15 mg/L as
illustrated in Figure 15 with the lowest pH.

To confirm the reasonable agreements of the selected empirical quadratic model,
the desirable optimum condition factor results at a low pH of 2 were substantiated or
compared with the experimental results. It was found that the Cu(II) removal capacity
obtained (31.65 mg/g) was similar to the selected empirical quadratic model of Equation (4)
with a percent error of about 1.01, which was accepted. It can be seen that the RSM method
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was appropriate for the prediction Cu(II) removal capacity before the engineering process
design through the ion exchange process with the selected polymeric chelating resin.
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3. Materials and Methods
3.1. Preparation of the Exchanger H+ Dowex-M4195 Chelating Resin

Raw precursor chelating resin, Dowex-M4195 (Figure 16), in this research was obtained
from Dow Chemical Company, supplied by Supelco (bispicolamine functional group).
Dowex-M4195 beads have a size of 3 × 106 to 8 × 106 angstrom and the structure is
macroporous and in ionic form (Na+) with a 60 ◦C maximum temperature of 0–7 pH range.
The ratio 1 (g):10 (mL) of chelating resin obtained was soaked together with 2 M of acetic
acid (AR grade, Ajax Finechem, 99.99%) for over 24 h to form a hydrogen (H+) bond
structure as illustrated in earlier research [47–49]. Subsequently, wet H+ Dowex-M4195
chelating resin form was poured several times using double distilled water to eliminate
superfluous acid until the pH was about neutral and then dried in an oven at 50 ◦C
over 12 h. The dried H+ form Dowex-M4195 resin was preserved and cooled down to a
room temperature of around 25 ◦C in a glass tube for supplementary batch ion exchange
investigation and optimization via response surface methodology.
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3.2. Characterization before and after Ion Exchange for H+ Dowex-M4195 Chelating Resin

A surface area pore size and pore volume distribution analyzer (Bell Sorp mini, TriStar
II Plus Version 3.00, Norcross, GA, USA) was used to analyze the physical properties such as
the specific surface area, pore volume and pore size distribution before (H+ Dowex-M4195)
and after (Cu(II)-loaded H+ Dowex-M4195 chelating resin) ion exchange for H+ Dowex-
M4195 chelating resin. H+ Dowex-M4195 chelating resin before and after ion exchange was
aired/degassed for over 3 h before testing the physical properties. Brunauer–Emmet–Teller
(BET) and Barrett–Joyner–Halenda (BJH) approaches determined the specific surface area,
total pore volume and pore size diameter. Nitrogen adsorption–desorption isotherms of H+

Dowex-M4195 and Cu(II)-loaded H+ Dowex-M4195 chelating resin were examined where
the adsorption point was at 0.1–0.99 and desorption point at 0.96–0.99 within the relative
pressure P/P0 range.

Surface morphology together with elemental analysis before and after ion exchange
were examined with scanning electron microscope energy–dispersive X-ray spectroscopy
(SEM-EDX) with model SEM-TM4000Plus, HITACHI. Crystal structure of the chelating
resin before and after the ion exchange process was investigated using X-ray powder
diffraction by measuring the intensity (counts) of radiation reflected (2 theta, coupled
two theta/theta) at various angles from 5◦ < 2θ < 90◦ whereas registering of Cu Kα

occurred at 1.54060. Fourier transform infrared spectroscopy (ATR-FTIR) was applied to
determine changes in the structure of the surface functional groups of H+ Dowex-M4195
chelating resin before and after the ion exchange process at the cover wavelength range of
400–4000 cm−1 via a Perkin Elmer instrument analyzer with Spectrum Standard v10.4.2
software (Bangkok, Thailand).

3.3. RSM Relevant Statistical Analysis for Cu(II) Removal Using H+ Dowex-M4195 Chelating
Resin Adsorbent

To find the optimal conditions for synthetic Cu(II) wastewater removal in acidic
solution (pH less than 2) in a batch system via an ion exchange process, four variable
factors (initial Time, pH, Dose and Concentration (Conc.) at room temperature around
25 ◦C) were further explored. RSM has been widely used for designing experiments to
achieve the optimal response to operational factors using a design of experiment (DOE,
State-Ease, Minneapolis, MI, USA, free trial) software tool. Central composite design
(CCD) of the four factors was used to evaluate the advanced design using a second-degree
polynomial. A total of 30 batch systems were run with 16 (2a = 24 = 16) factorial points, 8
(2a = 2 × 4 = 8) axial points and 6 (A0) central points as presented in Equation (1):

A = 2a+2a + A0= 24+(2 × 4) + 6 = 30, (2)

where a is the number of operational factors implicated, 2a indicates the number of factorial
points, 2a is the number of axial points, A represents the number of batch experiments and
A0 is the center point. After testing for 30 runs, the experimental results were determined
as a second-degree polynomial regression model as exemplified in Equation (2):

Y = α0 + ∑n
i=1 αixI + ∑n

i=1 αiix2
i + ∑i=1 ∑i 6=j=1 αijxixij+ε , (3)

where y (qe mg/g) represents the response variable of observed and predicted qe, xi and xj
are the process factors of actual or coded variables (Time, pH, Dose and Conc.) and α0, αi,
αii and αij are the regression coefficients.

Table 6 shows overall numeric factors of experimental range and levels of CCD. Each
process factor was set to 5 levels: low (−alpha) and high (+alpha) levels, center point level
indicated as 0 and two outer points of −1 and +1. This approach, the range and levels of
CCD were duplicated for every combination of the categorical factor levels as demonstrated
in Table 7.
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Table 6. Variable process factors of investigational levels of CCD.

Factor/Name Unit
Levels (Coding Actual)

−1 (Low Level) 0 (Central Level) 1 (High Level)

x1, Time h 0 12 24
x2, pH - 1 5 9

x3, Dose mg 100 300 500
x4, Conc. ppm 0 1000 2000

Table 7. Thirty batch experiments of code and actual variable factors related to observed and
predicted responses.

Run
Code Variable Actual Variable

x1 x2 x3 x4 x1 x2 x3 x4

1 −1 −1 1 1 0 1 500 2000
2 −1 −1 1 −1 0 1 500 0
3 0 0 −1 1 12 5 100 2000
4 0 0 0 1 12 5 300 2000
5 1 0 0 0 24 5 300 1000
6 1 1 −1 −1 24 9 100 0
7 0 0 0 −1 12 5 300 0
8 0 0 0 0 12 5 300 1000
9 0 0 0 0 12 5 300 1000

10 0 0 0 0 12 5 300 1000
11 −1 1 1 −1 0 9 500 0
12 1 −1 −1 −1 24 1 100 0
13 −1 0 0 0 0 5 300 1000
14 −1 −1 −1 1 0 1 100 2000
15 −1 1 −1 1 0 9 100 2000
16 1 1 1 −1 24 9 500 0
17 −1 1 −1 −1 0 9 100 0
18 1 1 −1 1 24 9 100 2000
19 1 −1 −1 1 24 1 100 2000
20 −1 1 1 1 0 9 500 2000
21 0 0 0 0 12 5 300 1000
22 1 −1 1 1 24 1 500 2000
23 1 1 1 1 24 9 500 2000
24 0 0 0 0 12 5 300 1000
25 0 0 0 0 12 5 300 1000
26 1 −1 1 −1 24 1 500 0
27 0 −1 0 0 12 1 300 1000
28 0 1 0 0 12 9 300 1000
29 −1 −1 −1 −1 0 1 100 0
30 0 0 1 0 12 5 500 1000

3.4. Optimization via Batch Ion Exchange Studies

At research laboratory-scale, the optimization of Cu(II) was carried out using a 250 mL
Erlenmeyer flask containing 100 mL synthetic Cu(II) in acidic solution. Stock solution
(2000 ppm) of Cu(II) was prepared by mixing copper (II) nitrate trihydrate (Cu(NO3)2 ·3H2O,
AR grade, Qrec, New Zealand) [24,50] in glacial acetic acid (CH3COOH, AR grade, Qrec,
New Zealand) solution of about 0.2 M concentration [51]. The concentration of acetic acid
used is that applied in biohydrometallurgy due to it being eco-friendly and inexpensive
for the establishment of metallic complex solution for the ambient temperature and the
pressure [52] of the surrounding air, gas or liquid in a specific location.

Batch ion exchanges were performed under the optimal conditions (pH, Concentration
(Conc.), Dose and Time) to the desired level of pH (2.0 ± 0.2–9.0 ± 0.2) of each synthetic
Cu(II) in acidic concentration of about 0–2000 ppm. First, 0.5 N sulfuric acid (H2SO4)
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and 1.0 N sodium hydroxide (NaOH) were used to adjust the pH before running the
ion exchange processes. After adjusting the pH, the H+ Dowex-M4195 chelating resins
(100–500 mg range) were added to the prepared synthetic solution at room temperature
and then the response time was varied from 0–24 h. After the ion exchange processes
were completed, an aliquot was withdrawn and three drops of sodium sulfite (NaSO3)
were added to stop the reaction for each ion exchange process run, and then filtrated
via a 0.45 GF/C filter using syringe filters. The filtered solution was measured using
inductive coupled plasma (ICP-OES, Optima 8000, Perkin Elmer Inc., Waltham, MA, USA)
at 327.393 nm wavelength for analyzing the capacity of Cu(II) adsorbed onto the H+ Dowex-
M4195 chelating resin. The thirty-batch experiments (as shown in Table 7) and blank
solution samples were run about three times to establish the trustworthiness and exactness
of the experimental results, which did not exceed a maximum of about 5% for the relative
standard deviations. The adsorption/ion exchange capacity of Cu(II) exchanged qe (mg/g)
for each experimental run was determined with Equation (3).

qe =
Ci − Ce

m
v, (4)

in which Ci (mg/L) is the initial Cu(II) concentration and Ce (mg/L) is the equilibrium
Cu(II) adsorbed concentration, m (g) is the mass of the H+ Dowex-M4195 chelating resin, V
(L) is the volume of metal–organic solution and qe is mg of copper (II) adsorbed per gram
of chelating resin obtained. The steps of optimization via batch ion exchange experiments
are shown in Figure 17.Molecules 2022, 27, 7210 20 of 24 
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4. Conclusions

The novel H+ Dowex-M4195 chelating resin was prepared from Na+ Dowex-M4195
chelating resin by using 2 M acetic acid and compared to the Cu(II)-loaded H+ Dowex-
M4195 chelating resin. The characterization of physical and surface chemical properties
before and after ion exchange was performed. The results showed that H+ chelating resin
and Cu(II)-loaded Dowex-M4195 were mainly macroporous in nature, with a surface area
of 26.5060 m2/g and 21.7810 m2/g, respectively. Additionally, H+ chelating resin had a
high carbon content and pore volume while the functional groups showed predominantly
C=O (pyridine rings) stretching vibration groups. On the other hand, Cu(II)-loaded Dowex-
M4195 had a lower carbon content and pore volume than the H+ chelating resin and showed
predominantly N=Cu, N-Cu, N-O or N=O groups, indicating Cu(II)-loaded Dowex-M4195
was effective in ion exchange between copper and resin. The physical morphology showed
that before and after ion exchange, resin had a certain direction of the arrangement of
tiny crystals with a low porosity, lacking a variable pore size distribution. The crystalline
structure of before and after materials indicated a predominantly polymeric structure
in nature. In addition, RSM and model fit for Cu(II) removal onto H+ Dowex-M4195
chelating resin were good, all statistical tools such as R-squared, adjusted R-squared,
predicted R-squared, order polynomial, normal plot of residuals, Cook’s distance, residual
vs. predicted and residual vs. run plots confirmed reasonable agreements of the selected
empirical quadratic model. The optimal condition for Cu(II) removal capacity was achieved
at about 31.33 mg/g, which could be obtained at a Time of 6.96 h, pH of 2, Dose of 124.13 mg
and Conc. of 525.15 mg/L at the desired lowest pH. In conclusion, this study shows that
modified H+ Dowex-M4195 chelating resin can be applied as a precursor for copper-loaded
wastewater and other applications for the engineering process design of divalent metal in
the electronic waste industries.
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