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Abstract: Olefin and diene transformations, catalyzed by organoaluminum-activated metal com-
plexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical
processes. However, the role of M–(µ-Cl)–Al bonding, being proven for certain >C=C< functionaliza-
tion reactions, remains unclear and debated for essentially more important industrial processes such
as oligomerization and polymerization of α-olefins and conjugated dienes. Numerous publications
indirectly point at the significance of M–(µ-Cl)–Al bonding in Ziegler–Natta and related transforma-
tions, but only a few studies contain experimental or at least theoretical evidence of the involvement
of M–(µ-Cl)–Al species into catalytic cycles. In the present review, we have compiled data on the
formation of M–(µ-Cl)–Al complexes (M = Ti, Zr, V, Cr, Ni), their molecular structure, and reactivity
towards olefins and dienes. The possible role of similar complexes in the functionalization, oligomer-
ization and polymerization of α-olefins and dienes is discussed in the present review through the
prism of the further development of Ziegler–Natta processes and beyond.

Keywords: carboalumination; DFT; dienes; hydroalumination; heterobimetallic complexes;
metallocenes; methylenealkanes; olefins; oligomerization; polymerization; polyolefins; single-site
catalysts; Ziegler–Natta catalysts

1. Introduction

In the past few decades, catalytic transformations of olefins and conjugated dienes
have become mainstream processes of the petrochemical industry: polyolefins are major
multi-tonnage plastics [1,2]; polydienes are still indispensable in rubber manufacturing [3,4].
Advanced technologies of polyolefins and diene rubbers are based on the coordination
polymerization of α-olefins, buta-1,3-diene, and isoprene [1,2,4–11]. Selective coordination
di-, tri- and tetramerization of ethylene [12–15] are also industrially important processes.
Coordination oligomerization [16,17], as well as the hydro- and carboalumination [18]
of higher α-olefins, are currently lab-based processes, even though they show strong
industrial prospects.

Supported metal salts (primarily chlorides) or metal complexes as pre-catalysts, and
organoaluminum compounds as co-catalysts, are used in the majority of these processes.
After activation, the reaction mixtures contain metal alkyls and alkylaluminum chlorides.
In coordination polymerization, mechanistic understanding of the reaction mechanism as a
coordination/insertion of α-olefin or diene molecule at the metal–alkyl (or metal–hydride)
center in stable ligand environments is generally accepted [13,16,19–21]. For group 4
metal polymerization catalysts, the conventional Cossee–Arlman mechanism has been ex-
panded by including interactions between the metal center and bulky counterions (XMAO−,
B(C6F5)4

−, anionic supports, etc.) [22–35], and binuclear Zr2 complexes [34,36]; however,
the direct participation of R2AlCl in the formation of catalytic species remains hypothetic,
even with the results of numerous experimental and theoretical studies [37–43]. It is also an
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open question whether M–(µ-Cl)–Al species participate in the coordination polymerization
of 1,3-dienes.

The current view of the problem is presented in Figure 1. Despite the many reviews
on α-olefin and 1,3-diene functionalization, polymerization, and oligomerization, factual
information about the possible role of M–(µ-Cl)–Al bonding is either absent or presented
only fragmentary. In particular, M–(µ-Cl)–Al bonding was mentioned in reviews de-
voted to V-catalyzed olefin polymerization [44] and the Ni-catalyzed oligomerization of
olefins [45,46]. In our recent review [17], we touched upon the possible role of Zr–(µ-Cl)–Al
complexes in the selective dimerization of higher α-olefins, catalyzed by (η5-C5H5)2ZrCl2
(Cp2ZrCl2) and ansa-zirconocene dichlorides in the presence of 1–10 eq. methylalumoxane
(MAO). The formation of Zr–(µ-Cl)–Al species during zirconocene-catalyzed hydro- and
carboalumination of α-olefins is also not in doubt; however, the specific role of M–(µ-Cl)–Al
in other catalytic process remains unclear [18]. To date, the comprehensive mechanistic
concept, which takes into consideration M–(µ-Cl)–Al bonding in reaction intermediates
and transition states of the catalytic process, has only been developed for the Cr-catalyzed
trimerization of ethylene with the use of pyrrole/Cr/Et2AlX (X = Cl, Et) systems [13,47,48].
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In this study, we summarized disparate facts, presented in scientific periodicals, with
the aim of demonstrating the fact that metal complexes, containing M–(µ-Cl)–Al fragments,
are or may be directly involved in olefin and diene transformations as reagents or catalytic
species. The review is divided into sections by the type of metal in the complex core.
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2. Complexes of Ti
2.1. The Tebbe Reagent and Similar Ti Complexes

The Ti–Al heterobimetallic complex of the formula Cp2Ti(µ-Cl)(µ-CH2)AlMe2 (Ti01)
was first synthesized by Tebbe et al. in 1978; the reaction of Cp2TiCl2 with AlMe3 re-
sulted in the formation of Ti01 with 80–90% yields [49]. The synthesis of Ti01 was com-
plicated by side reactions (Scheme 1), making it difficult to isolate the samples suitable
for X-ray diffraction (XRD) analysis, and as a result, the molecular structure of Ti01 was
only determined in 2014 [50] (Figure 2a). The difference between interatomic distances
(d(Ti–CH2) < d(Al–CH2), d(Ti–Cl) > d(Al–Cl)) considers Ti01 as a complex of Cp2Ti=CH2
and Me2AlCl. In this way, in Ti01, Me2AlCl serves as a stabilizing agent for the Ti(IV)
carbene complex, that can be removed by Lewis base.
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A structural analog of the Tebbe reagent, Ti02, was synthesized by the reaction of
the N1,N1,N2,N2-tetramethylethane-1,2-diamine (TMEDA) complex (TMEDA)TiCl3(THF)
with [(TMEDA)ZnI]2CH2 [51]. Analysis of the molecular structure of Ti02 (Figure 2b)
showed that the value of d(Ti–CH2) does not differ from that in Ti01. Notably, a series of
chlorine-free analogs of Tebbe reagent was described in [52].

Close structural analogs of Ti01 were synthesized by the reactions of (η5-C5H4Me)CpTiClMe
and (η5-1,2,4-C5H2Me3)CpTiClMe with Me3Al (Scheme 2, complexes Ti03 and Ti04, re-
spectively) or by the interaction of (η5-C5H4Cl)CpTiCl2 with Me3Al (Scheme 2, complex
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Ti05) [53]. Treatment of Cp2TiCl(CH=CHMe) with iBu2AlH resulted in the formation
of complex Cp2Ti(µ-Cl)(µ-CHEt)AliBu2 [54]; the product was not isolated, but has been
identified by NMR spectroscopy. The attempt of Halterman and Ramsey to synthesize
the chiral Tebbe reagent from 1,1’-binaphthyl-bridged bis(η5-tetrahydroinden-2-yl) Ti(IV)
dichloride failed [55].
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Scheme 2. Synthesis of ring-substituted analogs of the Tebbe reagent [53].

Ti01 has found its main applications for carbonyl methylenation similarly to phospho-
nium ylides in the Wittig reaction [52]. The reactions of Ti01 with carbonyl compounds are
rapid and selective, even in the presence of other reactive groups (for example, –COOR [56],
–C=NOR [57]), but this subject is beyond the scope of our review. However, α-olefins
can react with Ti01: as shown by Grubbs et al., this reaction resulted in the formation
of titanacyclobutanes, and allenes formed titanacyclobutanes with exocyclic C=C bonds
(Scheme 3a) [58–60]. Titanacyclobutanes are reactive towards α-olefins, as demonstrated
by Grubbs et al.; this reversible process proceeds through the formation of Cp2Ti=CH2 [61]
(Scheme 3b). Ti–Al complexes Ti03–Ti05 reacted with tBuCH=CH2 similarly, with a forma-
tion of the mixtures of isomeric titanacyclobutanes [53].
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A degenerate metathesis reaction between titanium methylidene unveiled from
Ti01 and unactivated alkenes, followed by acid hydrolysis, was recently proposed
by Frederich et al. [62] as a direct method for the Markovnikov hydromethylation of
alkenes (Scheme 4). The reaction is site-specific; the reactivity of olefins decreases in
the order α-olefins > methylenealkanes > trisubstituted alkenes.
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2.2. Single-Site Ti Catalysts of the Polymerization and Oligomerization of α-Olefins

In early experiments on the single-site polymerization of ethylene, conducted by
Shilov’s group, the occurrence of cationic species during the reaction of Cp2TiCl2 with
Et2AlCl was regarded as an experimental criterion of the rapid catalytic process [63,64].
In the opinion of Shilov, after the intermediate formation of complex Cp2TiClEt·EtAlCl2,
partial dissociation of the complex occurs, and Cp2TiEt+ is active in polymerization. For the
most part, this view has not fundamentally changed in terms of the reaction mechanism,
and for sandwich and half-sandwich complexes of Ti(IV), the polymerization of α-olefins
includes stages of π-coordination of alkene at the Ti–Alkyl cation and insertion of the alkene
via the four-membered Cossee–Arlman transition state. Possible termination events for the
growing polyolefin chain are β-hydride transfer to monomer, β-hydride elimination, and
Ti→ Al alkyl transfer (Scheme 5) [65,66]. The main problems arising during the use of Ti(IV)
sandwich complexes derive from side reactions that deactivate the active titanocene catalyst
via reduction of the Ti(IV) cationic center [65]. Stabilization of the active Ti(IV) species was
achieved via ligand design, with the development of half-sandwich constrained-geometry
complexes (CGCs) [67–70] and different Ti(IV)-based post-metallocene catalysts [5,71].
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In the following model experiments on activation of Ti(IV) chloro complexes by alu-
minum alkyls, Ti–(µ-Cl)–Al-containing products were detected by ESR and electronic
absorption spectroscopy. Thus, in the 1980s, Mach’s group studied the formation and
relative stability of Ti–Al half-sandwich complexes with the formula CpTiAl2Cl8–xEtx
and (η6-C6H6)TiAl2Cl8–xEtx, and demonstrated their reduced stability by increasing the num-
ber of Et fragments, x [72,73]. In 2004, Bonoldi et al. studied the activation of CpTiCl3 and
(η5-C5Me5)TiCl3 (Cp*TiCl3) by different aluminum alkyls, MAO and AlMe3/[CPh3][B(C6F5)4] [74].
ESR spectral studies have shown that during the reaction of LTiCl3 with Me3Al at an Al/Ti
ratio of 10:1, after 3 h, Ti(III) complexes are formed with 12% and 8% yields, respectively.
This was explained by the more electron-rich nature of Cp* in comparison with Cp, which
hindered an increase in the electron density by reduction (Ti(IV) + e− → Ti(III)). In the
presence of MAO, complex Ti06 was formed (Scheme 6). This complex demonstrated
moderate catalytic activity in the polymerization of styrene, although it is the cationic
complex Ti07 that was considered as an active polymerization catalyst.
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The hypothesis of the coordination of R2AlCl (Scheme 7a) with the possibility of the
partial ionization of the active center, followed by the coordination/insertion of ethylene,
was put forward by Jensen et al. in 1994 [75]. This hypothesis was based on the assumption
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that single-site Ziegler–Natta catalysts, obtained by the reaction of TiCl4 with AlR3, contain
active Ti(IV) species. Quantum chemical optimization of the model complex MeCl2Ti(µ-
Cl)2AlH2·CH2=CH2 at the DFTG level showed weak coordination of the ethylene molecule
(d(Ti–C) > 3 Å) [76]; no stationary point due to the π-coordination of ethylene was found
for this system. Similar results were obtained by the same research group during more
thorough theoretical studies [77]; however, the authors have not abandoned the idea of
the direct participation of Ti–(µ-Cl)–Al species in the catalytic process. Notably, one year
earlier, Sakai reported the results of ab initio studies of the formation and further trans-
formations of exactly the same molecule, MeCl2Ti(µ-Cl)2AlH2·CH2=CH2, in comparison
with the MeTiCl3/CH2=CH2 system [78]. First, Sakai was able to find the local minima
corresponding to π-complex MeCl2Ti(µ-Cl)2AlH2·CH2=CH2 (Scheme 7b). Second, even
more interestingly, no stationary point was found for π-complex MeTiCl3·CH2=CH2, and
the activation energy barrier of ethylene insertion for the MeTiCl3/CH2=CH2 system was
20.5 kcal·mol−1 higher than that for MeCl2Ti(µ-Cl)2AlH2·CH2=CH2. Sakai explained it
in this way: in the rate-limiting transition state of the ethylene insertion, the π-electrons
in ethylene move to the Ti–C(ethylene) region to form the new Ti–C bond. The electrons,
belonging to the Ti–C(methyl) bond, move to the C–C (methyl–ethylene) region to form a
new C–C bond (push-pull mechanism, black arrows). In the Ti–(µ-Cl)2–Al complex, the
Ti–Cl2 bond, opposite to the ethylene coordination side for the Ti center, increases in length
with electron transfer to the Cl2 atom along the reaction pathway (red arrow in Scheme 7b).
The original π-electrons move to the new Ti–C bond region (opposite to the Ti–Cl2 bond)
easily (red arrow), this process is similar to SN2 reaction. At the same viewpoints, the
Ti–Cl1 bond, opposite to Ti–C(methyl), decreases in length, and the electrons move from
Cl1 to Ti and from Ti–C(methyl) bond to C(methyl) (blue arrows). Therefore, the Al–Cl (or
Ti–Cl) bonds switching mechanism facilitates the push–pull mechanism of the insertion.
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Scheme 7. (a) Suggested scheme for partial ionization of the active center through action of the
aluminum cocatalyst [75]; the authors proposed that after the cleavage of one of the Ti–Cl–Al bonds,
the vacated position due to partial ionization is occupied through the coordination of ethylene; (b) ab
initio modeling [78] showed that Ti–(µ-Cl)2–Al bonding is retained in the rate-limited transition state,
and facilitates the insertion.

It can be assumed that similar single-site catalytic species are formed when using
TiCl4/AlCl3 on a SiO2 support, activated by Et2AlCl [79,80]. This catalyst was studied in
the oligomerization of dec-1-ene, which resulted in the preferential formation of trimers (by
wt.%). The authors did not discuss the nature of the catalytic species (including oxidation
state of Ti), confining themselves to the analysis of oligomer’s microstructure. However,
studies of the impact of AlCl3/Ti ratio on catalytic activity and oligomer distribution have
shown the presence of an optimum, suggesting Ti–(µ-Cl)–Al contacts. Note that dec-1-ene
oligomers, obtained with the use of this Ti/Al catalytic system, were regioirregular and
contained nonnegligible proportion of tail-to-tail and head-to-head monomer units, dif-
fering from structurally homogeneous products of zirconocene-catalyzed oligomerization
(see Section 3.2). This fact, and uniform molecular weight distribution (MWD) of the
oligomer mixtures, suggest this Ti/Al catalyst to be qualitatively distinct from conventional
heterogeneous Ziegler–Natta catalysts (see Section 2.4).

The results of Jensen et al. [75] were augmented with the studies of Ti ether complexes
by Bulychev’s group [81]. Here, it has clearly been established that in the presence of ethers,
R2AlCl reduces Ti(IV) to Ti(III). A conventional activator of single-site polymerization
catalysts, MAO, was completely inactive towards Ti(III) etherates. In contrast, when using
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Et2AlCl or 3:1 Et2AlCl/Bu2Mg mixture as activators, the ionic complex of Ti(III) [(15-Crown-
5)TiCl2]+[AlCl4]− (Ti08) demonstrated moderate activity in ethylene polymerization. The
catalytic activity of Ti08 decreases with the increasing Al/Ti ratio; therefore, it can be
assumed that only partial alkylation of the Ti–Cl bonds occurs. However, there was no
experimental proof of Ti–(µ-Cl)–Al bonding in catalytic species discussed in [81].

There are limited studies devoted to the participation of Ti–(µ-Cl)–Al complexes
with proven structure in catalytic polymerization and oligomerization of α-olefins. In
2012, Duchateau et al. reported the synthesis, structural characterization, and ethy-
lene polymerization performance of heterobimetallic Ti–Al–pyrrolyl complexes (η5-2,5-
Me2C4H2NAlCl2Me)TiCl2Me (Ti09), (η5-2,3-Me2C8H4NAlCl2Me)TiCl2Me (Ti10), and (η5-
3,4,5,6-C12H12NAlCl2Me)TiClMe2 (Ti11) [82]. These complexes were obtained by the
treatment of TiCl4 with equimolar amounts of Me3Al and the corresponding pyrrole
ligands (Scheme 8).
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tra-high-molecular weight polyethylene (UHMWPE, Mw = 2300 kDa, ĐM= 2.5). When Ti09 
was activated with [Ph3C]+[B(C6F5)4]− and TIBA (50 eq.) at 30 °C, bimodal distribution of the 
polymer was detected, indicating the formation of two distinct active species. A similar bi-
modal distribution and significant reduction in Mn were observed when MAO-activated 
polymerization was carried out at 60 °C. MAO-activated Ti–Al complexes Ti10 and Ti11 
displayed higher catalytic activity compared with Ti09, and also produced UHMWPE. 
Complex Ti10 showed the same bimodal behavior when activated with [Ph3C]+[B(C6F5)4]− 
and TIBA. 

To clarify polymerization mechanism, the reaction of Ti09 with B(C6F5)3 was inves-
tigated to determine which of the methyl groups (Ti–Me or Al–Me) would be abstracted. 
The 1H NMR spectrum clearly showed that B(C6F5)3 selectively abstracts Al–Me group 

Scheme 8. Synthesis of Ti(IV)–Al–pyrrolyl complexes Ti09–Ti11 [82].

Molecular structures of Ti09–Ti11 were determined by XRD analysis (Figure 3). All
molecules exhibited a distorted tetrahedral piano stool configuration. The Ti(1)–CENpyrrole
bond distances (CENpyrrole is a centroid of the pyrrole ring) are identical in Ti09 and Ti10
(d(Ti(1)–CEN = 2.062 Å), but are slightly shorter than the Ti(1)–CENpyrrole bond distance
in Ti11 (d(Ti(1)–CEN = 2.088 Å). Although formally Ti09–Ti11 were assigned to η5-type
complexes, in Ti10 and Ti11, titanium has a stronger interaction with the N atom, resulting
in an η4,κ-bonding mode for Al–indolyl and Al–carbazolyl ligands.
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with permission from [82]. Copyright (2012) American Chemical Society.

Upon activation with MAO at 30 ◦C, Ti09 produces a single-site catalyst affording ultra-
high-molecular weight polyethylene (UHMWPE, Mw = 2300 kDa, ÐM= 2.5). When Ti09
was activated with [Ph3C]+[B(C6F5)4]− and TIBA (50 eq.) at 30 ◦C, bimodal distribution of
the polymer was detected, indicating the formation of two distinct active species. A similar
bimodal distribution and significant reduction in Mn were observed when MAO-activated
polymerization was carried out at 60 ◦C. MAO-activated Ti–Al complexes Ti10 and Ti11
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displayed higher catalytic activity compared with Ti09, and also produced UHMWPE.
Complex Ti10 showed the same bimodal behavior when activated with [Ph3C]+[B(C6F5)4]−

and TIBA.
To clarify polymerization mechanism, the reaction of Ti09 with B(C6F5)3 was investi-

gated to determine which of the methyl groups (Ti–Me or Al–Me) would be abstracted. The
1H NMR spectrum clearly showed that B(C6F5)3 selectively abstracts Al–Me group with
the formation of a cationic complex Ti09′, containing a Ti–(µ-Cl)–Al fragment (Scheme 9).
The ability of the supposed cationic species Ti09′ to polymerize ethylene was tested by
treating Ti09 with B(C6F5)3 under ethylene pressure (20 bar) at room temperature, and the
rapid formation of polyethylene was detected.

Molecules 2022, 27, 7164 9 of 63 
 

 

with the formation of a cationic complex Ti09′, containing a Ti–(μ-Cl)–Al fragment 
(Scheme 9). The ability of the supposed cationic species Ti09′ to polymerize ethylene was 
tested by treating Ti09 with B(C6F5)3 under ethylene pressure (20 bar) at room tempera-
ture, and the rapid formation of polyethylene was detected. 

 
Scheme 9. Proposed pathways of the activation of Ti09 by B(C6F5)3 [82]. 

DFT optimization of the putative structures of the cationic species and their ethylene 
adduct showed that a constrained type of geometry with the Ti–(μ-Cl)–Al fragment is the 
most stable configuration for Ti09′. This saturated complex Ti09′ should not be an active 
catalyst; either release of the bridged Cl (Type A structure in Scheme 9) or η5→μ ring 
slippage of the pyrrole moiety (Type B structure in Scheme 9) may result in a coordina-
tively unsaturated complex to coordinate and polymerize ethylene. The DFT calculations 
showed that the formation of a Type A complex requires 12.2 kcal·mol−1, and no local 
minima were found for the Type B product of η5→μ ring slippage.  

In this way, intramolecular Ti–(μ-Cl)–Al bonding has a strong impact on the cata-
lytic behavior of Ti complex. The other extreme is weak Ti…Cl–Al coordination; de Bruin 
et al. [83] carried out a computational study of the influence of ‘chlorinated’ MAO anions 
on the catalytic behavior of complex Ti12 which represents an efficient pre-catalyst of the 
selective trimerization of ethylene with the formation of hex-1-ene [14,15,84]. The key 
intermediates of the reaction are presented in Scheme 10, although the energetically un-
favorable process of but-1-ene elimination from intermediate M2 (see below) is not 
shown. 
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DFT optimization of the putative structures of the cationic species and their ethylene
adduct showed that a constrained type of geometry with the Ti–(µ-Cl)–Al fragment is the
most stable configuration for Ti09′. This saturated complex Ti09′ should not be an active
catalyst; either release of the bridged Cl (Type A structure in Scheme 9) or η5→µ ring
slippage of the pyrrole moiety (Type B structure in Scheme 9) may result in a coordinatively
unsaturated complex to coordinate and polymerize ethylene. The DFT calculations showed
that the formation of a Type A complex requires 12.2 kcal·mol−1, and no local minima were
found for the Type B product of η5→µ ring slippage.

In this way, intramolecular Ti–(µ-Cl)–Al bonding has a strong impact on the catalytic
behavior of Ti complex. The other extreme is weak Ti· · ·Cl–Al coordination; de Bruin et al. [83]
carried out a computational study of the influence of ‘chlorinated’ MAO anions on the
catalytic behavior of complex Ti12 which represents an efficient pre-catalyst of the selective
trimerization of ethylene with the formation of hex-1-ene [14,15,84]. The key intermediates
of the reaction are presented in Scheme 10, although the energetically unfavorable process
of but-1-ene elimination from intermediate M2 (see below) is not shown.
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of MAO model does not necessarily need to be taken into account, and the cationic sys-
tem alone is sufficiently representative. 

Scheme 10. Reaction pathway for the oligomerization of ethylene, catalyzed by Ti12/MAO [83].

For DFT calculations, one of many possible MAO structures [85,86] was selected,
namely, the cage (MeAlO)6Cl− model (Figure 4a), negatively charged due to the coordi-
nation of one Cl−, abstracted from Ti12 during activation. Two different potential free
energy reaction profiles have been modeled (Figure 4b): the first only takes into account
the cationic catalyst (cationic profile), whereas the second describes the energy changes
in the presence of a chlorinated MAO (zwitterionic profile). The reaction starts with
the activated catalyst M1 (two ethylene molecules coordinated to the cationic Ti(II) cen-
ter). After oxidative coupling (M2), a third ethylene molecule coordinates and inserts
with a formation of the seven-membered metallacycle (M3). This species can undergo
a β-hydride transfer followed by reductive elimination (M4A), which, in turn, releases
hex-1-ene. Alternatively, a fourth ethylene may coordinate to M3 and insert to yield a
nine-membered metallacycle M4B. This latter species can then undergo a ring-opening
reaction to yield 1-octene (M5A), or a fifth ethylene coordination and insertion can take
place. The calculated barrier for β-hydride elimination in M2 (but-1-ene formation) was
~35 kcal·mol−1. Based on a comparison of cationic and zwitterionic profiles, it can be
concluded that the presence of (MeAlO)6Cl− does not impact the selectivity of ethylene
oligomerization. Based on the results of modeling, the authors concluded that the presence
of MAO model does not necessarily need to be taken into account, and the cationic system
alone is sufficiently representative.
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2.3. Single-Site Ti Catalysts of Polymerization of Dienes 

Figure 4. (a) B3LYP-optimized configuration of the [MAO-Cl]− anion; (b) comparative reaction profile
over the potential energy surface for a cationic (gray) and zwitterionic (black) catalyst. The solid line
indicates the main path; the dotted line indicates the less favorable alternative path. Reprinted with
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As reported by Blakemore et al., the reaction of the Ti(IV) complex (η6-C9H7)TiCl2(N=PtBu3)
with Et3Al resulted in the formation of Ti(III)-Al complex Ti13 [87]. The molecular structure of
Ti13 is presented in Figure 5a. Both complexes catalyzed the polymerization of ethylene be-
ing activated by Et3Al in the presence of a solid superacid. During subsequent research [88],
the complexes Ti14 and Ti15 of the formula (η6-C9H7)Ti (N=PtBu3)(µ-Cl)2AlR2 (R = Me
and iBu, respectively) were obtained, and the molecular structure of Ti15 (Figure 5b) was
virtually identical to the molecular structure of Ti13. However, in experiments on the
polymerization of ethylene, catalytic activities of the complexes decreased in the order
Ti15 > Ti13 > Ti14. In this way, the nature of the substituents at Al atoms influenced the
catalyst’s properties, thus indirectly confirming the presence of Ti–(µ-Cl)–Al bonding in
catalytic species.
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2.3. Single-Site Ti Catalysts of Polymerization of Dienes

Ti(IV) halogenides, activated by aluminum alkyls, represent the first-generation cata-
lysts of coordination polymerization of 1,3-dienes [8,89]. However, despite half a century
of research, molecular structure of the catalytic species, formed as a result of the reaction
of LTiCln with RmAlCl3–m, is not entirely clear. In examining the reaction mechanisms of
diene polymerization, the ‘pure’ cationic concept is still actual [90].

The participation of Ti–(µ-Cl)–Al species in the coordination polymerization of conju-
gated dienes was proposed by Mach et al., who studied the catalytic activity of η6-arene
Ti complexes with AlCl3 and alkylaluminum chlorides [91–93]. Similar complexes of (η6-
C6H6)Ti[(µ-Cl)2AlCl2]2 (Ti16) and (η6-C6Me6)Ti[(µ-Cl)2AlCl2]2 (Ti17) were obtained and
structurally characterized in the late 1970s and early 1980s by Thewalt et al. [94,95]. The
molecules of Ti16 and Ti17 exhibit square pyramidal geometry, with the titanium atom
above the rectangle of the bridging Cl atoms and with the π-bonded arene at the apex.
When Ti16 was used as a single-component catalyst of the oligomerization of buta-1,3-diene,
(1Z,5E,9E)-cyclododeca-1,5,9-triene was formed with 92% selectivity (Scheme 11) [91]. The
authors assumed that the high stereospecificity of the cyclotrimerization indicates that the
reaction proceeds by a sterically controlled coordination mechanism. The experimental
results, i.e., the approximate second-order dependence of the reaction rate on buta-1,3-
diene concentration, the low concentrations of all the intermediates participating in the
catalytic steps and no interaction between the catalyst and final product, suggest that
cyclotrimerization may proceed via the replacement of C6H6 by two molecules of buta-1,3-
diene, followed by the formation of the active species Ti16′ (Scheme 11). In the presence
of EtAlCl2, Et2AlCl, and Et3Al, catalytic activity of complex Ti16 increased due to the
substitution of non-bridged Cl atoms by Et groups [92]. In the presence of a large excess of
Et3Al, complete deactivation of the catalyst was observed. Complex Ti17 demonstrated
low activity due to higher stability of the (η6-C6Me6)–Ti bond in comparison with the
(η6-C6H6)–Ti bond [93]. However, the substitution of non-bridged Cl atoms by Et groups
proceeded stepwise with maximum preservation of the molecular symmetry—by an ex-
ample of the complex (η6-C6Me6)Ti[(µ-Cl)2AlClEt]2 (Ti17′), for which XRD analysis was
performed. This substitution resulted in a manyfold increase in the catalytic activity [93].
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Scheme 11. Selective cyclotrimerization of buta-1,3-diene, catalyzed by Ti16, and tentative structure
of the intermediate Ti16′ [91].

In conclusion, we note that Ti complexes are not actually considered as prospective
catalysts of the polymerization of conjugated dienes, and further comprehensive studies of
the reaction mechanism seem unlikely.

2.4. Heterogeneous Ti Ziegler–Natta Catalysts

The TiCl3/R3Al system, called the ‘1st generation Ziegler–Natta catalyst’, was one
of the early efficient catalysts of α-olefin polymerization [96]. It is for these catalysts that
the common mechanism of the coordination polymerization of α-olefins was proposed
by Cossee and Arlman [97,98]. This conventional mechanism (Scheme 12) involves the
participation of Ti(III)–Alkyl species and is similar to the mechanism presented in Scheme 5,
except that the Ti atom has zero charge and an oxidation state of +3.
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In approaching the topic of modern and efficient Ziegler–Natta (ZN) catalysts, tributes
should be paid to the work of Rodriguez and van Looy, who formulated heterobimetallic
concepts of the reaction mechanism to explain the impact of alkylating agents on stere-
ospecificity of TiCl3 catalyst. This concept was based on an assumption of the presence of
Ti centers with two potential vacancies on the Ti atom at the surface of TiCl3 (coordination
number of the Ti atom CNTi is equal to 4) [99]. According to this concept (Scheme 13),
after alkylation by R3Al, a Ti–(µ-Cl)–Al complex is formed (CNTi = 5). π-Coordination and
subsequent insertion of the α-olefin molecule results in an alkyl complex, which further iso-
merizes with occupation of the position previously occupied by the R group, thus forming
the isotactic polyolefin.
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It has been nearly 70 years since the pioneering works of Ziegler and Natta [100,101],
and there have been several generations of ZN catalysts. At present, the polymeriza-
tion of α-olefins with the use of heterogeneous Ti-based MgCl2-supported Ziegler–Natta
catalysts (TMCs) is the most important industrial chemical process in the polyolefin
industry [102–108]. However, despite the importance and impact of TMCs, these cata-
lyst systems have not yet been completely explored. TMCs comprise the MgCl2 support,
the active Ti(III) [11,109,110], and Ti(II) [11,111] species; organoaluminum species formed
from trialkylaluminum alkylating agent R3Al, and Lewis base donors. Due to the practical
importance of TMCs, thus far, thousands of articles and dozens of reviews have been
published; in this section, we restrict ourselves to listing several examples of the possible or
proven (very rarely) participation of R2AlCl species in TMC-catalyzed polymerization.

Catalytic processes occur on the TMC surface. Pre-catalysts represent TiCl4 adsorbed
on MgCl2 crystallites, and the binding strength and coordination environment of the
Ti atom depend on the crystal structure of the MgCl2 support. In their fundamental
study [110], Cavallo et al. assumed the MgCl2 bulk to be in the α-crystalline phase with
the surface comprising (104) lateral cuts (Figure 6a) that have five-coordinate magnesium
centers. The removal of one MgCl2 unit results in a new (110) surface that can coordinate
the titanium species (Figure 6b). Vanka et al. proposed the simpler model structure of the
MgCl2 support, close in meaning to Cavallo’s model [102] (Figure 6c). In their subsequent
publication, Cavallo et al. upgraded their MgCl2 model by (104)-facets presenting low-
energy step-defects as potential sites for the strong coordination of TiCl4 [103].



Molecules 2022, 27, 7164 14 of 62Molecules 2022, 27, 7164 14 of 63 
 

 

 
Figure 6. (a,b) The model for the MgCl2 layers developed by Cavallo et al. [110]; (c) the modified 
MgCl2 model with four layers instead of six employed in [102]. Reprinted with permission from 
[102]. Copyright (2014) Wiley-VCH Verlag GmbH & Co. 

After the absorption of TiCl4, followed by the reaction with R3Al, Ti(III)–Cl and 
Ti(III)–R species are formed [102]. Recent experimental DR UV/vis and NEXAFS data 
coupled with DFT simulation indicated that the majority of Ti sites in MgCl2/TiCl4 and 
MgCl2/ethyl benzoate/TiCl4 pre-catalysts are reduced by Et3Al mostly to monomeric 
pentacoordinated Ti(III) Cl5 species and, to a minor extent, to alkylated Ti(III) Cl4Et spe-
cies. For MgCl2/dibutyl phthalate/TiCl4 pre-catalyst, Et3Al additionally promoted the 
formation of small TiCl3 clusters with low catalytic activity [112]. 

The above-mentioned articles considered two-component systems MgCl2/TiCl3, but 
their results are relevant to the subject of our review, determining Ti-containing species 
capable of Ti–(μ-Cl)–Al bonding. However, real TMCs may contain absorbed or-
ganoaluminum species. During the study of the activation of the TiCl4/MgCl2 pre-catalyst 
by Et3Cl, Oct3Al, and Et2AlCl with the use of magic-angle spinning (MAS) 27Al NMR 
[113], Potapov et al. detected three types of alkylaluminum chloride species. The changes 
in 27Al NMR MAS spectra of the TMC before and after polymerization indicated that part 
of the Al compounds was removed from the catalyst surface or that the coordination en-
vironments of Al in these compounds became disordered. In the authors’ view, the ex-
istence of Al compounds unremovable from the catalysts surface indicates the presence 
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After the absorption of TiCl4, followed by the reaction with R3Al, Ti(III)–Cl and
Ti(III)–R species are formed [102]. Recent experimental DR UV/vis and NEXAFS data
coupled with DFT simulation indicated that the majority of Ti sites in MgCl2/TiCl4 and
MgCl2/ethyl benzoate/TiCl4 pre-catalysts are reduced by Et3Al mostly to monomeric pen-
tacoordinated Ti(III) Cl5 species and, to a minor extent, to alkylated Ti(III) Cl4Et species. For
MgCl2/dibutyl phthalate/TiCl4 pre-catalyst, Et3Al additionally promoted the formation of
small TiCl3 clusters with low catalytic activity [112].

The above-mentioned articles considered two-component systems MgCl2/TiCl3, but
their results are relevant to the subject of our review, determining Ti-containing species
capable of Ti–(µ-Cl)–Al bonding. However, real TMCs may contain absorbed organoa-
luminum species. During the study of the activation of the TiCl4/MgCl2 pre-catalyst by
Et3Cl, Oct3Al, and Et2AlCl with the use of magic-angle spinning (MAS) 27Al NMR [113],
Potapov et al. detected three types of alkylaluminum chloride species. The changes in 27Al
NMR MAS spectra of the TMC before and after polymerization indicated that part of the Al
compounds was removed from the catalyst surface or that the coordination environments
of Al in these compounds became disordered. In the authors’ view, the existence of Al
compounds unremovable from the catalysts surface indicates the presence of inactive
Ti–(µ-Cl)–Al species; in other words, R2AlCl only acts as a catalyst inhibitor.

The same or a similar point of view received further development in a number of
studies. In their theoretical study of the active sites in TMC [102], Vanka et al. used a
simplified model of the MgCl2 surface (Figure 6c) and optimized the geometries of dif-
ferent TI(III)–Et catalytic species that are formed during the polymerization of ethylene,
including the presence of the EtO− ligand, ester donors, or Et2AlCl. In the absence of
additives, the calculated difference in free activation energies ∆G 6= for the propagation
and termination stages was only 1.2 kcal·mol−1. In the presence of esters, the difference
increased to 12–13 kcal·mol−1 and was only 3 kcal·mol−1 when Et2AlCl served as a donor.
In the latter case, Ti–(µ-Cl)–Al coordination resulted in a substantial increase in the ∆G 6= of
ethylene insertion (15.8 kcal·mol−1, see Figure 7). The results of this simulation explained
how polymers can be successfully produced by TMCs without alkoxy groups and donor
molecules [106]. In summary, the authors suggested that the possible role of organoalu-
minum activators is not limited by the reduction of Ti(IV); R2AlCl can act as a donor due to
its relatively weak Ti–(µ-Cl)–Al binding.
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Figure 7. The free energy profile for the insertion of ethylene into the Ti–CH2CH3 chain with an
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American Chemical Society.

In 2017, Linnolahti et al. reported the first quantum chemical description of the initial steps
of olefin polymerization on TMCs involving all the relevant catalyst components—absorbed Ti
chlorides, electron donor, and R3Al [114]. They demonstrated that TiCl4 is coordinated on
the (104) surface of MgCl2 as a binuclear Ti2Cl8 and on the (110) surface as a mononuclear
TiCl4 (CNTi = 6 for both binding modes). Et3Al coordinates to the MgCl2 surface via an
unsaturated Cl atom to initiate Ti alkylation. After alkylation via the Ti–(µ-Cl)–Al transition
state on the (104) surface, Et2AlCl is released from the MgCl2 surface and dimerizes
(exergonic process). However, in the presence of dimethyl phthalate as a model donor
molecule at the (110) surface, the formation of Ti–(µ-Cl)2–Al and then Ti–(µ-Cl)(µ-Et)–Al
species becomes energetically favorable (Figure 8). However, even in this case, the process
is finished by Et2AlCl desorption. However, DFT modeling, presented in [114], closes by
examining alkylation stage with a formation of Ti(IV)–Et species, the further reduction
with a formation of active Ti(III) centers, as well as ability of these centers to conduct
Ti–(µ-Cl)–Al bonding, remains open.
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eling, presented in [114], closes by examining alkylation stage with a formation of Ti(IV)–
Et species, the further reduction with a formation of active Ti(III) centers, as well as abil-
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A recent study by Boisson [115] provided answers to certain questions about the role
of organoaluminum activators in TMC-catalyzed polymerization. Based on the results of
the study of the microstructure and MWD of polyethylenes, the authors suggested that
Ti–(µ-Cl)–Al bonding may need to be considered in addressing the issue of the nature of
ZN catalysts.

In [116], Busico’s group reported the results of an extensive experimental and the-
oretical investigation of the latest-generation commercial TMC. During this study, the
researchers proposed a new function of R2AlCl species, namely, interactions with absorbed
internal donors that provide a higher degree of stereocontrol: for the insertion of prop-1-
ene at the catalytic species formed by alkylation and reduction of the TiCl4 precursors in
panels (a) and (b) of Figure 9, the calculated ∆Gre/si values were ≈0 and 1.5 kcal·mol−1,
respectively; the latter was in good agreement with the experimental data.

Molecules 2022, 27, 7164 16 of 63 
 

 

eling, presented in [114], closes by examining alkylation stage with a formation of Ti(IV)–
Et species, the further reduction with a formation of active Ti(III) centers, as well as abil-
ity of these centers to conduct Ti–(μ-Cl)–Al bonding, remains open. 

 
Figure 8. Optimized geometries of Ti–(μ-Cl)2–Al and Ti–(μ-Cl)(μ-Et)–Al species formed during the 
alkylation of Ti chloride at the (110) surface of MgCl2. Reprinted with permission from [114]. Cop-
yright (2017) Elsevier B.V. 

A recent study by Boisson [115] provided answers to certain questions about the role 
of organoaluminum activators in TMC-catalyzed polymerization. Based on the results of 
the study of the microstructure and MWD of polyethylenes, the authors suggested that 
Ti–(μ-Cl)–Al bonding may need to be considered in addressing the issue of the nature of 
ZN catalysts. 

In [116], Busico’s group reported the results of an extensive experimental and theo-
retical investigation of the latest-generation commercial TMC. During this study, the re-
searchers proposed a new function of R2AlCl species, namely, interactions with absorbed 
internal donors that provide a higher degree of stereocontrol: for the insertion of 
prop-1-ene at the catalytic species formed by alkylation and reduction of the TiCl4 pre-
cursors in panels (a) and (b) of Figure 9, the calculated ΔGre/si values were ≈0 and 1.5 
kcalmol−1, respectively; the latter was in good agreement with the experimental data. 

 
Figure 9. (a) DFT model of adjacent TiCl4 and 2,2-diisobutyl-1,3-dimethoxypropane co-adsorption 
on a MgCl2(110) edge; (b) same as panel a after the adsorption of an AlEt2Cl molecule. Reprinted 
with permission from [116]. Copyright (2017) American Chemical Society. 

At the end of this section, it is appropriate to mention the most recent studies by Bah-
ri-Laleh’s group [117,118]. In [117], ethylene coordination/insertion at different TiEt and TiEt–
(μ-Cl)2–Al sites (Figure 10a–d) was modeled. Ethylene coordination at the Ti center on the 
(110) surface was thermodynamically more favored in comparison with it on the (104) sur-
face due to the more acidic nature of 4-coordinated surface Mg atoms in (110). 
π-complexation of the ethylene molecule was more exergonic in Al-doped catalysts. The ac-
tivation energy values for the insertion of ethylene molecule were 8.3 (a), 11.6 (b), 6.1 (c), and 
9.5 (d) kcal·mol−1. In this way, Al-doping increased the energy barrier needed for olefin inser-
tion. In addition, the authors proposed that absorption of the Ti chloride at the (104) surface 
should not be ignored when analyzing distribution of the active sites, which is in contrast to 
the established paradigm. However, because TMCs represent a very striking example of the 
‘catalytic black box’, any substantial expansions of the existing worldview can only be wel-
comed. 

Figure 9. (a) DFT model of adjacent TiCl4 and 2,2-diisobutyl-1,3-dimethoxypropane co-adsorption
on a MgCl2(110) edge; (b) same as panel a after the adsorption of an AlEt2Cl molecule. Reprinted
with permission from [116]. Copyright (2017) American Chemical Society.

At the end of this section, it is appropriate to mention the most recent studies by
Bahri-Laleh’s group [117,118]. In [117], ethylene coordination/insertion at different TiEt
and TiEt–(µ-Cl)2–Al sites (Figure 10a–d) was modeled. Ethylene coordination at the Ti
center on the (110) surface was thermodynamically more favored in comparison with it
on the (104) surface due to the more acidic nature of 4-coordinated surface Mg atoms in
(110). π-complexation of the ethylene molecule was more exergonic in Al-doped catalysts.
The activation energy values for the insertion of ethylene molecule were 8.3 (a), 11.6 (b),
6.1 (c), and 9.5 (d) kcal·mol−1. In this way, Al-doping increased the energy barrier needed
for olefin insertion. In addition, the authors proposed that absorption of the Ti chloride
at the (104) surface should not be ignored when analyzing distribution of the active sites,
which is in contrast to the established paradigm. However, because TMCs represent a very
striking example of the ‘catalytic black box’, any substantial expansions of the existing
worldview can only be welcomed.
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In [118], the catalytic activity of TMCs when using different organoaluminum activa-
tors (Et3Al, Et2AlCl, EtAlCl2, and iBu3Al) was studied experimentally, and the effect of
Ti–(µ-Cl)–Al bonding on catalytic activity was evaluated theoretically for Ti centers at the
(110) MgCl2 surface and these four organoaluminum compounds. From the results of the
modeling, Et2AlCl was the best Al component among others.

Concluding this section of the review, we have to note that, with the sole exception
of complexes Ti09–Ti11 [82], the question of the participation of Ti–(µ-Cl)–Al species in
catalytic transformations of α-olefins still has no clear answer. Irrelevance of this question
to Ti-based post-metallocenes (too high CNTi) and fundamental unknowability of the
TMC (the most important Ti-based catalyst) leave room for speculations, not complete
answers. However, in the field of Zr-based polymerization catalysts we are facing a slightly
better situation.

3. Complexes of Zr

Zirconocenes have a special place among Zr-based catalysts used in α-olefin chemistry.
The hydro- and carboalumination of α-olefins [18], single-site polymerization with the
use of MAO and perfluoroborate activators [119], selective dimerization [37,41,42] and
oligomerization [16,17] of higher α-olefins—this is not a complete list of the processes
with relevance for laboratory and industry. Historically, two groups of zirconocene-based
catalytic species stand apart by the criterion of the charge of the catalytic Zr center. The first,
zero-charged, group is traditionally considered as catalysts of hydroalumination, carboalu-
miation, and cyclocarboalumination of α-olefins and related reactions, limitedly used in
the laboratory [18]. The second, ‘cationic’ species, represents highly efficient single-site α-
olefin polymerization catalysts with a great potential of industrial applications [1,7,120,121].
Therefore, it is no surprise that the second group of the Zr catalysts attracted and continue
to attract the most research attention; however, the participation of Zr–(µ-Cl)–Al species in
catalytic process has only been proven experimentally for ‘neutral’ zirconocene species.

3.1. Zirconocene Chemistry: Non-Charged Complexes

The mechanisms of zirconocene-catalyzed hydroalumination and carboalumination of
α-olefin were discussed ten years ago in the review by Parfenova et al. [18]. In this section,
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we consider only some key studies, published before 2010, and discuss the results of recent
studies in more detail.

Before discussions of hydroalumination and carboalumination processes, it should
be noted that the reaction of L2ZrCl2 with R3Al until recently was considered as the
natural and only possible pathway of the activation of metallocene dichlorides. When
studying this reaction, it was found that the nature of the η5-ligand significantly affects
the completion of the process. As shown by Beck and Brintzinger [122] for alkyl exchange
reactions (Equation (1)), the values of apparent equilibrium constants Kobs were 0.005
(L = η5-C5Me5), 0.016 (L = η5-C5H4

tBu), 0.19 (L = η5-C5H4
tSiMe3), 0.49 (L = Cp) and

1.2 (L2 = rac-Me2Si(Ind)2). Both steric and electronic factors affect this equilibrium, and
in particular, decreased electron density at the Zr atom appears to favor uptake of the
Me group.

2 Cp2ZrCl2 + Al2Me6 � 2 Cp2ZrMeCl· · ·AlMe2Cl (1)

The difference in equilibria constants for this reaction can be explained based on the
results of DFT modeling, as shown by Linnolahti et al., who showed that catalyst alkylation
step by AlMe3 has two viable routes. AlMe3 coordinates to the metallocene either from the
side or from the front, leading to corresponding alkylation reaction pathways. The kineti-
cally favorable route is dependent on the ligand structure of the catalyst: the front pathway
is preferred for Cp2ZrCl2 (Figure 11) but is sterically hindered for Me2C(Cp)(Flu)Zrl2,
thereby preferring the side pathway [123]. Similar results have also been obtained in a more
recent study by Kumawat and Gupta [124]. Zr01 was also detected by IR spectroscopy
during studies of the activation of Cp2ZrCl2 by MAO [125].
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Figure 11. Illustration of transition states for the alkylation of Cp2ZrCl2 with Me3Al (top) and Al2Me6

(bottom). Reprinted with permission from [123]. Copyright (2012) Elsevier B.V.

Dimethyl derivatives of zirconocenes are formed during the second stage of the process.
The intermediate complex of the formula Cp2ZrMeCl· · ·AlMe3 (Zr01) was detected by 1H
NMR at −85 ◦C; however, at −60 ◦C, the characteristic signal of Zr–Me group had already
disappeared [126].

The presence of direct Zr–(µ-Cl)–Al bonding in Cp2ZrMeCl complexes with R3Al has
clearly been proven by Barron et al. [127]. They showed that even Me2Al can coordinate
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with Cl (d(Al–Cl) = 2.46 Å, d(Zr–Cl) = 2.52 Å, Figure 12) with the formation of a relatively
stable complex Cp2ZrMeCl· · ·AlMe3 (Zr01′).

Molecules 2022, 27, 7164 19 of 63 
 

 

 
Figure 12. Molecular structure of one of the crystallographic independent molecules of 
Cp2ZrMeCl…AlMe3 (Zr01′). Reprinted with permission from [127]. Copyright (1995) American 
Chemical Society. 

It is obvious that the reactions of L2ZrCl2 with iBu2AlH or iBu3Al may result in the 
formation of Zr–Al hydrides, which is accompanied by isobutylene elimination in the 
latter case [128]. The rate and equilibria of the reaction with iBu3Al also strongly depend 
on the nature of the η5-ligand fragment L2; for instance, Ph2C(Cp)(Flu) forms a 
mono-alkyl complex Ph2C(Cp)(Flu)Zr(iBu)Cl even with a 50-fold excess of iBu3Al, 
whereas Cp2ZrCl2 reacts with an excess of iBu3Al with the formation of [Cp2ZrH2·AliBu3]2 
(Zr02) [128], and reaction with iBu2AlH results in Zr03 [129] (Scheme 14). In the presence 
of iBu2AlCl, Zr02 forms the Zr–Al3 complex Zr04; ring-substituted bis(cyclopentadienyl) 
L2ZrCl2 complexes demonstrate similar behavior [129]. For Zr ansa-complexes, the for-
mation of L2ZrCl(μ-H)2AliBu2 species was detected. 

 
Scheme 14. Reaction of Cp2ZrCl2 with iBu3Al or iBu2AlH [128,129]. 

Efficient Cp2ZrCl2-catalyzed hydroalumination uses iBu2AlH or its equivalent iBu3Al 
as Al sources due to the ease of isobutylene elimination with the formation of Al–H 
bonds (Scheme 15a). A greatly simplified hypothetical mechanism of this reaction, pro-
posed by Negishi [130], was substantially developed and supplemented by new experi-
mental and theoretical results by Dzhemilev and Parfenova group. In [131], they pro-
posed a hydroalumination mechanism involving the intermediate formation of 
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(Zr01′). Reprinted with permission from [127]. Copyright (1995) American Chemical Society.

It is obvious that the reactions of L2ZrCl2 with iBu2AlH or iBu3Al may result in the
formation of Zr–Al hydrides, which is accompanied by isobutylene elimination in the latter
case [128]. The rate and equilibria of the reaction with iBu3Al also strongly depend on
the nature of the η5-ligand fragment L2; for instance, Ph2C(Cp)(Flu) forms a mono-alkyl
complex Ph2C(Cp)(Flu)Zr(iBu)Cl even with a 50-fold excess of iBu3Al, whereas Cp2ZrCl2
reacts with an excess of iBu3Al with the formation of [Cp2ZrH2·AliBu3]2 (Zr02) [128], and
reaction with iBu2AlH results in Zr03 [129] (Scheme 14). In the presence of iBu2AlCl, Zr02
forms the Zr–Al3 complex Zr04; ring-substituted bis(cyclopentadienyl) L2ZrCl2 complexes
demonstrate similar behavior [129]. For Zr ansa-complexes, the formation of L2ZrCl(µ-
H)2AliBu2 species was detected.
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Scheme 14. Reaction of Cp2ZrCl2 with iBu3Al or iBu2AlH [128,129].

Efficient Cp2ZrCl2-catalyzed hydroalumination uses iBu2AlH or its equivalent iBu3Al
as Al sources due to the ease of isobutylene elimination with the formation of Al–H bonds
(Scheme 15a). A greatly simplified hypothetical mechanism of this reaction, proposed by
Negishi [130], was substantially developed and supplemented by new experimental and
theoretical results by Dzhemilev and Parfenova group. In [131], they proposed a hydroalu-
mination mechanism involving the intermediate formation of Cp2Zr(µ-Cl)(µ-H)Al (Zr05)
and Cp2Zr(µ-H)2Al (Zr06) species that are able to perform π-coordination and insertion
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of the α-olefin molecule. In the same study, a dimer of the Zr–Al complex (Zr07) was
detected, and excess iBu3Al or iBu2AlH resulted in the formation of Zr–Al2 and Zr–Al3
complex hydrides (Zr03, Zr08, Zr09; the latter may contain µ-Cl fragments) (Scheme 15b).
It was later discovered that in comparison with other Cp2Zr-based complexes (includ-
ing the Schwartz’s reagent Cp2ZrHCl), Zr03 demonstrated the highest catalytic activity
in hydroalumination (Scheme 15c) [132,133]. Probably, Cl-containing organoaluminum
fragments in Zr–Al hydride complexes accelerate the intramolecular exchange between
bridging and terminal H atoms and shift the equilibrium between the dimeric and active
monomeric forms.
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The validity of Scheme 15 was confirmed in follow-up studies of the reaction of
different L2ZrCl2 complexes with iBu2AlH [134]; Zr08-type complexes were found to be
active species of the hydroalumination process. Zr08 species are formed via Zr–(µ-Cl)–Al
intermediate Zr06′; therefore, the presence of Cl in the catalytic system is important for the
hydroalumination process. These experimental results were in line with the results of a
number of theoretical studies on the mechanism of L2ZrCl2-catalyzed hydroalumination
performed by Parfenova et al. In [135], the formation of Cp2ZrCl2-based catalytic species
was analyzed in detail. The main results of the modeling matched Scheme 15; in particular,
by the optimization of the molecular structure of Zr06 that was found to be relatively stable
(Figure 13). In accordance with Scheme 15, the kinetic model for the reaction steps was
developed [136,137].
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Figure 13. Energy profile of Cp2ZrHCl formation (reaction enthalpies in kcal·mol−1 are shown in
square brackets). Reprinted with permission from [135]. Copyright (2009) American Chemical Society.

In [138], α-olefin interactions with catalytically active centers were studied by DFT
and ab initio calculations. It was shown that Cp2ZrHCl, Zr06, Zr08, and Zr09 are able
to perform coordination and insertion of the α-olefin molecule; the activity decreases in
the order Cp2ZrHCl > Zr06 > Zr08 > Zr09. The results of the modeling correlate with
experimental data on Cp2ZrCl2-catalyzed hydroalumination, considering the equilibria
between Zr07 (isolated active catalyst) and Zr06 (highly reactive intermediate) and low
solubility of Cp2ZrHCl that slows down the reaction. DFT modeling of the final stage
of hydroalumination (Zr→ Al alkyl transfer) was conducted for Cp2ZrCl(nPr)–iBu2AlX
system (X = H, Cl, iBu) [139]. It was shown that the reaction of iBu2AlH needed no activa-
tion energy and proceeded through the coordination of iBu2AlH both outside and inside
of the C–Zr–Cl angle, and led to the Cp2ZrHCl· · ·Al iBu2Pr association, which further
dissociated into the Al iBu2Pr and AliBu2

nPr. Transmetallation in Cp2ZrCl(nPr)· · ·ClAl
iBu2 occurs via the coordination of iBu2AlCl to the inside of the C–Zr–Cl angle with the
formation of a bridging complex Cp2ZrCl(µ-Cl)(µ-nPr)Al iBu2, followed by intramolecular
ligand exchange that results in Cp2ZrCl2· · ·AliBu2

nPr association which further decom-
poses into AliBu2

nPr and Cp2ZrCl2. It was also shown that the transmetallation of the
propyl group in Cp2ZrCl(nPr)· · ·AliBu3 is less probable due to the high activation barrier
(∆G 6= = 31.9 kcal·mol−1). In this way, the transmetallation rates of Cp2ZrCl(nPr) under the
action of iBu2AlX decrease in the order iBu2AlCl > iBu2AlH > iBu3Al [139].

Current views on the mechanism of the reaction of L2ZrCl2 with iBu3Al were sub-
stantially expanded in the recent study by Conley et al. [140]. When studying reac-
tions of [CH2CH2(η5-C9H6)2]ZrCl2 with 12 eq. of organoaluminum compound, they
detected the formation of Zr–(µ-Cl)–Al complex Zr10, presumably through β-Me elim-
ination/carboalumination stages (Scheme 16). Notably, the π-complex in this Scheme
represents the Zr(II) complex.
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Cp2ZrCl2-catalyzed carboalumination was discovered by Van Horn and Negishi [141].
This reaction was also considered in the review by Parfenova [18] and in the more recent
review of Negishi [142]. In most studies on catalytic carboalumination, Me3Al and (n-
Alkyl)3Al have been used to avoid β-hydride elimination. Cp2ZrCl2 is not an efficient
carboalumination catalyst (Scheme 17) [143,144]. As shown by Parfenova et al., the effi-
ciency of carboalumination can be increased by the rational design of η5-ligands in the
L2ZrCl2 pre-catalyst [145].
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Scheme 17. Cp2ZrCl2-catalyzed carboalumination [143,144].

When using Me3Al as an activator, both carboalumination and hydroalumination processes
can take place in the presence of other L2ZrCl2 complexes. In 2018, Parfenova et al. [126] studied
the ligand exchange in 15 different zirconocenes, and the oct-1-ene reactivity of 11 of them
(Scheme 18a) for L2ZrCl2–Me3Al systems. Based on the results of NMR spectral studies
and catalytic experiments, a mechanism of the L2ZrCl2-catalyzed reaction of alkenes with
Me3Al was proposed (Scheme 18b). In the first step, complex 1 reacted with Me3Al to yield
L2ZrClMe (5). The subsequent reaction of complex 5 with Me3Al yielded intermediate 7
(Zr01, see above), in which the Zr–Me bond is more polarized due to associations with
electron-deficient Me3Al. As shown above, complex Zr01 exists in the associated state at
temperatures below 230 K. At room temperature, it dissociates to Cp2ZrMeCl and Me3Al
and its concentration becomes negligibly low; thus, the alkene does not react. Switching to
the catalytic reaction shifts the equilibrium towards Zr01, and products 8–11 are formed in
the system.
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Scheme 18. (a) Structural formula of the L2ZrCl2 complexes studied in the catalytic reaction
of oct-1-ene with Me3Al; (b) probable mechanism of the L2ZrCl2-catalyzed reaction of alkenes
with Me3Al [126].

Notably, Cp2ZrMe2 demonstrated low catalytic activity in the reaction with oct-1-ene
and Me3Al. Complex 6 is not formed in the reaction of Cp2ZrCl2 with Me3Al; thus, a key
role is played by Zr01-type intermediates. The degree of association of L2ZrMeCl with
Me3Al also depends on the π-ligand environment of Zr and the nature of the solvent. In
this way, realization of the process presented in Scheme 18b requires the presence of Cl in
the reaction mixture. In other words, the presence of the Zr–(µ-Cl)–Al structural fragment
in key catalytic species and the alkene insertion would, most likely, be accelerated in the
L2ZrMe(µ-Cl)AlMe3 active complex.
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Catalytic reactions were conducted in two different solvents (CH2Cl2 and toluene)
using a L2ZrCl2/alkene/AlMe3 ratio of 1:50:60. The results of the experiments are presented
in Table 1.

Table 1. Conversion and product yields in the reaction of the oct-1-ene with Me3Al in the presence of
2 mol% L2ZrCl2 (L2ZrCl2/alkene/Me3Al = 1:50:60, 20 ◦C, 24 h) [126].

L2ZrCl2 Solvent Conversion, %
Product Yield, %

8 9 10 11

1a
CH2Cl2 92 3 14 7 68
toluene 69 3 21 7 38

1b
CH2Cl2 84 11 14 7 52
toluene 39 9 9 9 12

1c
CH2Cl2 68 53 8 7 -
toluene 44 15 14 14 1

1d
CH2Cl2 24 <1 5 5 13
toluene 13 <1 4 6 2

1i
CH2Cl2 89 31 19 - 39
toluene 70 38 14 10 8

1j CH2Cl2 0 - - - -
toluene 11 9 - - 2

1k
CH2Cl2 2 0.6 0.3 0.7 -
toluene 4 <1 1.6 1 1

1l
CH2Cl2 30 20 1 <1 9
toluene 99 63 2 - 34

1m
CH2Cl2 16 15 - <1 <1
toluene 26 22 - 1 3

1n
CH2Cl2 3 1 - - -
toluene 35 1 13 - - -

1o
CH2Cl2 17 16 <1 <1 -
toluene 2 46 2 <1 4

Cp2ZrMe2
CH2Cl2 16 6 4 5 1
toluene 9 3 3 <1 <1

1 Dimers and oligomers formed.

The reaction between Et3Al and Cp2ZrCl2 has a complex mechanism, which occurs in
several elementary steps [146]. When using 1 eq. of Et3Al, the Zr–(µ-Cl)–Al complex Zr11
is formed. With an excess of Et3Al, C–H activation takes place to yield a relatively unstable
species, Zr12, which is subsequently converted to a more stable Zr13 via the secondary
C–H activation along with a smaller amount of Zr14 (Scheme 19). The molecular structure
of Zr13 was determined by XRD [147] (Figure 14). In the presence of α-olefin, the highly
reactive species Zr12 is further transformed into a cycloalumination product [148]. The
mechanism of this reaction was studied by DFT modeling, which confirmed the importance
of Zr–(µ-Cl)–Al bonding for all key reaction stages [149–152].
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An interesting complex, Zr15 with a Zr–(µ-Cl)–Al fragment, was formed as a result of
the reaction of the Cp2Zr buta-1,3-diene complex with Me2AlCl (Scheme 20) [153].
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Zr analogs of the Tebbe reagent Cp2Zr(µ-CHR)(µ-Cl)AlR′2 were obtained (a) by
the reaction of Cp2Zr(Cl)CH=CHR with R′2AlH or (b) by the reaction of Cp2ZrHCl
with R′2AlCH=CHR [154,155]. The molecular structure of one of these complexes with



Molecules 2022, 27, 7164 26 of 62

R = CH2
tBu and R′ = iBu (Zr16) was proven by XRD (Figure 15). Similar complexes have

not demonstrated any synthetic or catalytic prospects.
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[Ph3C]+ or [PhNMe2H]+ counterions of [B(C6F5)4]−, respectively (Scheme 21). 
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The negative role of Cl− in the zirconocene-catalyzed polymerization of α-olefins when 
using MAO as an activator was demonstrated by Cramail et al. in the framework of the 
simplified MAO model [157]; however, further studies have shown that not everything is 
so unambiguous, primarily because of the incompleteness of the early conceptions of the 
MAO structure. In recent years, this issue was clarified; essentially, the presence of 
Cl-containing MAO species as counter-ions was confirmed experimentally [28,125,158,159], 
In particular, the molecular ion with an m/z ratio of 1395 (Figure 16) was detected when 
analyzing the activation of Cp2ZrCl2 by MAO. Evidently, it is the Al–Cl fragment in this 
molecule that can coordinate at the Zr catalytic center. This model of ‘chlorinated’ MAO 
was developed on the basis of previous mass spectrometry studies [26]. 

Figure 15. Molecular structure of complex Zr16. Reprinted with permission from [155]. Copyright
(1987) American Chemical Society.

3.2. Zirconocene Cationic Complexes in Oligomerization and Polymerization of α-Olefins

Generally accepted mechanisms of the activation of zirconocene pre-catalysts L2ZrCl2
depend on the type of activator. When using MAO, methylation results in a L2ZrMeCl
complex, which eliminates Cl− under the action of MAO. However, when using a slight
excess of MAO, Me3Al (inevitably present in MAO due to its dynamic nature), the interme-
diate active cation forms the inactive cationic complex Zr17, which can be reactivated when
using a large excess of MAO. Notably, MAO has limited ability to activate L2ZrCl2; the
nature of the primary η5-ligand environment (L2Zr fragment) affects the rate and equilibria
of the formation of the catalytic species [122,156]. In the presence of trialkylaluminum
and perfluoroaryl borates, an alkylzirconocene cation is formed through the alkylation
of L2ZrCl2 with AlR3, followed by the elimination of one Zr–alkyl under the action of
B(C6F5)3 or by the alkyl abstraction or protonation of Zr–alkyl by [Ph3C]+ or [PhNMe2H]+

counterions of [B(C6F5)4]−, respectively (Scheme 21).
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The negative role of Cl− in the zirconocene-catalyzed polymerization of α-olefins
when using MAO as an activator was demonstrated by Cramail et al. in the framework of
the simplified MAO model [157]; however, further studies have shown that not everything
is so unambiguous, primarily because of the incompleteness of the early conceptions of
the MAO structure. In recent years, this issue was clarified; essentially, the presence of
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Cl-containing MAO species as counter-ions was confirmed experimentally [28,125,158,159],
In particular, the molecular ion with an m/z ratio of 1395 (Figure 16) was detected when
analyzing the activation of Cp2ZrCl2 by MAO. Evidently, it is the Al–Cl fragment in this
molecule that can coordinate at the Zr catalytic center. This model of ‘chlorinated’ MAO
was developed on the basis of previous mass spectrometry studies [26].
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to conference papers [165,166]; however, the Cambridge Crystallographic Data Centre 
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In [23], Linnolahti et al. proposed a simple and visual model of the structure of an
MAO cluster, suitable for DFT modeling. They demonstrated that the chlorination of MAO
leads to the overall facilitation of catalyst activation processes.

There are no examples of cationic catalytically active zirconocene species with Zr–(µ-Cl)–
Al fragments whose molecular structures have been proven by XRD. It is worth pointing
out here that cationic Zr complexes with [MeAl(2-C6F5C6F4)3]− (Zr18) [160] and [FAl(2-
C6F5C6F4)3]− ions (Zr19) [22] have been separated and analyzed by XRD. As can be seen
in Figure 17, the differences between Zr–(µ-X) and Al –(µ-X) are equal to 0.48 and 0.33 Å
for X = C and X = F, respectively. Whether Al(C6F5)3 is capable of Cl abstraction from
L2CpCl(Alkyl) complexes is now an open question.
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In recent publications [161,162], the mechanism of the activation of L2ZrCl2 pre-
catalysts by MAO was significantly revised with new experimental data that point to
the intermediate formation of [L2Zr(µ-Cl)2AlR2]+ cationic species via the generation of
R2Al+, followed by their reaction with L2ZrCl2. At the same time, an alternative activation
pathway was proposed for the reaction of L2ZrCl2 with [iBu2Al][B(C6F5)4], namely, Cl−

abstraction with a formation of L2ZrCl+ species [33].
Notably, the cationic complex {rac-[Me2Si(η5-C9H6)2]Zr(µ-Cl)2AliBu2}+ (Zr20) was

formed by the reaction of {rac-[Me2Si(η5-C9H6)2]Zr(µ-H)3(AliBu)2}+ and characterized by
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NMR spectroscopy [163]. The complex {rac-[Me2Si(η5-C9H6)2]Zr(µ-Cl)2AlMe2}+ (Zr21)
was similarly obtained by the reaction of {rac-[Me2Si(η5-C9H6)2]Zr(µ-Cl)2AlMe2}+ with
Me3AlCl [164]. XRD studies of type [L2Zr(µ-Cl)2AlR2]+ complexes are mentioned in [33],
referring to conference papers [165,166]; however, the Cambridge Crystallographic Data
Centre (CCDC) has no information about these compounds. The structure of {rac-[Me2Si(η5-
C9H6)2]Zr(µ-Cl)2AlMe2}+ was proven by a combination of chemical modification and
XRD analysis of the Zr(III) neutral complex rac-[Me2Si(η5-C9H6)2]Zr(µ-Cl)2AlMe2 (Zr22)
obtained by the reduction of Zr21 (Figure 18). The complexes Zr20–Zr22 were inactive in
α-olefin polymerization.
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In the presence of [Ph3C][B(C6F5)4], the activation of L2ZrCl2 by iBu2AlH results in the
formation of complex cationic hydrides L2Zr(µ-H)3(AliBu2)2

+ via a L2ZrCl(µ-H)2AliBu2
intermediate [163]. However, the reaction of L2ZrCl2 (L2 = Ph2C(Cp)(Flu)) with TIBA and
a [PhNMe2H][B(C6F5)4] activator proceeds in a complex pathway, allegedly involving
Zr–(µ-Cl)–Al species (Scheme 22) [128].
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Zirconocene-catalyzed selective dimerization of α-olefins (Scheme 23) represents
an interesting and practically important catalytic process, for which the participation of
Zr–(µ-Cl)–Al is quite possible. Discovered in 1987 by Slaugh and Schoenthal [167], and
first published in scientific periodicals by Christoffers and Bergman [37,38], this reaction
was further studied by Erker [168], Janiak [169,170], Kissin [171,172], and Longo [173].
The main dimer of undec-1-ene was obtained by Samela et al. using MAO-activated
Cp2ZrCl2 [174], but the reaction products were mistakenly recognized as undec-1-ene
trimers. Methylenealkanes can be used in the synthesis of single-component poly-α-olefin
oil basestocks [171,175,176] and other value-added chemicals [169,171,172,177–180].
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the chemists Idemitsu Kosan [182,183], and later by Parfenova et al. [184]. As was shown 
by Parfenova’s group, Zr2 bimetallic species are also active in selective dimerization 
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By the mid-2010s, only Cp2ZrCl2 [37,38] and [Me2Si(η5-C5H4)2]ZrCl2 [173] were effi-
ciently used as pre-catalysts in selective α-olefin dimerization. In comparative studies of a
series of Zr complexes, activated sequentially by iBu3Al and MAO, in the dimerization of
hex-1-ene (Scheme 23b) Nifant’ev et al. established the formula of complex Zr23 [39,181]
that demonstrated high selectivity and activity in the dimerization of different α-olefins,
including sterically hindered substrates [40]. Notably, the selectivity of dimerization in-
creased with a decrease in the dihedral angle between cyclopentadienyl rings. During these
experimental studies, increases in the selectivity of dimerization when adding R2AlCl were
detected. A similar ‘chlorine effect’ was previously demonstrated by the chemists Idemitsu
Kosan [182,183], and later by Parfenova et al. [184]. As was shown by Parfenova’s group,
Zr2 bimetallic species are also active in selective dimerization [185]; however, the use of
these in situ forming species is not of interest in practice.

The ‘chlorine effect’ was also noted by Christoffers and Bergman [38]; they suggested
the retention of Cl at the Zr catalytic center (Cp2ZrR+· · ·ClMAO− species) on the one
hand, but on the other, proposed Cp2ZrH+ as the actual catalyst. Based on experimental
results, Nifant’ev and Ivchenko proposed a new mechanistic hypothesis, expanding the
scope of the conventional cationic mechanism of the zirconocene-catalyzed oligomerization
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of α-olefins [39,40]. This hypothesis implies the participation of Zr–Al catalytic species
Zr24 and Zr25 capable of reversible insertion of the α-olefin molecule. After the second
α-olefin insertion, the reversible coordination of R2AlX fragment can facilitate irreversible
β-hydride elimination with the formation of methylenealkanes that are inert towards Zr24
and Zr25 (Scheme 24). It was also supposed that R2AlCl should demonstrate the best
efficiency as a selective ‘limiter’ of the degree of polymerization (DPn) to 2.
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but-1-ene as a model α-olefin. The main theoretical results with regard to Cp2Zr-derived 
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Al bonding (X = H, Cl) [39–42].

These hypotheses were supported by additional experiments and DFT calculations [41,42].
In [41], oligomerization of hex-1-ene with the use of Cp2ZrCl2 pre-catalyst was studied
experimentally, and DFT optimizations for all possible reaction pathways of prop-1-ene
oligomerization with and without the involvement of R2AlX (R = Me, iBu; X = H, Cl,
Me) were performed. The key stage of the α-olefin formation was chain termination after
insertion of the second α-olefin molecule. For the simple cationic model, this process is
carried out on the mechanism of β-hydride transfer to monomer, whereas with the assis-
tance of the R2AlX β-hydride, elimination occurs. In the latter case, Al atom demonstrates
a cooperative effect (Figure 19). For R = Me, the values of the activation barriers ∆G 6=

of β-hydride elimination stage were 17.7 (H), 13.6 (Cl), and 16.2 (Me) kcal/mol. Thus,
β-hydride elimination is the most affected by Me2AlCl coordination at the Zr atom.
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X)(CH2CHMePr)AlMe2 model complexes. (a) X = H; (b) X = Cl; (c) X = Me. The distances Zr–H,
Al–H and βC–H are specified (Å). Reprinted with permission from [41]. Copyright (2019) MDPI.

In the study by Nifant’ev et al. [42], oct-1-ene oligomerization with the use of pre-
catalysts Cp2ZrCl2, Cp2ZrMe2, O[SiMe2(η5-C5H4)]2ZrCl2 (Zr23), and its dimethyl deriva-
tive Zr23′ was studied, DFT modeling was conducted for both zirconocenes using but-1-ene
as a model α-olefin. The main theoretical results with regard to Cp2Zr-derived species
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were in line with the results of prior research [41], whereas in the case of Zr23-based
catalytic species, additional Zr–O and Al–O interactions played a significant role in the
catalytic process, stabilizing the reaction intermediates and lowering the activation barriers
(Figures 20 and 21).
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alytic oligomerization of α-olefins (Scheme 25a) is usually conducted at higher AlMAO/Zr
ratios. However, these ratios are hardly capable of the complete ‘fixation’ of R2AlCl (MAO as a
‘sponge’ for organoaluminum compounds in the reaction mixture). On the other hand, the greater
diversity of zirconocenes used in this reaction still attracts researchers’ attention [17,186–192]. The
activation of L2ZrCl2 by R3Al and perfluoroaryl borates was also found to be efficient
in α-olefin oligomerization. This type of activation was used in the recent study by Ni-
fant’ev et al., who reported that –CH2CH2– bridged indeno[1,2-b]indole ansa-complexes
(Scheme 25b) demonstrate high efficiency in the synthesis of lightweight oligomers of
dec-1-ene (DPn = 3–5) with uniquely homogeneous molecular structures [43].
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of the oligomers was achieved when using ‘heterocene’ catalysts (b) [43].

Such catalytic behavior differs from both the activity and selectivity of conventional
zirconocenes; therefore, additional research was carried out. Surprisingly, the addition of
iBu3Al to the solution of Zr26 did not result in Cl→ iBu exchange at the Zr atom. One
can assume that the dissolution of Zr26 occurs through the formation of the Zr26–iBu3Al
complex with weak Cl–Al coordination. Notably, a similar complexation of L2ZrCl2 with
metal alkyls was recently discussed by Kumawat and Gupta in their study on the DFT
modeling of zirconocene activation and chain transfer [124].

At the first stage of the activation, Zr26 does not exhibit substantial conversion to Zr–Al
hydrides under the action of TIBA. However, after the addition of [PhNHMe2][B(C6F5)4],
a rapid reaction proceeded with the sedimentation of oily low-soluble product. After
the addition of dec-1-ene, no oligomerization was observed. Rapid oligomerization was
detected when the activation of Zr26 by TIBA and borate were conducted in the presence
of molecular hydrogen, and light-brown crystals of Zr27 were formed at the end of the
reaction. After the addition of dec-1-ene to the reaction mixture, oligomerization started
again. It turned out that Zr27 alone was inactive in dec-1-ene oligomerization in the
presence of H2; however, when TIBA was added to the Zr27 suspension in toluene, the rapid
oligomerization of dec-1-ene occurred. The final product of the catalyst transformation of
Zr27 was separated and characterized by NMR (Figure 22) and XRD analysis (Figure 23).
The spectral view of Zr27 remained unchanged after 7 days, which indicates high stability
of the cationic complex in the solvating solvent (THF).



Molecules 2022, 27, 7164 33 of 62

Molecules 2022, 27, 7164 32 of 62 
 

 

N

Si ZrCl2

N
R

R

R=H, iPr tBu

N

ZrCl2

N

R

R

(b)

R=H, iPr
Zr26, R=tBu

nn+2

R

R

R

R n

R

R

R
H2 PAO

base stock

(a)

 
Scheme 25. (a) Coordination oligomerization of α-olefins; the idealized uniform molecular struc-
ture of the oligomers was achieved when using ‘heterocene’ catalysts (b) [43]. 

Such catalytic behavior differs from both the activity and selectivity of conventional 
zirconocenes; therefore, additional research was carried out. Surprisingly, the addition of 
iBu3Al to the solution of Zr26 did not result in Cl → iBu exchange at the Zr atom. One can 
assume that the dissolution of Zr26 occurs through the formation of the Zr26–iBu3Al 
complex with weak Cl–Al coordination. Notably, a similar complexation of L2ZrCl2 with 
metal alkyls was recently discussed by Kumawat and Gupta in their study on the DFT 
modeling of zirconocene activation and chain transfer [124]. 

At the first stage of the activation, Zr26 does not exhibit substantial conversion to 
Zr–Al hydrides under the action of TIBA. However, after the addition of 
[PhNHMe2][B(C6F5)4], a rapid reaction proceeded with the sedimentation of oily 
low-soluble product. After the addition of dec-1-ene, no oligomerization was observed. 
Rapid oligomerization was detected when the activation of Zr26 by TIBA and borate 
were conducted in the presence of molecular hydrogen, and light-brown crystals of Zr27 
were formed at the end of the reaction. After the addition of dec-1-ene to the reaction 
mixture, oligomerization started again. It turned out that Zr27 alone was inactive in 
dec-1-ene oligomerization in the presence of H2; however, when TIBA was added to the 
Zr27 suspension in toluene, the rapid oligomerization of dec-1-ene occurred. The final 
product of the catalyst transformation of Zr27 was separated and characterized by NMR 
(Figure 22) and XRD analysis (Figure 23). The spectral view of Zr27 remained unchanged 
after 7 days, which indicates high stability of the cationic complex in the solvating solvent 
(THF). 

 
Figure 22. 1H NMR spectra (400 MHz, THF-d8, 20 ◦C) of Zr27. Reprinted with permission from [43].
Copyright (2022) Elsevier B.V.

Molecules 2022, 27, 7164 33 of 63 
 

 

 
Figure 22. 1H NMR spectra (400 MHz, THF-d8, 20 °C) of Zr27. Reprinted with permission from [43]. 
Copyright (2022) Elsevier B.V. 

 

Figure 23. Schemes follow the same formatting. Reprinted with permission from [43]. Copyright
(2022) Wiley-VCH Verlag GmbH & Co. Copyright (2016) Royal Society of Chemistry. Copyright
(2012) American Chemical Society. Copyright (2015) Springer Nature. Copyright (2019) Elsevier B.V.

The experimental fact of the ‘recovery’ of Zr–(µ-Cl)2–Al complex Zr27 clearly indicates
that the mechanism of heterocene-catalyzed oligomerization went beyond the conventional
cationic mechanism of the zirconocene-catalyzed polymerization of α-olefins. There is a
very realistic chance that it is the retention of Zr–Cl–Al coordination that provides structural
homogeneity of dec-1-ene oligomers when using heterocene catalysis.

Comparison of the hydrogen response during ethylene polymerization, demonstrated
by dichloro- and dimethyl ansa–complexes [(η5-C9Me6)SiMe2(η5-C5H4)]ZrX2 (X = Cl, Zr28;
X = Me, Zr29), immobilized on solid MAO, may also be seen as indirect evidence of Zr–(µ-



Molecules 2022, 27, 7164 34 of 62

Cl)–Al bonding in catalytic species: Zr28-based catalysts turned out to be inert to molecular
hydrogen [193]. The relative stability of Zr–(µ-Cl)–Al bonding in catalyst precursor, L2Zr(R)-
(µ-Cl)-AlR’3 complexes, essentially depends on the electrophilicity of the Al atom. With the
introduction of the electron acceptor fragments, e.g., when using iBu2Al(OC6F5) [194], an
ion pair is easily formed, as evidenced by polymerization experiments.

On the basis of the latest investigations [33,43,161,162], it can be concluded that the
difference in the mechanisms of the L2ZrCl2 + AlR3 reactions in the absence and presence
of MAO (or perfluoroaryl borates) consists of various degrees of ‘chlorination’ for the
first-stage products. In the absence of MAO or borate, alkyl transfer from Al to Zr occurs
with the formation of LZrR2· · ·ClAlR2 complexes with weak Zr· · ·Cl bonds (if R = iBu, the
transformation to Zr–Al hydrides results in heterometallic complexes with stronger Zr–(µ-
H)–Al bonds). When using MAO or perfluoroaryl borates, resulting R2Al+ species rapidly
react with LZrCl2 to form cationic [LZr(µ-Cl)2AlR2]+, thus creating certain preconditions
for the involvement of R2AlCl in further reactions with α-olefins.

4. Complexes of V

Vanadium-catalyzed α-olefin polymerization was previously reviewed by van Koten et al.
in 2002 [195]; by Gambarotta in 2003 [196]; by Redshaw in 2010 [197]; by Wu and Li in
2011 [198]; by Nomura and Zhang in the same year [199]; and by Phillips et al. in 2020 [44].
In these reviews, the focus was on different types of the coordination compounds of V, pre-
catalysts of α-olefin polymerization. The mechanisms of polymerization in these reviews
were fragmented; however, in contrast to reviews on group 4 metal Ziegler–Natta and
single-site catalysts, the importance of V–(µ-Cl)–Al bonding in pre-catalysts and in catalytic
species was not ignored (Scheme 26). Here, in strong contrast to Ti- and Zr-based pre-
catalysts, a large number of V-based catalysts are effectively activated by R2AlCl of RAlCl2,
as opposed to ineffective R3Al and MAO. In this section, we discuss several examples of
V–(µ-Cl)–Al complexes that have been missed in previous reviews, or that had been served
poorly, as well as new examples of these complexes.

Molecules 2022, 27, 7164 34 of 63 
 

 

Figure 23. Schemes follow the same formatting. Reprinted with permission from [43]. Copyright 
(2022) Wiley-VCH Verlag GmbH & Co. Copyright (2016) Royal Society of Chemistry. Copyright 
(2012) American Chemical Society. Copyright (2015) Springer Nature. Copyright (2019) Elsevier 
B.V. 

The experimental fact of the ‘recovery’ of Zr–(μ-Cl)2–Al complex Zr27 clearly indi-
cates that the mechanism of heterocene-catalyzed oligomerization went beyond the 
conventional cationic mechanism of the zirconocene-catalyzed polymerization of 
α-olefins. There is a very realistic chance that it is the retention of Zr–Cl–Al coordination 
that provides structural homogeneity of dec-1-ene oligomers when using heterocene ca-
talysis. 

Comparison of the hydrogen response during ethylene polymerization, demon-
strated by dichloro- and dimethyl ansa–complexes [(η5-C9Me6)SiMe2(η5-C5H4)]ZrX2 (X = 
Cl, Zr28; X = Me, Zr29), immobilized on solid MAO, may also be seen as indirect evidence 
of Zr–(μ-Cl)–Al bonding in catalytic species: Zr28-based catalysts turned out to be inert to 
molecular hydrogen [193]. The relative stability of Zr–(μ-Cl)–Al bonding in catalyst 
precursor, L2Zr(R)-(μ-Cl)-AlR’3 complexes, essentially depends on the electrophilicity of 
the Al atom. With the introduction of the electron acceptor fragments, e.g., when using 
iBu2Al(OC6F5) [194], an ion pair is easily formed, as evidenced by polymerization ex-
periments. 

On the basis of the latest investigations [33,43,161,162], it can be concluded that the 
difference in the mechanisms of the L2ZrCl2 + AlR3 reactions in the absence and presence 
of MAO (or perfluoroaryl borates) consists of various degrees of ‘chlorination’ for the 
first-stage products. In the absence of MAO or borate, alkyl transfer from Al to Zr occurs 
with the formation of LZrR2…ClAlR2 complexes with weak Zr…Cl bonds (if R = iBu, the 
transformation to Zr–Al hydrides results in heterometallic complexes with stronger Zr–
(μ-H)–Al bonds). When using MAO or perfluoroaryl borates, resulting R2Al+ species 
rapidly react with LZrCl2 to form cationic [LZr(μ-Cl)2AlR2]+, thus creating certain pre-
conditions for the involvement of R2AlCl in further reactions with α-olefins. 

4. Complexes of V 
Vanadium-catalyzed α-olefin polymerization was previously reviewed by van Ko-

ten et al. in 2002 [195]; by Gambarotta in 2003 [196]; by Redshaw in 2010 [197]; by Wu and 
Li in 2011 [198]; by Nomura and Zhang in the same year [199]; and by Phillips et al. in 
2020 [44]. In these reviews, the focus was on different types of the coordination com-
pounds of V, pre-catalysts of α-olefin polymerization. The mechanisms of polymerization 
in these reviews were fragmented; however, in contrast to reviews on group 4 metal 
Ziegler–Natta and single-site catalysts, the importance of V–(μ-Cl)–Al bonding in 
pre-catalysts and in catalytic species was not ignored (Scheme 26). Here, in strong con-
trast to Ti- and Zr-based pre-catalysts, a large number of V-based catalysts are effectively 
activated by R2AlCl of RAlCl2, as opposed to ineffective R3Al and MAO. In this section, 
we discuss several examples of V–(μ-Cl)–Al complexes that have been missed in previ-
ous reviews, or that had been served poorly, as well as new examples of these complexes. 

 
Scheme 26. Examples of V–(μ-Cl)–Al active species mentioned in previous reviews [44,195,199]. Scheme 26. Examples of V–(µ-Cl)–Al active species mentioned in previous reviews [44,195,199].

Among older publications on the subject of V-catalyzed polymerizations of α-olefins,
the feature article of Zambelli et al. [200] merits special attention. The authors reinvestigated
three models of catalytic complexes V05–V07 proposed in the literature for VCl3/R2AlCl
catalyst systems (Scheme 27). DFT modeling of the insertion of ethylene molecule was con-
ducted for P = Me according to the conventional Cossee–Arlman scheme. Thermodynamic
data for ethylene insertion were close for all three complexes, but significant differences
were observed for values of the activation barrier of insertion that were 16, 16, and only
1.7 kcal·mol−1 for V05, V06, and V07, respectively. DFT modeling of prop-1-ene insertion
explained the observed syndiotacticity of prop-1-ene polymerization.
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As can be seen in Schemes 26 and 27, V(III) species are active in polymerization.
Obviously, the mechanisms of the deactivation of V centers are important for the develop-
ment of efficient catalysts. It is thought that the most likely route for deactivation would
be reactions with the organoaluminum compound. However, in 2002, Gambarotta et al.
demonstrated an alternative pathway of such deactivation via disproportionation of the
V(III) complex V08 with the formation of V(II)/V(III) (V09) and V(IV) (V10) species [201]
(Scheme 28, Figure 24); AlCl3 in this process acts as Lewis acid and it cannot be ruled out
that organoaluminum co-catalysts can promote catalyst deactivation in a similar way.
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Figure 24. ORTEP plot of V10. Thermal ellipsoids are drawn at the 30% probability level. Reprinted
with permission from [201]. Copyright (2002) American Chemical Society.

Another important aspect of V catalysis in α-olefin and diene polymerization was
demonstrated by Centore et al. [202], who studied the catalytic activity of the pre-catalyst
[(κ1-iPrN=C(Ph)NiPr)V(O)Cl(µ-Cl)]2 using different organoaluminum activators. They
showed that the amidinate ligand can easily be removed from the vanadium in the reac-
tion with organometallic cocatalysts, and the active species are closely related to those
obtained from other vanadium precatalysts such as VCl4 (for example, V07). This re-
sult imposes certain restrictions on the ligand-oriented design of V-based polymerization
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catalysts. Stronger V–ligand bonding, such as in V03 [203], provides a retention of the
base ligand environment. Polyphenolate ligands can also provide stability of the catalytic
species [204]; in particular, activation of the pre-catalyst V11 (Scheme 29) resulted in the
formation of V(IV) complex V11′, which is active in ethylene polymerization. V(III) com-
plexes with bidentate N,N-chelating iminopyrrolyl ligands also demonstrated stability in
the base ligand environment and relatively high catalytic activity in the polymerization
of ethylene when using Et2AlCl as an activator; in the presence of Et3Al or MAO, PE
was formed in trace amounts [205]. The complexes with tridentate iminopyrrolyl and
tetradentate bis(iminopyrrolyl) ligands [206], well as with bidentate phenoxy-phosphine
ligands [207] and with tridentate 2,6-bis(diphenylhydroxymethyl)pyridyl ligand [208],
have demonstrated similar behavior. However, in the last case, when comparing V(III)
and V(V) derivatives in Et2AlCl-activated polymerization, the V(V) complex demonstrated
higher activity. Apparently, even when using the same Cl-containing activator, the nature
of the active site essentially depends on the nature of the polydentate ligand.
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Scheme 29. Formation of active V(IV) phenolate complex V11′ [204].

V(III) complexes bearing salicylaldiminato ligands (similar to V04), synthesized by
Lee et al. [209,210], also showed high activity when using Et2AlCl as an activator. In their
later work [211], these same authors reported the results of theoretical studies of the mech-
anism of ethylene polymerization with V04-type complexes. Actually, V04 was chosen for
DFT calculations, together with the consideration of Et2AlCl-free species, in the model-
ing of ethylene insertion in the framework of the Cossee–Arlman mechanism (Figure 25).
In the first step, the ethylene molecule coordinates to the vacant site in V04, forming a
π-complex (–18.1 kcal·mol−1). Subsequently, ethylene inserts into the vanadium–carbon
bond via the four-membered cyclic transition state which has an activation energy barrier
of 14.7 kcal·mol−1 relative to the π-complex. The overall ethylene insertion was found to be
highly exothermic (–27.1 kcal/mol), and insertion product resembled the starting structure
of V04. For hypothetical cationic active species [(PhN=CHC6H4O)VEt(THF)]+, ethylene
complexation was less exothermic and the insertion barrier was higher by 5.7 kcal/mol. An
additional argument in favor of the V–(µ-Cl)2–Al model was a clear correlation between the
results of modeling and polymerization experiments for V(III) complexes with substituted
salicylaldiminato ligands.
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The results of relatively recent studies on V-catalyzed polymerization also confirm a 
distinct ‘chlorine effect’. In this regard, the study by Białek and Bisz [212] deserves a 
separate mention. In the polymerization of ethylene, ONNO-type bis(phenolates) V12 

Figure 25. Potential energy surface and optimized geometries of the π-complex and transition state
of the ethylene insertion catalyzed by the active species V04. The energy was calculated at the
M06-L functional level, with energy changes calculated at the B3LYP-D3 functional level given in
parentheses. Reprinted with permission from [211]. Copyright (2015) Elsevier B.V.

The results of relatively recent studies on V-catalyzed polymerization also confirm
a distinct ‘chlorine effect’. In this regard, the study by Białek and Bisz [212] deserves a
separate mention. In the polymerization of ethylene, ONNO-type bis(phenolates) V12
(Scheme 30) were manyfold more active in the presence of Et2AlCl in comparison with MAO
and perfluoroaryl borates. In ethylene/oct-1-ene copolymerization, the difference in activi-
ties decreased when using Et2AlCl and 3Bu3Al/[Ph3C][B(C6F5)4], but higher comonomer
incorporation was observed in the first case.
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In 2018 [213], Talsi et al. reported the results of the study of α-diimine (V13) and
bis(imino)pyridine (V14) trichloro complexes of V(III) (Scheme 30) with the use of MAO,
Me2AlCl, Me2AlCl/[Ph3C][B(C6F5)4], and Me3Al/[Ph3C][B(C6F5)4] activators. Through
careful NMR experimentation, they demonstrated the formation of V13-based cationic
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complexes without V–(µ-Cl)–Al bonding, whereas V14 formed V(Me)–(µ-Cl)2–Al species
V14′. Notably, when Me2AlCl alone was used, an inactive V(Cl)–(µ-Cl)2–Al complex was
the main reaction product.

In a series of recent publications [214–216], Nomura et al. presented the results of the
study of the activation of V complexes with the use of V K-edge X-ray absorption near-
edge structure analysis (XANES) and extended X-ray absorption fine structure (EXAFS)
analysis. Regarding V(V) pre-catalysts of (imido)VCl2(OAr), (imido)VCl3, and similar
types, as well as VOCl3, these studies clearly indicated the presence of V(III) species in the
reaction mixture after activation by the organoaluminum compounds Me2AlCl, Et2AlCl,
and EtAlCl2. In this way, the attribution of V03 (Scheme 26) to active species should
be corrected. However, no significant changes in either the oxidation state or the basic
geometry were observed when (imido)vanadium(V) complexes were treated with MAO. In
this way, the role of R2AlCl is in both the formation and stabilization of catalytic species.

In conclusion, it should be noted that the chemistry of V-based single-site catalysts of
α-olefin and diene polymerization primarily focuses on post-metallocene-type complexes.
V-based catalysts exhibit some similarities to Ti(III) Ziegler–Natta catalysts (see V07 in
Scheme 27); however, half-sandwich and sandwich complexes of V have not found wide
application. What is more interesting is the possible role of V–(µ-Cl)–Al bonding in the
catalytic behavior of Cp-ligated complexes of vanadium. Recent qualitative research of
the catalytic activity of supported Cp2V, carried out by Liu et al. [217], sheds some light
on the issue. The authors suggested the formation of cationic CpV–O–Si(µ-O)3(silica)
species under the action of Et2AlCl, and proposed a non-trivial mechanism of ethylene
coordination/insertion with a marked V–Al cooperative effect (Figure 26). The stages
of chain initiation and release were also studied. The activation barrier of the chain
propagation was found to be ~16 kcal·mol−1.
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5. Complexes of Cr
5.1. Selective Oligomerization of Ethylene Catalyzed by Cr Complexes

The selective oligomerization of ethylene with the use of Cr catalysts, resulting in the
formation of hex-1-ene and oct-1-ene, is becoming an important contemporary industrial
process [14]. The mechanism of the selective trimerization of ethylene [13,47,48,218] quali-
tatively differs from the Cossee–Arlman mechanism of polymerization and non-selective
oligomerization of α-olefins by the coordination of two olefin molecules and the interme-
diate formation of metallacyclic species. As a result, when using selective trimerization
catalysts, isomeric decenes are formed [219,220] (Scheme 31). The reaction intermediates
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and products, presented in this scheme, only provide a general idea of the Cr-catalyzed
trimerization. Cr catalysts, unlike half-sandwich Ti complexes (Scheme 10), are of a more
complex nature, selective tetramerization is possible, and the oxidation numbers of Cr
reaction intermediates still are subject of discussion.
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Scheme 31. The main idea of metallacyclic mechanism of selective trimerization of ethylene, catalyzed
by Cr complexes [219].

The Cr-catalyzed selective tri- and tetramerization of ethylene has been the subject
of numerous reviews which have discussed both the practical and theoretical aspects of
the reaction [13,14,47,48,84,221–227]. Pyrrole-based Cr catalysts were historically the first
system for the synthesis of hex-1-ene [228], which is widely used in the petrochemical in-
dustry. Other groups of homogeneous Cr catalysts of tri-/tetramerization often outperform
Cr/pyrrole systems on catalytic activity, but research is still ongoing.

At the very beginning of the study of Cr oligomerization catalysts, a substantial
‘chlorine effect’ was detected: Cr/pyrrole systems only demonstrated high activity in the
presence of Et2AlCl/Et3Al mixtures of the activators. This fact was explained successfully
from a mechanistic point of view (see Section 5.2 below), and the possible importance of
Cr–(µ-Cl)–Al bonding in Cr-based catalytic species was not completely ignored during
the ligand-oriented design of new single-site oligomerization catalysts, accompanied by
oligomerization experiments.

5.2. Cr Complexes with Pyrrole and Similar Ligands

Discovered in the late 1980s by Reagan [228], catalytic systems containing Cr(III)
2-ethylhexanoate, 2,5-dimethyl-1H-pyrrole, Et2AlCl, and Et3Al were optimized to a 1:3:8:11
ratio during the further research by Phillips Petroleum and Mitsubishi [229–233]. This
catalyst is commonly known as the Chevron–Phillips ethylene trimerization system. In
augmenting the main idea of the metallacyclic mechanism, the scientists of Sasol Technology
proposed a novel mechanistic concept, which included the formation of Cr–(µ-Cl)–Al
catalytic species [234]. They suggested that the Cr(II) center coordinates two ethylene
molecules. Then, a Cr(IV) metallacycle is formed, subsequent π-coordination/insertion of
the ethylene molecule results in a seven-membered metallacycle which is further subjected
to reductive eliminative intramolecular β-hydrogen migration to the ζ-carbon followed by
the coordination of two ethylene molecules with hex-1-ene release (Scheme 32).
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Scheme 32. Proposed metallacycle mechanism for the Cr/pyrrolyl-catalyzed trimerization of ethylene
involving Cr–(µ-Cl)–Al species [234].

During DFT modeling, unsubstituted pyrrole was used as a ligand, with the consid-
eration of possible η5- and κ1-coordination. In addition, optimizations were performed
for catalytic species with and without Me3Al coordination (‘Cl’ and ‘Me3AlCl’ models,
respectively). Based on the results of the modeling, the triplet spin states for both Cr(II) and
Cr(IV) were predicted to be the ground state. When comparing Cl and Me3AlCl models,
significant lowering of the activation energy of the rate-limiting step by 11.3 kcal·mol−1

was found for the catalytic species with Cr–(µ-Cl)–Al bonding.
In follow-up studies of pyrrole-based catalytic systems, Gambarotta, Duchateau et al.,

after failed attempts to isolate single crystals of 2,5-dimethyl-1H-pyrrole derivatives, ob-
tained characterizable complexes of 2,3,4,5-tetrahydro-1H-carbazole [235]. In particular, by
the treatment of [CrCl3(THF)3] or [CrCl2(THF)2] with a mixture of the ligand and Et3Al,
the square-planar Cr(II) complex Cr01 was obtained as a blue paramagnetic crystals. When
chromium(III) 2-ethylhexanoate was used, the presence of AlEt2Cl was crucial, and the
reaction afforded the new paramagnetic Cr(I) complex Cr02. Complex Cr02 was also ob-
tained by the reduction of Cr01 using potassium (Scheme 33). The molecular structures of
Cr01 and Cr02 are presented in Figure 27.
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Figure 27. Molecular structures of the complexes Cr01 and Cr02. Reprinted with permission
from [235]. Copyright (2008) Wiley-VCH Verlag GmbH & Co.

Complex Cr01 catalyzed the polymerization of ethylene. In methylyclohexane, com-
plex Cr02 was an unprecedented single-component trimerization catalyst, producing hex-
1-ene with only trace amounts of higher oligomers. The structure of the possible active
complex Cr03 is also presented in Scheme 33. The role of Cr–(µ-Cl)–Al bonds in the
formation of the ligand environment of the catalytic center in Cr03 seems clear.

One year later, the same research team reported the synthesis of the 2,3,4,5-tetramethyl-
1H-pyrrole-based Cr–(µ-Cl)–Al complex Cr04 [236] (Scheme 34). Similarly to complex
Cr02, in methylyclohexane, complex Cr04 turned out to be the highly active ethylene
trimerization catalyst without any activators. Apparently, the dimer of Cr04 (Figure 28)
dissociates in the solution with the retention of Cr–(µ-Cl)–Al coordination in the monomeric
complex with an easily recognizable ‘constrained geometry’ structural motif.
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Taking into account the results of theoretical [234] and experimental [235,236] stud-
ies of Cr/pyrrole systems, Budzelaar offered his own mechanistic concept, based on the 
DFT modeling of Cr/1H-indole catalytic systems [237]. The modeling results indicated 
that, in addition to the Cr(II)/Cr(IV) cycle (Scheme 33), Cr(I)/Cr(III) cycle, based on [(In-
dol-1-yl)…AlMe2(μ-Cl)Cr] species (Cr05), the role of the Cl atom was to stabilize metal-
lacyclic intermediates and to block additional coordination of the ethylene molecule at 
the stage of hex-1-ene formation. 

Finally, to determine the problem of the oxidation states of the Cr catalytic center in 
the Chevron−Phillips ethylene trimerization system, Liu et al. carried out a detailed the-
oretical study of the model catalyst species Cr06 and Cr07 (Figure 29) based on 
2,5-dimethyl-1H-pyrrole [238]. Optimizations showed that the retention of Cr–(μ-Cl)–Al 
bonding (strong or weak, d(Cr–Cl)) was changed in the interval of 2.5–4.0Å in all key 
reaction intermediates and transition states. Calculated free energy profiles (Figure 29) 
clearly showed the preference of the choice of Cr06 as a model catalytic species—free ac-
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Taking into account the results of theoretical [234] and experimental [235,236] studies
of Cr/pyrrole systems, Budzelaar offered his own mechanistic concept, based on the DFT
modeling of Cr/1H-indole catalytic systems [237]. The modeling results indicated that,
in addition to the Cr(II)/Cr(IV) cycle (Scheme 33), Cr(I)/Cr(III) cycle, based on [(Indol-1-
yl)· · ·AlMe2(µ-Cl)Cr] species (Cr05), the role of the Cl atom was to stabilize metallacyclic
intermediates and to block additional coordination of the ethylene molecule at the stage of
hex-1-ene formation.

Finally, to determine the problem of the oxidation states of the Cr catalytic center in the
Chevron–Phillips ethylene trimerization system, Liu et al. carried out a detailed theoretical
study of the model catalyst species Cr06 and Cr07 (Figure 29) based on 2,5-dimethyl-1H-
pyrrole [238]. Optimizations showed that the retention of Cr–(µ-Cl)–Al bonding (strong or
weak, d(Cr–Cl)) was changed in the interval of 2.5–4.0Å in all key reaction intermediates and
transition states. Calculated free energy profiles (Figure 29) clearly showed the preference
of the choice of Cr06 as a model catalytic species—free activation energies were 19.0 and
31.4 kcal·mol−1 for Cr06 and Cr07-based reaction pathways, respectively. In this way, the
mechanistic concept of Cr(I)/Cr(III) catalytic cycle received additional confirmation.



Molecules 2022, 27, 7164 43 of 62

30.0 

25.0 

20.0 

15.0 

o 10.0
E
(.) ":": 5.0 
-� 

� 0.0
Q) 

Q) 

LL -5.0

-10.0

-15.0

-20.0

-25.0

40 

30 

20 

(.) 10 � 

Q) 

·� 
Q) 

0
Q) 

Q) 

Q) 

-10

-20

-30

Cr---......c1 

cb-rl-0N ... AI 
T I" 

Cr06 

9.2 

10.3 

\
Cr(I) 

OA 3.2 -
0.0 

Cr(I) 

(t) 

Cr---......c1 

cb-rl-

1A 

0N ... AI
T I" 

Cr07 

7.1 9 9
Cr(II) 6.2 

OB 
00 Cr(II) 

Cr(l 1)- - �, 2B 

1B 

Cr(l)/(111) 
I - ..... -. 

- dimerization

H __j 25.3 
- tnmerizat1on

- - tetramerization 

Cr(ll�,O 

TS4A-5A 

TS11A-12A 

5.2 

3.2 

Cr(I) 

2A 

,� 
Cr(l)/(111): 

'' ,;_;;:::-,
TS2A-3A 

13.6 

84 -
8.1/13.4

Cr(ll0 r &J: 
5.5 Cr(III) 
� 
I 4A 

\ 10

7 \ 
\ -

-5.4 

Cr(ll1) 

3A 

TS3A-11A 

18.8 

• MECP

14.7 

d,� .. 
12 6 Cr(III) 

11A 

TS8A-9A 
10.6 11.8'. 

;) �.'-, 
Cr(I 

Cr(l)/(111) ,H 
\. .- ../0.8 ·. -0 4.,__.. SA - : 

,----,c--- TS5A--6A 

10.6 

-9.4 ---
\ '"" Cr"(III)--

-9.8
-10.7

b.G"F = 19.0 kcal/mol 

9A Cr(I) 
� -15.6c,,€) 12A 

-19.3

,� ," � ....... ::---,
Cr(l])/(IV)_ : 

,,::_;;.;-; 
TS2B-3B 

124 
6.2 

•• 

(a) 

4.1 

27.3 

yr(€]

:---/ 
TS4B-5B 

31.4 

17.5 / C�(I�

4B 

..... � 
98 

Cr(€] 

3B 

ci(1) 
Cr(l)--J\ 

SA 

c:(IV) } 

TSSB-9B 35 9 

cQ131

_,_

- 22.2
8B -

fil 

�-
-2.5 

--� 
Cr(l 1)/(IV),,H 

' _ .. , ../ 

TSSB-6B 

-0.91.6 _
-

6A 7A 

- trimerization

- tetramenzation

• MECP

f1G"F = 31.4 kcal/mol c,€)
� 

-48c,E)

� 

5B 

(b) 

:,. 

Cr(II) )
-19 O

__.., 

9B 

-
246 

6B 
Cr(II)· -II 

7B 

\ 
Figure 29. Calculated free energy diagram for model catalytic species Cr06 (a) and Cr07 (b).
Me2Al fragments are omitted. Reprinted with permission from [238]. Copyright (2014) Ameri-
can Chemical Society.



Molecules 2022, 27, 7164 44 of 62

Recently, the activation of the Chevron–Phillips ethylene trimerization system was
studied by Tromp et al. using catalytic and spectroscopic (XAS, EPR, UV–vis) exper-
iments under industrial conditions [239]. It was found that 2,5-dimethyl-1H-pyrrole
reacts with Et2AlCl и Et3Al with the formation of [2,5-dimethyl-2H-pyrrole]· · ·AlEt3
and [µ-2,5-dimethyl-1H-pyrrole](µ-Cl)(AlEt2)2 complexes, and their reaction with Cr(III)
2-ethylhexanoate results in polymeric Cr(II) pyrrolyl species containing Et2AlCl fragments.
However, the structure of real catalytic species remains unknown.

5.3. Cr Aminodiphosphine Complexes

Among others, Cr(III) derivatives of chelating ligands of the formula R1R2P–N(R3)–
PR4R5 (PNP–Cr complexes) represent pre-catalysts of the selective tri-/tetramerization
of ethylene which are characterized by high catalytic activity and stability over
time [14,47,84,221–225,240]. Usually, the activation of PNP–Cr pre-catalysts is performed
by the reaction of LPNPCrCl3 complexes (LPNP—PNP ligand) or mixtures of LPNP with
Cr(III) salts by MAO. The use of R3Al/perfluoroaryl borate systems is rarely used [241]
despite its undoubted merits. Evidently, the presence of R2AlCl species, arising as a result
of the reaction between LPNPZrCl3 and organoaluminum activators, implies the possible
formation of Cr–(µ-Cl)–Al species. The results of studies of PNP–Cr catalysts in view of
this possibility are summarized and discussed below in chronological order.

When studying the activation of [CyN(PPh2)2]CrCl3 by Me3Al in toluene (Cy—cyclohexyl,
Scheme 35), Gambarotta, Duchateau et al. separated and characterized a cationic complex
of Cr(II), Cr08 [242]. LPNP does not react with CrCl2(THF)2; nevertheless, in the presence of
excess of Me3Al, Cr08 was obtained in a high yield. XRD studies confirmed the molecular
structure of Cr08 (Figure 30). Being activated by MAO, this complex was highly active in the
oligomerization of ethylene with the formation of oct-1-ene as the main reaction product.
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The authors also proposed that the catalytic behavior of Cr08 and the failure of LPNP

to ligate to a CrCl2 moiety in the absence of Me3Al suggest that the acquisition of a
second ligand and cationization are central to the stabilization of a Cr(II) catalyst precursor.
Considering that excess MAO is necessary for the activation, they also speculated that the
dicationic [LPNP

2Cr]2+ complex may be the actual catalytically active species. However,
other hypotheses, involving the possibility of further abstraction of the [PNP] ligand
from the ‘dormant’ catalyst precursor Cr08, cannot be ruled out [242]. For our part, we
will merely add that in the latter case, the Cr(II) cation becomes open for both the π-
coordination of ethylene and for Cr–(µ-Cl)–Al bonding with organoaluminum components
of the catalytic system.

PNP–Cr complexes containing diphosphine ligands with two amine groups at one of
the phosphorus atoms (LPNPN) are of interest to researchers due to the ability of similar
pre-catalysts to be activated by Et3Al, without the use of MAO [243]. Evidently, such un-
conventional reactivity forces the assumption that LPNPN can form catalytic species which
differ from LPNP-based species. In [244], Müller et al. reported a study of the interaction
of Et3Al and Me3Al with the Ph2PN(iPr)P(Ph)NHiPr ligand. During this reaction, rear-
rangement to the [iPrNP(Ph)P(Ph)2=NiPr ligand occurred. The complex of this ligand with
CrCl3 was inactive in oligomerization. After preparation of the active model pre-catalyst
[Ph2PN(iPr)P(Ph)NiPr]Cr(Cp)Cl, it was concluded that the active catalytic species Cr09
exhibits a binuclear nature (Scheme 36). During further research [245], it was shown that the
PNPN–Cr system, generated by the reaction of Cr(III) acetylacetonate (Cr(acac)3) with LPNP

and Et3Al, is inactive in oligomerization. At the same time, the addition of Cl-containing
compounds of various nature resulted in the selective trimerization of ethylene.
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plexes Cr10–Cr13 (Scheme 37) were obtained by the reaction of LPNPNCrCl3 with Et3Al, or 
by the interaction of Al derivatives of LPNPN with CrCl2(THF)2 [246]. Molecular structures 
of all complexes were determined by XRD (see Figure 31 for an example). It was found 
that Cr10 is inactive in ethylene oligomerization, indicating that Cr10 is not a 
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and further reduction. 

 
Scheme 37. Cr2Al2 complexes Cr10–Cr13 [246]. 

Scheme 36. Supposed structure of the active PNPN-Cr catalyst Cr09 [244]. Copyright (20XX) Wiley-
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Chemical Society. Copyright (2015) Springer Nature. Copyright (2019) Elsevier B.V.

Attempts to isolate PNPN-based Cr–Al species have been successful; Cr2Al2 com-
plexes Cr10–Cr13 (Scheme 37) were obtained by the reaction of LPNPNCrCl3 with Et3Al,
or by the interaction of Al derivatives of LPNPN with CrCl2(THF)2 [246]. Molecular struc-
tures of all complexes were determined by XRD (see Figure 31 for an example). It was
found that Cr10 is inactive in ethylene oligomerization, indicating that Cr10 is not a self-
activating complex and that the oxidation state of Cr(II) is not sufficiently low to form
hex-1-ene. Hence, the formation of Cr09-type catalytic species needs dissociation and
further reduction.
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However, the studies listed above only contain suggestions about the nature of catalytic
species in the systems containing PNP–Cr complexes and R2AlCl. In 2016, Evans et al.
reported the results of a study of [iPrN(PPh2)2]CrCl3 activation by Me3Al [247]. The Cr
K-edge XAFS spectrum after 1 min indicated the formation of [iPrN(PPh2)2]CrClMe(µ-
Cl)AlMe3(THF) and then [iPrN(PPh2)2]CrMe(µ-Cl)AlMe3. Such species are evidently able
to form Cr(II) cations under the action of MAO; however, given that PNP–Cr catalysts
usually operate under relatively low AlMAO/Cr ratios (~100), in our view, the possibility of
the intermediate coordination of R2AlCl at the Cr center seems possible.

When studying the use of perfluoroaryl borates for the activation of PNP–Cr pre-
catalysts, Lee et al. proposed an original method for the synthesis of Zr–Al dicationic
complex Cr14 [241] (Scheme 38). This complex was found to be highly active in the selective
tetramerization of ethylene, but a fairly large amount of PE (1.7 wt.%) was concomitantly
generated. Further ligand design (introduction of SiR3 substituents in p-positions of the Ph
rings in LPNP) resulted in an increase in the activity and suppression of the PE formation.
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Summarizing the above-mentioned research, in view of the huge number of the articles
on the PNP–Cr-catalyzed tri/tetramerization of ethylene, the role of R2AlCl· · ·Cr bonding
was not examined in most studies. In many cases, this was due to the methodology of the
experiment on pre-catalyst preparation and activation, based on the mixing of a soluble Cr
source (for example, Cr(acac)3) and LPNP, followed by treatment with MAO. This, among
other things, may be due to the low solubility and varied composition of the commonly
used starting complex CrCl3(THF)3, which complicates the separation and purification
of LPNPCrCl3 pre-catalysts (for instance, we have been unable to solve another similar
problem, presented in [248]). The complex [CrCl2(µ-Cl)(THF)2]2, recently synthesized
by Lee et al. [249], seems to be a more convenient and reliable starting compound for
the synthesis of LPNPCrCl3. We can assume that more studies on the effect of the use of
[CrCl2(µ-Cl)(THF)2]2, or additional amounts of R2AlCl, on catalytic activity of known
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‘chlorine-free’ PNP–Cr systems, may lead to further improvements in the PNP-based
catalysts of ethylene tri- and tetramerization.

5.4. Other Cr Complexes in the Single-Site Catalysis of Oligomerization and Polymerization

The range of chelating ligands for the synthesis of Cr-based oligomerization and
polymerization of single-site catalysts is not limited by PNP-type compounds. Thus, for
example, complex Cr15 was synthesized by the reaction of the tBuNPNtBu dianion with
Cr chlorides, followed by treatment with iBu3Al [250] (Figure 32). This complex was found
to be a single-component catalyst of ethylene polymerization.
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Figure 32. Preparation and molecular structure of complex Cr15. Reprinted with permission
from [250]. Copyright (2008) Wiley-VCH Verlag GmbH & Co.

HN(CH2CH2PPh2)- and HN(CH2CH2SR)2-based Cr(II) and Cr(III) chloro complexes
were synthesized by McGuinness et al. [251]: the treatment of [HN(CH2CH2PPh2)]CrCl2
by 1,4-diazabicyclo[2.2.2]octane (DABCO) resulted in dimer {[N(CH2CH2PPh2)]Cr(µ-Cl)}2
and its –SR analogs. Further studies of the activation of these complexes by MAO and
Et3Al/B(C6F5)3 indicated that the Cr(II)/Cr(IV) cycle is preferable for this type of catalyst.
When HN(CH2CH2SCy)2 was treated with CrCl2(THF)2 and EtAlCl2, complex Cr16 was
obtained (Figure 33) [252]. This Cr(II) complex, after activation by MAO, was inferior to
SNS Cr(III) complexes in catalytic activity in the trimerization of ethylene.
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In 2011, the SNS ligand was modified by replacing CH2 fragments near the N atom
with SiMe2 groups (HN(CH2CH2SR)2, R = Cy, tBu, Ph). The reaction of HN(CH2CH2SCy)2
with Et2AlCl and Cr(III) or Cr(II) chlorides afforded the Cr(II) complex Cr17 (Figure 34) [253].
In the presence of MAO (500–1000 eq.), this complex catalyzed the oligomerization of ethy-
lene (mainly trimerization). After abstraction of the N–H proton during the synthesis of
the AlMe2 analog of Cr17, complex Cr18 was obtained (Figure 35): its selectivity in the
oligomerization of ethylene was even lower.
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A similar pattern was observed when studying Cr complexes with tris- and bis-
pyrazolyl ligands [254] (Scheme 39). Depending on the absence or the presence of the
–NH– fragment in the bridging ligand, the reaction of LCrCl3 with Me3Al resulted in
the formation of Cr–(µ-Cl)–Al complexes with different types of Al–N bonding. After
treatment with 200 eq. MAO, the activities of LCrCl3 and Cr–(µ-Cl)–Al complexes (for
example, Cr19, Figure 36) in the oligomerization of ethylene were close, with the same
oligomer distributions. In this way, under the action of MAO, organoaluminum chloride is
eliminated finally and irreversibly.
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In the early 2010s, a number of articles were devoted to the preparation and cat-
alytic studies of Cr complexes with bi- and polydentate ligands of different nature, in-
cluding the synthesis and characterization of Cr–(µ-Cl)–Al complexes: in particular, Cr
derivatives of Ph2PNtBu [255], (Ph2P)2CHCO2

− and (Ph2P)2C=C(NHR)O− [256], 2,6-
bis(CH2PPh2)pyridine [257], 2,6-bis(NH=PPh2)pyridine [258], 2-(NHCH2PPh2)pyridine [259],
and Ph2C(1H-pyrrol-2-yl) [260]. In several studies, an explicit ‘chlorine effect’ was detected,
although most of them included XRD data for isolated Cr–(µ-Cl)–Al molecules (Figure 37).
However, as opposed to the relatively well-studied Chevron–Phillips ethylene trimerization
system and its analogs, we are not even close to understanding the role of Cr–(µ-Cl)–Al
bonding in the catalytic chemistry of Cr-based post-metallocenes.
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6. Complexes of Ni

Complexes of Ni are intensively being studied as efficient catalysts for the coordination
oligomerization (SHOP process and beyond [46,261,262]) and polymerization [5,263–265]
of α-olefins. Ni-based polymerization catalysts are very different from early transition
metal (Ti, Zr, and V) complexes due to the lower sensitivity of Ni centers to electron-
donor fragments, thus providing the copolymerization of α-olefins with polar vinyl
monomers [266,267]. Another attractive property of Ni-based catalysts is their chain
walking capability [268], which enables them to obtain branched polyolefins of different
architectures. The direct participation of Ni–(µ-Cl)–Al species in catalytic processes at the
Ni center is a matter of discussion; however, in the case of Ni, similar additional interactions
are of dubious value. We have restricted the discussion in this section to a few examples of
Ni–(µ-Cl)–Al bonding suspected of being associated with α-olefin polymerization.

The mere presence of Ni–(µ-Cl)–Al bonding in coordination compounds formed
during the activation of Ni(II) chloro complexes by organoaluminum has been known for a
fairly long time. Thus, for example, the formation of Cy3P(η3-allyl)Ni(µ-Cl)AlMeCl2 (Ni01)
was clearly proven by XRD analysis [269] (Figure 38).
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However, EXAFS studies of the reaction mixture formed from NiCl2(PEt3)2 and
Me3Al2Cl3 [270] showed the presence of C and P atoms in the first coordination shell
of Ni; more distant shells included Al (d = 3.0 Å) and Cl (d = 4.4 Å), thus excluding Ni–
(µ-Cl)–Al bonding. Similar spectral studies were continued by de Souza et al. [271], for
example, with MAO-activated Ni(α-diimine)Cl2. They showed that in the active catalyst
species, the Ni(II) atom is surrounded by C and N atoms in the first shell and Cl atoms at a
higher distance (~3.5 Å), and proposed that the Ni· · ·Cl interaction plays an important,
previously underestimated, role in the polymerization of olefins.

In a number of later studies, the catalytic activity of different complexes was studied with
the use of RxAlCl3–x activators. Thus, for example, a number of N-(5,6,7-trihydroquinolin-8-
ylidene)arylamino complexes of Ni(II) (Ni02 in Scheme 40) have demonstrated high activity in
the oligomerization of ethylene with the formation of but-1-ene (100% C4, 79–98% α-C4 se-
lectivity) [272]. Higher activities were achieved when using Me3Al2Cl3 instead of MAO. The
authors have limited themselves to descriptions of the experimental results, without adding
mechanistic interpretations. Complex Ni03 with the 2-benzimidazolyl-N-arylquinoline-8-
carboxamide ligand demonstrated lower activity and but-1-ene selectivity [273]; Et2AlCl
was the best activator. (Iminoalkyl)imidazole complex Ni04 showed similar behavior [274].
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Et2AlCl and MAO equally successfully activated 2-iminopyridyl complex Ni05 [275] and
4,5-bis(arylimino)pyrenylidene derivative Ni06 [276] (Scheme 40).
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As shown in [278], when using EtAlCl2 as an activator, ethylene oligomerization
is complicated by Friedel–Crafts alkylation when using toluene as a reaction medium.
Another side process with the participation of alkylaluminum chlorides is interaction with
the polydentate ligand with the emergence of Ni coordination vacancies [279].

Recently, Soshnikov et al. have shown that α-diimine Ni(II) complexes under the
action of R2AlCl form the Ni(I) complex Ni07 with Ni–(µ-Cl)–Al fragments, representing
the catalyst’s resting states [277]. It is quite possible that derivatives of similar species are
essential to ensuring ‘living’ ethylene/α-olefin copolymerization with the formation of
block-polyolefins [280].

7. Conclusions

In the present review, we have summarized and commented on the data pertaining to
the participation of M–(µ-Cl)–Al bonding in the formation of transition metal complexes
which are active in α-olefin (and diene) chemistry. Of particular interest were the poly-
merization and oligomerization of α-olefins. We hypothesize that the theory and practice
of single-site polymerization and oligomerization, catalyzed by Ti, Zr, and Cr complexes,
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have suffered from the use of 102–104 equivalents of MAO for the activation of group 4
and 6 metal complexes in laboratory practice. In such conditions, consideration of the
possibility of relatively weak M–(µ-Cl)–Al bonding makes no sense because MAO operates
as an organoaluminum ‘sponge’. However, in recent years, with the growing interest
in ‘low-MAO’ and ‘MAO-free’ catalytic processes, interest has re-focused on reversible
M–(µ-Cl)–Al coordination on catalytic centers, as an additional factor affecting the chain
propagation/chain termination balance, which appears to be reasonable.

The complex understanding of the nature of M–(µ-Cl)–Al bonds in metal complexes
and reaction intermediates is significantly complicated by small amounts of fragmented
data. For complexes with one bridging fragment, the (µ-Cl)–Al distance is not much
different from the d(Al–Cl) value in R2AlCl (and the M–(µ-Cl) distance is lengthened in
comparison with d(M–Cl) in mononuclear chloro complexes). However, when forming
two bridging fragments, the values of d((µ-Cl)–Al) and d(M–(µ-Cl)) converge in magnitude.
Apparently, the former M–(µ-Cl)–Al species can be considered as reactive intermediates,
whereas the latter M–(µ-Cl)(µ-X)–Al species represent dormant sites that can be separated
and characterized. Obviously, lower stability of the M–(µ-Cl)–Al species complicates
their identification.

Additionally, in contrast to alkyl, H and F fragments that have been established in
the formation of M–X–Al catalytic species, M–Cl–Al bonding in the reaction intermediates
cannot be detected by the only convenient and reliable method of analysis of diamagnetic
species, i.e., NMR spectroscopy. Other spectral methods leave space for interpretation; XRD
analysis has limited use. In this context, it is reasonable that quantum-chemical modeling
has been used extensively in the studies of M–Cl–Al-containing molecules and processes
which utilize them. Additionally, during studies of the catalytic processes, the possibility
of the formation of the M–(µ-Cl)–Al species should not be ignored, at least in order to
separate and characterize metal complexes exhibiting a non-trivial structure or, in the end,
to formulate more efficient catalytic systems.
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92. Poláček, J.; Antropiusová, H.; Petrusová, L.; Mach, K. Titanium-catalyzed cyclotrimerization of butadiene: Part II. The
(C6H6)TiII(AlCl4)2-EtxAlCl3−x(x = 1–3) systems. J. Mol. Catal. 1990, 58, 53–73. [CrossRef]
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