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Abstract: This research aims to develop new high-energy dense ordinary- and nano-energetic com-
posites based on hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) and nitrated cellulose and nanos-
tructured nitrocellulose (NC and NMCC). The elaborated energetic formulations (HNTO/NC and
HNTO/NMCC) were fully characterized in terms of their chemical compatibility, morphology,
thermal stability, and energetic performance. The experimental findings implied that the designed
HNTO/NC and HNTO/NMCC formulations have good compatibilities with attractive characteristics
such as density greater than 1.780 g/cm3 and impact sensitivity around 6 J. Furthermore, theoretical
performance calculations (EXPLO5 V6.04) displayed that the optimal composition of the as-prepared
energetic composites yielded excellent specific impulses and detonation velocities, which increased
from 205.7 s and 7908 m/s for HNTO/NC to 209.6 s and 8064 m/s for HNTO/NMCC. Moreover,
deep insight on the multi-step kinetic behaviors of the as-prepared formulations was provided based
on the measured DSC data combined with isoconversional kinetic methods. It is revealed that
both energetic composites undergo three consecutive exothermic events with satisfactory activation
energies in the range of 139–166 kJ/mol for HNTO/NC and 119–134 kJ/mol for HNTO/NMCC.
Overall, this research displayed that the new developed nanoenergetic composite based on nitrated
cellulose nanostructure could serve as a promising candidate for practical applications in solid rocket
propellants and composite explosives.

Keywords: nanostructured nitrocellulose; hydrazine 3-nitro-1,2,4-triazol-5-one; nanoenergetic
composite; compatibility; thermal kinetics

1. Introduction

In the last few decades, the development of new insensitive and high-energy dense
composites has addressed a series of challenges in the field of materials chemistry and
advanced applications (e.g., high performance solid propellants and insensitive composite
explosives) [1,2]. For instance, the most newly developed energetic materials, are still
not able to completely replace currently used ones in the military systems due to several
problems including chemical incompatibility, low thermal stability, worse sensitivity, as
well as high cost, which impede their further use in military systems [3,4]. As a common
branch of energetic materials, nitrocellulose (NC)-based formulations play a prominent role
in a broad range of industrial (e.g., membranes and cosmetic products) and defense (e.g.,
smokeless gun powders and rocket propellants) areas owing to their easily tunable and
tailorable characteristics such as excellent mechanical properties, compatibility with several
additives, flammability, and explosiveness [5]. However, long-term insight with traditional
NC-based energetic composites demonstrates some of its limits, including high impact
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sensitivity, low density, poor thermal stability, and inappropriate combustion performance,
which restricted their practical application in advanced munitions [6,7]. For this purpose,
the energetic materials community has driven investigations toward the structural down-
scaling technology of NC to design promising nanostructured nitrocellulose, known as
nitrated microcrystalline cellulose (NMCC), offering new opportunities to develop innova-
tive energetic mixtures with advanced functionalities. According to literature reports, this
emergent subclass of nitrate esters nanostructured cellulose derivative displayed improved
nitrogen content, density, crystallinity, thermal reactivity, and energetic performance com-
pared to the traditional NC, which renders it a highly desirable alternative candidate for
potential employment in modern energetic formulations [8,9].

In terms of solid propellants, the most important goal is to achieve higher energy
release with controlled processes [2,10]. Therefore, the energetic performance, compati-
bility, thermal security, and vulnerability of rocket propellants, gun propellants, and gas
generators containing various novel ingredients are the major research directions in this
field [11,12]. As one of the key components, high-energy fillers demonstrate great po-
tential for multipurpose application, especially in the development of high-performance
propellants. In particular, nitrogen-rich compounds are widely evaluated for solid pro-
pellants and explosives formulations to meet the multiple requirements of high density,
good thermal stability, insensitivity, and high-energy performance of munitions. In the
case of NC-based propellants, nitroglycerine (NG) is considered the oldest and the most
commonly used energetic component, whereas, its substitution has been in high demand
due to its migratory issues and reduced stability [13,14]. In order to overcome these
challenges and eliminate dependence on NG, numerous types of emergent high-energy
dense additives comprising nitramines, energetic ionic liquids, green oxidizers, and ener-
getic co-crystals have been tested for NC-based systems [15–17]. For instance, it has been
demonstrated that the incorporation of nitramine explosives into the NC matrix greatly
improves the detonation properties and specific impulse of munitions [18]. For these
reasons, many kinds of NC matrix-based energetic composites have been manufactured
and fully investigated, including NC/RDX (cyclotrimethylenetrinitramine) [19], NC/HMX
(cyclotetramethylenetetranitramine) [20], NC/CL-20 (Hexanitrohexaazaisowurtzitan) [21],
and NC/GAP (glycidyl azide polymer) [22], for eventual application in modern propellant
and explosive systems. Nevertheless, a significant concern with nitrate esters cellulosic
formulations having a high nitramines concentration, which are the significantly high sensi-
tivity, the reduced interactions between the NC and energetic filler, and the elevated flame
temperature that cause gun wear and thus reduce the useful life of the gun barrel. Therefore,
the search for new NC mixtures with advanced capabilities and enhanced features is a
crucial driving force to substantially alleviate many of the aforementioned issues.

Recently, a great deal of interest has focused on nitrogen-rich heterocyclic salts owing
to their desirable properties such as low sensitivities, high-energy nature, excellent stability,
and good compatibility with other energetic compounds [23]. In this context, hydrazine
3-nitro-1,2,4-triazol-5-one (HNTO), obtained by hydrazine hydrate modification of NTO, is
an energetic salt that has been recently developed and acquired very attractive features such
as high density (ρ = 1.820 g/cm3) and nitrogen content (Nc = 51.83%), good thermal stability,
moderate impact sensitivity (7 J), and great energy content [24,25]. Moreover, its low acidity
compared to NTO and its relatively acceptable production cost (≈85 €/100 g based on
the market prices of the starting materials) with its low environmental impact indicated
its high potential to be utilized in propellant and explosive formulations. Therefore,
these outstanding features of HNTO have motivated us to scrutinize its ability to be
employed with nitrated cellulosic polymers and examine the characteristics of the resulting
composites. In addition, an investigation of the thermokinetic behaviors of the above-
mentioned energetic composites would be very helpful to accurately evaluate their thermal
stability and decomposition pathways, as well as estimate the effect of their thermal
run-aways on the potential hazard during their preparation, processing, storage, and
real-world applications.
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The present study aims to elaborate on new ordinary- and nano-energetic compos-
ites consisting of nitrogen-rich heterocyclic salt and nitrocellulose and nanostructured
nitrocellulose (HNTO/NC and HNTO/NMCC), and deeply investigate their chemical com-
patibility, morphological structure, and thermal behavior. In addition, their thermokinetic
parameters were predicted for the first time based on non-isothermal DSC data and using
three isoconversional integral methods to accurately judge their safety performance and
offer guidelines for their potential employed in solid rocket propellants and composite
explosives and solid propellants. The obtained results were compared to those of other
nano-energetic formulations found in the literature as well.

2. Results and Discussion
2.1. DSC-Based Compatibility

The heat flow curves of the pure compounds and their physical mixtures are shown in
Figure 1. As observed from the plotted DSC thermograms plotted, NC and NMCC poly-
mers display only one exothermic process that occurred at maximum peak temperatures
of 204.5 ◦C and 199.1 ◦C, respectively, which is assigned to the well-known thermolysis
pathway of nitrated cellulosic chains [9,26]. Pure HNTO, however, undergoes two consec-
utive exothermic events within the range of 205–220 ◦C and 220–235 ◦C, similar to what
is commonly reported in previous works [25,27]. For the physical mixtures, there were
still three independent exothermic peaks, corresponding to the thermal decomposition of
single nitrated cellulosic binders and HNTO, suggesting that there is no chemical reaction
between components of the mixture. It is noteworthy that the maximum exothermic peak
temperature of nitrated cellulosic polymers is lower than that of HNTO sample, so energetic
NC and NMCC matrices are selected as the single compound in the mixture systems.
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Figure 1. DSC thermograms at a heating rate of 10 ◦C/min of (a) HNTO/NC physical mixture and
its single components; (b) HNTO/NMCC physical mixture and its single components.

According to Figure 1, it is obvious that the thermal decomposition of NC and NMCC
is shifted to a lower temperature in the HNTO/NC and HNTO/NMCC mixtures, respec-
tively, indicating that the presence of HNTO has accelerated the thermolysis process of
cellulosic nitrates. The maximum exothermic peak temperature difference between NC and
HNTO/NC, NMCC and HNTO/NMCC is found to be 2.3 ◦C and 2.4 ◦C, respectively, show-
ing that NC and NMCC are both compatible with HNTO according to the STANAG 4147
criterion [28]. These findings confirm the potential use of HNTO in nitrocellulose-based
composite explosives and rocket propellants.
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2.2. Determination of the Optimal Composition of the Energetic Formulations

To design high energetic and efficient formulations for potential applications in rocket
propellant systems and composite explosives, one should select ingredients fractions that
provide optimum values of ISP and DC-J. Therefore, EXPLO5 (V6.04) software (OZM Re-
search, Version 6.04, Czech Republic, European Union), as a powerful thermochemical
tool, is employed to select the best formulations based on HNTO/NC and HNTO/NMCC
composites. Figure 8b shows the evolution of the computed ISP and DC-J of each composite
as a function of HNTO content. It can be revealed that the increase of the HNTO content
leads to a noticeable enhancement of the detonation velocity, which is attributed to the
higher heat of formation and explosive nature of HNTO. However, the decreased trend of
the specific impulse while increasing the HNTO fraction could be probably caused by its
negative oxygen balance (−38%), which reduces the flame temperature of the composite
that is directly proportional to the ISP [29,30]. Therefore, the intersection point between the
ISP and DC-J curves is taken as the optimum HNTO mass fraction. A satisfactory specific
impulse (ISP > 205 s) and relatively high detonation velocity (DC-J > 7900 m/s) are obtained
for the optimal composition (60:40, wt.%) of HNTO/NC and HNTO/NMCC formulations.
Another important finding is that HNTO/NMCC composite produces higher ISP and DC-J
than HNTO/NC, highlighting the potential advantage of using emergent nanostructured
cellulose nitrate instead of traditional cellulose nitrate to promote the energetic perfor-
mance of the developed energetic cellulose-rich formulations. These results demonstrate
the relationship between the morphology of NMCC and its physicochemical properties
(nitrogen content and density) in one hand, and on the other hand the proportional effect
of these parameters on the energetic performance.

On the other hand, it is interesting to point out that the optimal DC-J of the designed
composites is found to be better than that of some common explosives, including TNT
(6900 m/s) [31], NG (7823 m/s) [32], HNS (7612 m/s) [33], and other aluminized- and
ammonium nitrate-bonded explosives reported by Suceska et al. [34]. With regard to the
optimal specific impulse, it is found that the elaborated HNTO/NC and HNTO/NMCC
composites deliver moderate ISP, which is comparable or slightly lower than some cur-
rently used homogenous and modified double base rocket propellants (220 s) [35,36],
and other reported NC-based composites such as NC/GAP (205 s) [18], and NC/HMX
(231 s) [20]. It is worth noting that the ISP of our designed composites can be signifi-
cantly improved by the small addition of metal hybrids, which can offer extra oxidizing
species that contribute to the total oxidation of the available fuel species, thus increasing
the resulting ratio of combustion temperature to molar mass as demonstrated in our re-
cent papers [30,37]. In light of these results, it can be inferred that the newly designed
ordinary- and nanostructured-energetic composites (HNTO/NC and HNTO/NMCC) can
be considered potential candidates for the next generation of energetic formulations.

2.3. Morphological and Structural Characterizations

The micro-scale morphology and the structure of the developed energetic HNTO/NC
and HNTO/NMCC composites were assessed using SEM and FTIR, respectively.

As can be observed from the SEM micrographs depicted in Figure 2, NC displays long
individualized filaments with a rough surface; NMCC shows irregular microstructure with
rod-shaped aggregates, while HNTO presents a smooth irregular elongated rod-like shape
structure. Regarding the morphological features of the prepared energetic composites,
it is clear from Figure 2 that the microstructure of HNTO/NC is different from that of
HNTO/NMCC. A well-defined structure of pure HNTO and NC can be clearly noticed for
the double base HNTO/NC film, which indicates the strong intramolecular interactions
between the rod-shaped HNTO and NC fibers. Meanwhile, the HNTO/NMCC composite
exhibits an embedded rod-like microcrystals network with some spherical aggregates,
demonstrating that the use of nanostructured NMCC matrix instead of traditional NC leads
to more homogenous dispersion of HNTO particles to form a dense matrix. Such effective
dispersion is broadly attributed to the enhanced interfacial contact between the different
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ingredients, which is expected to promote the thermal decomposition performance of the
composite, as will be proved later in the next sections.
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To further corroborate the above findings, the density of the elaborated energetic com-
posites, which is a crucial parameter that may influence their energy performance, was ex-
perimentally determined using an electronic densimeter, and the obtained values are given
in Table 1. The foremost finding is that the density of HNTO/NMCC (1.793 ± 0.002 g/cm3)
is greater than that of the baseline HNTO/NC (1.781 ± 0.002 g/cm3), which is even supe-
rior to those of raw NC (1.671 ± 0.004 g/cm3) and NMCC (1.694 ± 0.004 g/cm3). These
outcomes are in good accordance with those obtained by SEM and provide further evi-
dence for the potential advantages of utilizing NMCC to develop promising high-density
nanostructured formulations for futuristic energetic applications. Furthermore, it is found
that the measured densities of HNTO/NC and HNTO/NMCC are quite similar to their
theoretical values with a percentage gap (∆ρ) lower than 2%, which reveals that the open
porosity of the as-prepared formulations is negligible, hence confirming their homogene-
ity with no bubble-contamination production during the mixing process [37,38]. Besides
that, it is interesting to point out that the designed composites based on hydrazine 3-
nitro-1,2,4-triazol-5-one and nitrated cellulosic polymers have better densities than the
commonly employed double base rocket propellants (1.55–1.66 g/cm3) [36,39], which are
comparable or slightly higher than those of some reported composite propellants and
explosives [40–42].

Table 1. Densities, impact and friction sensitivities of the investigated samples.

Sample ρEXP (g/cm3) ρTMD (g/cm3) ∆ρ (%) IS (J) FS (N)

HNTO 1.820 ± 0.003 / / 7 360
NC 1.671 ± 0.004 / / 3 350

NMCC 1.694 ± 0.004 / / 2 350
HNTO/NC 1.781 ± 0.002 1.760 1.2 6 350

HNTO/NMCC 1.793 ± 0.002 1.770 1.3 6 350
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On the other hand, the molecular structure of the new developed HNTO/NC and
HNTO/NMCC composites and their raw compounds has also been identified by FTIR
measurements with the aim of revealing the eventual changes of their structures and the
appearance or disappearance of bonds by the effect of their reciprocal interactions, and
the recorded spectra are presented in Figure 3. As can be revealed, both composites show
the characteristic vibrational peaks of nitrated cellulosic chains, which are O-H stretching
at 3500–3470 cm−1, C-H stretching at 2900 cm−1, and the absorption bands of NO2 and
O-NO2 groups in the fingerprint region from 1800 cm−1 till 500 cm−1. Furthermore, the
typical functional groups of HNTO are also identified in the spectra of the elaborated
composites at representative bands of 3350–3280 cm−1 for primary N-H of hydrazine
group, 2730 cm−1 for N-H in triazole ring, 1690 cm−1 for C=O, 1509 cm−1 and 1320 cm−1

for asymmetric and symmetric C-NO2, respectively [16,43]. Besides that, the slight red-
shift of some chemical bands associated with HNTO salt is attributed to the interaction of
electron-withdrawing nitrate esters linked to cellulose backbone with nitro and carbonyl
groups of triazole heterocycle, which affect the electron density of atoms [16,25]. Similarly,
the significant drop in the intensity of the OH band suggests the presence of hydrogen
bonds between hydrazine moiety of HNTO molecule and nitrated cellulosic chains. These
findings demonstrate that the main molecular structures of HNTO, NC, and NMCC were
maintained during the fabrication process.
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2.4. Assessment of the Thermal Behavior

In order to assess the suitability of the designed energetic composites for real-world
applications, their thermal stability and decomposition behavior were investigated by TGA
and DSC analyses, and the results are illustrated in Figure 4. As can be seen from the
TGA/DTG thermograms plotted in Figure 4a, nitrated cellulosic polymers (NC and NMCC)
present a single prominent mass loss event (≥95%) at 190–220 ◦C, whereas HNTO salt
undergoes two consecutive decomposition processes at 195–210 ◦C and 215–235 ◦C with a
weight loss of around 45.4% and 48.9%, respectively. In the case of their chemical mixtures,
it is obvious from TGA/DTG curves that both HNTO/NC and HNTO/NMCC composites
underwent a three-step of decomposition. The first stage recorded at 180–210 ◦C with a
mass loss of 56.2% for HNTO/NC and 50.5% for HNTO/NMCC is corresponded to the
main thermolysis process of nitrated cellulosic chains through thermolytic cleavage of
explosophoric O-NO2 groups. The two last overlapped decomposition events, which hap-
pened in the range of 215–250 ◦C with a total weight loss of 38.2% for HNTO/NC and 41.8%
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for HNTO/NMCC, are assigned respectively to the low and high decomposition stages of
HNTO, where the detailed mechanism can be found in the work of Yi et al. [27]. Moreover,
it is evident from Figure 4a that the composite based on NMCC matrix displays lower onset
and major peak decomposition temperatures than that based on pristine NC, which can
be explained by the increased nitrogen content and reduced particle size of NMCC with
respect to the pristine NC, leading to the acceleration of the thermal degradation [44,45].
Such a statement was also confirmed by Dobrynin et al. [46] and Chen et al. [47], who
demonstrated that the replacement of NC with its micro- or nanosized derivatives is very
helpful for preparing promising energetic nanocomposites with enhanced thermal reactiv-
ity and combustion performance. In addition, the early decomposition of HNTO/NC and
HNTO/NMCC composites with respect to their raw nitrated cellulosic matrices can be also
promoted by the released reactive species and energy during the decomposition of HNTO.
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On the other hand, DSC experiments have been also executed at various heating
rates to elucidate the exothermic/endothermic processes that occur and to evaluate the
thermo-kinetic parameters that are very important in mastering the thermolysis features of
energetic materials. The measured heat flow curves of both elaborated composites at differ-
ent heating rates (β) are shown in Figure 4b, while the resulting thermal parameters, such
as the onset decomposition temperature (Tonset), the maximum decomposition temperature
(Tpeak), as well as the heat released (∆H) at β = 10 ◦C/min are summarized in Table 2.
According to Figure 4b, both energetic composites exhibit three consecutive exothermic
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processes including the main decomposition peak of the nitrate esters and two other peaks
associated with the decomposition of HNTO. These decomposition phenomena are found
to be highly dependent on the β, and hence are kinetic events because a faster heating rate
reduces the reaction time and delays the decomposition phenomena. Furthermore, it is
evident from Table 2 and Figure 4 that the initial and maximum decomposition temper-
atures of nanostructured HNTO/NMCC composite are lower than those of HNTO/NC
one, which corroborate the TGA/DTG findings. This behavior can be attributed to the
enhanced interfacial contact between nanostructured nitrocellulose and HNTO, as proved
by SEM analysis, which promote the heat and mass transfer within the composite and
accelerate its thermal decomposition. This statement can also be justified through the
values of the difference between the peak and the onset temperatures (∆T) for the differ-
ent decomposition steps of the HNTO/NMCC composite, which significantly decreased
compared to those of the HNTO/NC formulation (Table 2). Another interesting aspect
that one can depict is the shift of the exothermic processes of HNTO towards a higher
temperature, stipulating that the heat transfer from the reaction zone to the unburned
portions of HNTO is facilitated by nitrate esters, which sustains the propagation of the
exothermic reaction [48,49]. Indeed, the early decomposition of nitrated cellulosic polymer
(NC or NMCC) could be considered as the likely thermolysis trigger of the investigated
energetic composites [47,50]. It is interesting to mention based on the above discussion
that the thermolysis process of nitrated cellulosic matrices mainly controls the thermal
behavior of the elaborated composites. In addition, it is found that the total heat release of
HNTO/NMCC (1912.1 J/g) is higher than that of HNTO/NC (1835.8 J/g), confirming once
more the effectiveness of using nitrated nanostructured cellulose rather than traditional
NC to improve the energetic performance of the designed composite. Besides that, it is im-
portant to point out that the new designed HNTO/NC and nanostructured HNTO/NMCC
composites have better thermal stability than some reported nitrocellulose-based ener-
getic formulations such as NC/GAP (Tpeak = 193 ◦C, β = 10 ◦C/min) [18] and NC/HMX
(Tpeak = 168.2 ◦C, β = 10 ◦C/min) [20]. Based on the above thermal results, we can conclude
that both nitrated cellulose-rich polymer and HNTO salt may affect the thermolysis of each
other via a synergistic effect, and thus such composite can find effective application in the
area of solid rocket propellants and explosives.

Table 2. DSC parameters of the as-prepared energetic composites obtained at β = 10 ◦C/min.

Sample

1st Decomposition Stage 2nd Decomposition Stage 3rd Decomposition Stage

Tonset
(◦C)

Tpeak
(◦C)

∆T *
(◦C)

∆H
(J/g)

Tonset
(◦C)

Tpeak
(◦C)

∆T *
(◦C)

∆H
(J/g)

Tonset
(◦C)

Tpeak
(◦C)

∆T *
(◦C)

∆H
(J/g)

∆HT
(J/g)

HNTO/NC 195.0 201.9 14.2 549.5 218.7 225.5 6.8 950.5 232.7 239.4 6.7 335.8 1835.8

HNTO/NMCC 185.9 195.7 9.8 560.9 204.1 209.2 5.1 994.8 218.8 222.3 3.5 356.4 1912.1

* ∆T = Tpeak − Tonset; ∆HT, total heat release.

2.5. Determination of the Thermo-Kinetic Parameters

Due to the potential hazardous thermal runway of nitrate ester-based energetic formu-
lations, it is very important to study their thermos-kinetic behaviors to accurately control
their reactivity and thermolysis features. Such investigations could not be achieved by
simple evaluation of thermal decomposition temperatures obtained from TGA or DSC
analyses. Therefore, the obtained non-isothermal DSC data have been further exploited to
calculate the key kinetic parameters, namely, the activation energy (Ea), the pre-exponential
factor (Log(A)), and the reaction decomposition model (g(α)). Before discussing each result
of the Arrhenius parameters, it seems worthy to define them. Ea is typically defined as
the lower energy needed to initiate a reaction for which a higher value means more input
energy is required to ensure the ignition of the sample, whereas Log(A) represents the
collision between molecules per time unit, where a higher value implies higher reactant’s
reactivity. In most cases, this latter parameter can be effectively determined via a model-free
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approach using the so-called compensation effect, which stipulates the existence of a linear
relationship between Ea and Log(A) [51,52].

As recommended by the ICTAC, a mathematical deconvolution of the DSC peaks of
both energetic composites was performed using the asymmetric Frazer–Suzuki function,
which is the most used method to greatly fit the multistep kinetic behaviors. After that, the
experimental data were subjected to three isoconversional approaches (TAS, it-KAS and
VYA/CE) to compute the kinetic triplet for each decomposition process. The dependence
of the Arrhenius parameters with the extent of conversion (α) for each thermolysis step
that occurred in the designed energetic composites are plotted in Figures 5 and 6, while the
average values of Ea and Log(A) associated with their corresponding confidence intervals,
as well as the mathematical reaction mechanisms g(α), are listed in Table 3. The foremost
finding is that the calculated Arrhenius parameters using the three isoconversional methods
for both energetic composites are in line with each other with a relative deviation lower than
10%, demonstrating the excellent consistency of the performed computations. The high
accuracy of the computed Arrhenius parameters using the linear TAS and it-KAS models
can be also confirmed by the strong regression coefficient higher than 0.9993. Furthermore,
the standard deviation uncertainties introduced in the values of Ea and Log(A) are within
those recommended by the ICTAC (<30%) [53]. Another interesting result is that the
evolution profile of Ea and Log(A) vs. the extent of conversion, for each thermolysis stage is
similar, which is justified by the energy compensation effects during decomposition [52].
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It can be observed from Figures 5 and 6 that the multistep decomposition processes of
the as-prepared energetic composites exhibit different trends of Arrhenius parameters as a
function of conversion, indicating that their thermokinetic behaviors follow the chemical
reaction of the monomolecular energetic materials (NC, NMCC, and HNTO). In the first
stage, evaluated at an apparent Ea of 139 kJ/mol for HNTO/NC and 119 kJ/mol for
HNTO/NMCC associated with the homolytic cleavage of explosophoric O-NO2 groups,
HNTO/NC shows a decrease in Ea and Log(A) values with the extent of conversion,
while an opposite trend of these parameters is obtained for HNTO/NMCC. This finding
reveals that the beginning of this first decomposition process is much easier in the case of
HNTO/NMCC composite, which is expected due to the increased amount of thermally
unstable nitrate esters of NMCC, promoting the heat accumulation and hot spot formation
within the composite, and consequently elevating its sensitivity against thermal stimuli as
outlined by thermal analyses (TGA and DSC). It is worthy to point out that the average
value of Ea obtained for the first thermolysis process of HNTO/NMCC is lower than that
of HNTO/NC, which are even inferior to those of single NC (172 kJ/mol) and NMCC
(156 kJ/mol) matrices [54], indicating that the presence of HNTO significantly improves
the process via the enhancement of the heat and mass transfers within the nitrate esters. A
similar trend was found in the research work of Chen et al., who reported an increase in
the decomposition rate of nitrate esters when an explosive is added [21].
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Table 3. Kinetic triplet for the thermal decomposition of the as-prepared composites.

Sample Isoconversional Method Eα (kJ/mol) Log (A(s−1)) g(α)

HNTO/NC
1st step

TAS 139.49 ± 12.40 11.95 ± 2.84 G1 = 1 − (1 − α)2

it-KAS 139.54 ± 12.45 11.83 ± 2.83 G1 = 1 − (1 − α)2

VYA/CE

β = 10 ◦C/min

139.49 ± 12.35

11.89 ± 1.30 /

β = 15 ◦C/min 11.93 ± 1.30 /

β = 20 ◦C/min 11.89 ± 1.30 /

β = 25 ◦C/min 11.85 ± 1.30 /

HNTO/NC
2nd step

TAS 157.96 ± 9.55 13.25 ± 1.35 A5/2 = [−ln(1 − α)]2/5

it-KAS 157.97 ± 9.55 13.11 ± 1.34 A5/2 = [−ln(1 − α)]2/5

VYA/CE

β = 10 ◦C/min

157.96 ± 9.37

13.15 ± 1.21 /

β = 15 ◦C/min 13.18 ± 1.25 /

β = 20 ◦C/min 13.20 ± 1.24 /

β = 25 ◦C/min 13.22 ± 1.20 /

HNTO/NC
3rd step

TAS 165.93 ± 11.06 13.45 ± 1.86 A3 = [−ln(1 − α)]1/3

it-KAS 165.96 ± 11.05 13.30 ± 1.85 A3 = [−ln(1 − α)]1/3

VYA/CE

β = 10 ◦C/min

165.94 ± 8.67

13.41 ± 1.60 /

β = 15 ◦C/min 13.32 ± 1.62 /

β = 20 ◦C/min 13.38 ± 1.58 /

β = 25 ◦C/min 13.35 ± 1.59 /

HNTO/NMCC
1st step

TAS 119.5 ± 7.85 10.27 ± 1.22 G1 = 1 −(1 − α)]2

it-KAS 119.5 ± 7.90 10.20 ± 1.21 G1 = 1 −(1 − α)]2

VYA/CE

β = 10 ◦C/min

119.5 ± 8.70

10.13 ± 0.93 /

β = 15 ◦C/min 10.23 ± 0.98 /

β = 20 ◦C/min 10.20 ± 0.95 /

β = 25 ◦C/min 10.14 ± 0.91 /

HNTO/NMCC
2nd step

TAS 125.4 ± 9.90 10.32 ± 1.80 A5/2 = [−ln(1 − α)]2/5

it-KAS 125.5 ± 9.95 10.20 ± 1.73 A5/2 = [−ln(1 − α)]2/5

VYA/CE

β = 10 ◦C/min

125.5 ± 10.83

10.24 ± 0.89 /

β = 15 ◦C/min 10.30 ± 0.93 /

β = 20 ◦C/min 10.27 ± 0.94 /

β = 25 ◦C/min 14.24 ± 0.92 /

HNTO/NMCC
3rd step

TAS 133.08 ± 11.15 10.34 ± 1.70 A4 = [−ln(1 − α)]1/4

it-KAS 133.11 ± 11.70 10.22 ± 1.62 A4 = [−ln(1 − α)]1/4

VYA/CE

β = 10 ◦C/min

133.10 ± 11.65

10.25 ± 1.02 /

β = 15 ◦C/min 10.37 ± 1.11 /

β = 20 ◦C/min 10.35 ± 1.08 /

β = 25 ◦C/min 10.26 ± 1.06 /

Regarding the second decomposition process, which corresponds to the simultaneous
cleavage of nitro, hydrazine, and carbonyl groups accompanied by azole ring breaking,
both energetic composites show the same increasing evolution profile of Arrhenius param-
eters with an apparent dependency on the conversion degree. Such behavior demonstrates
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that the rate of the second thermolysis process is much easier at the beginning of conver-
sion, which is due to the autocatalytic reaction channels caused by the released radicals
and oxidizing species formed during the homolytic splitting of nitrate esters that signif-
icantly reduced the initiation energy of pure HNTO molecule broadly ranged between
180–200 kJ/mol [16,43]. This finding suggests that the hot reactive species releases from the
decomposition of nitrated cellulosic polymer (NC or NMCC) would show strong catalytic
effect only in gas-phase reaction after initial decomposition of HNTO at higher temperature
(increased Tpeak), resulting in lowering activation energy of decomposition. For the last
stage, we can clearly denote from Figures 5 and 6 that both elaborated energetic composites
display a growth behavior in Arrhenius parameters versus conversion, providing evidence
for the potential catalytic effect of nitrate esters on the gas-phase thermolysis reaction upon
initial decomposition of HNTO. In this event, the resultant species from the second decom-
position step are adsorbed on the surface of residual HNTO salt, which is then decomposed
at a higher temperature into gas-phase products. In addition, the obtained mean values
of Ea for the last decomposition stage of HNTO/NC and HNTO/NMCC composites are,
respectively, 166 kJ/mol and 133 kJ/mol, which are lower than the common pyrolysis
energy range of pure HNTO reported in our previous papers [16,29]. This result highlights
once more the extra initiation energy provided by the nitrate ester exothermic decomposi-
tion, which certainly leads to the decrease of the activation energy of the decomposition
processes. Besides that, it is worthy to highlight that, during the whole decomposition
process, the kinetic parameters of the new prepared nanoenergetic composite based on
nitrated cellulose nanostructure are found to be lower than that based on the common
nitrocellulose, corroborating the thermal findings.

Another crucial point to consider in the examination of the thermokinetic behavior
of the newly developed energetic composites is the assessment of the variation of their
most probable reaction models (g(α)) derived from the employed isoconversional methods.
The evolution of the models as a function of conversion is displayed in Figure 7, while the
mathematical formula of the models is given in Table 3. It is important to mention that the
Vyazovkin non-linear method does not allow obtaining the reaction model, but its com-
bination with the compensation effect can provide numerical values of the experimental
g(α). Among the 41 theoretical models reported in our recent paper [55], the investigated
HNTO/NC and HNTO/NMCC formulations follow various reaction mechanisms during
their decomposition stages. However, it is found that TAS and it-KAS provide the same
integral model for each energetic composite at each thermolysis step. According to these
isoconversional kinetic methods, the first decomposition process of both energetic com-
posites is governed by a chemical reaction mechanism (G1). In the case of the second and
the last decomposition processes, based on the employed linear isoconversional methods,
both energetic composites decompose according to a random nucleation mechanism of
Avrami-Erofeev (A5/2, A3, and A4). Compared to pure HNTO, the same model categories
are obtained and already mentioned in previous work [16,43], indicating that the decompo-
sition process of the nitrate esters does not affect the reaction model unlike the activation
energy of the process. Besides that, it is interesting to point out the kinetic results obtained
for the thermal behavior of the new developed energetic composites agreed well with
the data of the same category of nitrocellulose-based energetic composites found in the
open literature [21,56]. Henceforth, the thermokinetic findings of the current work provide
new insight into the importance of developing new nanoenergetic composites based on ni-
trated cellulose nanostructure and HNTO instead of the highly sensitive NG, for promising
application in high-performance solid propellants and explosive formulations.
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2.6. Sensitivity Features

In order to probe the safety performance of the developed energetic composites, their
impact and friction sensitivities are tested, and the determined values are displayed in
Table 1. It is obvious that the developed energetic composites, comparable to their raw
compounds, are insensitive toward friction (FS ≈ 350 N) according to the UN Recommen-
dations on the Transport of Dangerous Goods. Furthermore, their impact sensitivities are
found to be relatively similar to that of HNTO explosive but interestingly better than those
of nitrated cellulosic polymers, benefiting from the synergetic effect and closer interfacial
contact between HNTO and nitrated cellulosic matrices. The uniform dispersion of HNTO
in nitrated cellulosic chains would also reduce the formation of the hot spot explosive and
hence decrease the sensitivity of the composites. Accordingly, the newly prepared ordinary-
and nano-energetic composites present fundamentally acceptable physical stability, render-
ing them promising candidates for real-world potential use in defense applications.

3. Experimental Section
3.1. Materials

HNTO with a purity of 99.5% was previously synthesized according to the procedure
reported in our recent papers [16,29]. NC and NMCC with a nitrogen content of 12.61%
and 13.08%, respectively, were prepared in our laboratory following the same approach
mentioned by Tarchoun and coworkers [54].

3.2. Theoretical Design of the Composites

The thermodynamic calculation is necessary for composites formulation design since
their energetic performance could be approximately predicted by theoretical calculation.
For this purpose, several thermochemical tools such as EXPLO5 software, ICT thermody-
namic code (Institute of Chemical Technology, virgin 2008, Fraunhofer, Germany), and
NASA Chemical Equilibrium with Applications (CEA) (NASA, RP-1311, Washington, DC,
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USA) are widely used. In this study, EXPLO5 thermochemical computer code (OZM Re-
search, Version 6.04, Czech Republic, European Union) was employed to determine the
optimal composition of the as-prepared energetic composites, which delivered the optimum
values of specific impulse (ISP) and detonation velocity (DC-J). The first parameter, which is
widely used to compare the efficiency of rocket boosters, is determined by assuming iso-
baric combustion; whereas the DC-J and other detonation properties are predicted according
to the Chapman-Jouguet (CJ) theory by assuming isochoric combustion [57]. The molecular
structures of the pure ingredients are provided in Figure 8a, while the obtained results
corresponding to the theoretical specific impulse and detonation velocity are presented in
Figure 8b.
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3.3. Preparation Procedure of the Optimal Composites

HNTO/NC and HNTO/NMCC composites were elaborated from nitrogen-rich mix-
tures of 60 wt.% HNTO (Energetic Materials Laboratory, Algiers, Algeria) and 40 wt.%
nitrated cellulosic matrix (Energetic Materials Laboratory, Algiers, Algeria). It should be
noted that the weight percentages of the different ingredients are optimized using the
computation method detailed above. As illustrated in Figure 8c, dried NC (or NMCC)
was firstly dissolved in a sufficient amount of acetone and stirred at room temperature for
40 min. After that, dried HNTO was added in small portions to the solution under continu-
ous stirring for 30 min. During the mixing process, a few mL of acetone should be added in
order to avoid the viscosity decrease of the mixture caused by the high volatility of acetone.
Lastly, the resulting composites (HNTO/NC and HNTO/NMCC) were poured into specific
aluminum pans, and the residual acetone was eliminated after drying the admixtures in a
vacuum oven. It is important to mention that although we experienced no difficulties in
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handling these energetic materials, production at a small scale with precautionary safety
practices (leather gloves and face shield) is strongly encouraged.

3.4. Compatibility Assessment

During the steps of preparation and storage of energetic mixtures, incompatibility
issues could strongly accelerate the aging process, which results in a change in the thermal
stability as well as impairing the safety and operational performance of the formulation.
Therefore, testing the compatibility of an energetic material with other compounds is
an extremely crucial step in developing new energetic formulations in order to ensure
their storage stability and reliability. In this study, the effect of HNTO on the chemical
compatibility of nitrated cellulosic polymers has been assessed using DSC standard thermal
method. According to the standardization agreement (STANAG) 4147 ed. 2, measurements
should be carried out for pure samples and their physical mixtures in a 1:1 mass ratio [28].
In addition, it should be noted that, while STANAG 4147 requirements call for thermal
analyses to occur at 2 ◦C/min, a heating rate of 10 ◦C/min was taken to minimize time
analysis as already reported in the literature [58–60]. A series of runs was performed, and
an analysis of the data showed no discernable difference in the results. It should be noted
that our powder samples (NC, NMCC, and HNTO) were passed through a sieve with a
2 mm opening to obtain effective mixing and a high degree of contact between ingredients
during testing. The DSC-based compatibility standard considers that the difference in the
maximum peak temperature (∆Tp) calculated as given in Equation (1) is the main criterion
for determining the chemical compatibility.

∆TP = TS − TM (1)

where: TS and TM are the exothermic peak temperatures of the single compound and the
physical mixture, respectively. The single system is the pure energetic component, whose
exothermic peak temperature is the smaller one. According to the guidelines described
in STANAG 4147 ed. 2 [28], if ∆TP ≤ 4 ◦C, the mixture is determined as compatible;
if ∆TP ≥ 20 ◦C, the mixture is incompatible; if ∆TP is between 4 and 20 ◦C, another method
is recommended to evaluate the compatibility.

3.5. Characterization Techniques

The morphological structure of raw materials and the homogeneity of their corre-
sponding formulations were analyzed by scanning electron microscopy (SEM) recorded on
an FEI Quanta 600 at an accelerating voltage of 5 kV. The samples were coated with 20 nm
of carbon to reduce charging effects. Their chemical structure was also characterized by
Fourier transform infrared spectroscopy (FTIR) performed using a Perkin Elmer 1600 spec-
trometer. The spectra were collected in ATR mode in the range of 4000–500 cm−1, with an
accumulation of 64 scans and a resolution of 4 cm−1.

Experimental densities were measured using a Gas pycnometer device, type Accupyc
1340 II electronic densimeter. Ten measurements were performed, and the reported value is
the average one. The experimental density values (ρEXP) of the prepared composites were
compared to their theoretical maximum densities (ρTMD) using the following formula:

∆ρ(%) = 100 × /ρEXP − ρTMD/
ρTMD

(2)

where ∆ρ represents the percentage gap between real and theoretical composite density.
The theoretical density values of the as-prepared composites were calculated from their
respective ingredient densities listed in Table 1.

The thermal decomposition behavior of the involved energetic composites was as-
sessed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)
techniques. TGA experiments for about 1–2 mg samples were carried out on Perkin Elmer
TG 8000 (mass accuracy 0.1 µg) under a constant nitrogen atmosphere at a heating rate
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of 10 ◦C/min from room temperature to 350 ◦C. DSC measurements were recorded on
Perkin-Elmer DSC 8000 analyzer (Perkin-Elmer, Waltham, MA, USA). for around 1 mg
samples at different heating rates (10, 15, 20, and 25 ◦C/min) under an inert atmosphere
from 50 ◦C to 350 ◦C.

Sensitivities toward impact (IS) and friction (FS) of all samples were determined with a
standard BAM drop hammer and friction tester according to STANAG 4489 and STANAG
4487, respectively [61,62]. The limiting values of the impact energy and friction force were
determined as the lowest value at which a positive result is obtained from at least one out
of six repeated tests.

Kinetic Computations

To further elucidate the thermal runaway mechanism of the newly elaborated energetic
composites, their thermokinetic behaviors were studied by subjecting the non-isothermal
DSC data to isoconversional kinetic analysis. Herein, we followed the recommendation of
the International Confederation for Thermal Analysis and Calorimetry (ICTAC), where the
reaction rate, at constant conversion (α), only depends on temperature (Equation (3) [53].
Basically, the isoconversional approach allows estimating the Arrhenius parameters, namely,
the activation energy (Ea) and the preexponential factor (Log(A)) without requiring, in prior,
the reaction model (g(α)) given by Equation (4).

dα

dT
=

Aa

β
e(

−Ea
RT ) f (α) (3)

g(α) =
α∫

0

dα

f (α)
=

Aa

β

∫ T

T0

e−Ea/RTdT (4)

From DSC curves, the value of α is calculated as a ratio of the current heat change ∆H
to the total reaction heat ∆H total :

α =

∫ t
t0

(
dH
dt

)
dt∫ t f

t0

(
dH
dt

)
dt

=
∆H

∆H total
(5)

Herein, two linear isoconversional models, namely, Trache–Abdelaziz–Siwani (TAS) [55],
and the iterative Kissinger–Akahira–Sunose (it-KAS) [63], and one non-linear isoconversional
Vyazovkin’s method (VYA) coupled with the compensation effect approach (CE) [52], were
computed to determine the hole kinetic triplet (Ea, Log(A), g(α)). The calculations were
carried out using a local code compiled in MATLAB software.

4. Conclusions

In summary, new high-energy dense composites based on HNTO explosive and ni-
trated cellulosic polymers (NC and NMCC) were successfully elaborated through a casting
method. Beforehand, the chemical compatibility of HNTO with NC and NMCC matrices
was confirmed by employing DSC standard method. A theoretical performance com-
putation was then conducted to determine the optimal composition of the as-prepared
HNTO/NC and nanostructured HNTO/NMCC formulations, which corresponded to
60/40 wt.%, based on the optimum values of specific impulse and detonation velocity
using EXPLO5 V6.04 software. Structural characterizations (SEM and FTIR) and density
measurements of the designed energetic composites demonstrated their homogeneity with
good dispersion of HNTO within the nitrated cellulosic chains, which promoted from
NC to NMCC. Compared to the baseline HNTO/NC formulation, the nanostructured
HNTO/NMCC composite possessed slightly low decomposition temperatures and acti-
vation energies, while a higher heat release is obtained, confirming its improved thermal
reactivity. Furthermore, the thermal decomposition of HNTO is also increased when
dispersed within the nitrate esters matrix owing to the enhanced heat transfer from the
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reaction zone to the unburned portions of HNTO, which sustains the propagation of the
exothermic reaction.

In addition, the computed isoconversional kinetic approaches showed that the devel-
oped energetic composites follow different mechanisms during their decomposition stages,
which could change from a chemical reaction (G1) to a random nucleation mechanism of
Avrami–Erofeev (A5/2, A3, and A4). It was also revealed that both HNTO/NMCC and
HNTO/NMCC formulations possessed fundamentally acceptable safety performance with
FS and IS around 350 N and 6 J, respectively. In light of these results, it can be concluded
that the new developed high-energy dense nanocomposite based on nanostructured nitro-
cellulose with promising thermal and kinetic features, as well as attractive performance
can be considered as a futuristic high-performance formulation for the development of a
new generation of composite explosives and solid rocket propellants.
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