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Abstract: Weak complexes of isocyanic acid (HNCO) with nitrogen were studied computationally
employing MP2, B2PLYPD3 and B3LYPD3 methods and experimentally by FTIR matrix isolation
technique. The results show that HNCO interacts specifically with N2. For the 1:1 stoichiometry,
three stable minima were located on the potential energy surface. The most stable of them involves a
weak, almost linear hydrogen bond from the NH group of the acid molecule to nitrogen molecule
lone pair. Two other structures are bound by van der Waals interactions of N· · ·N and C· · ·N types.
The 1:2 and 2:1 HNCO complexes with nitrogen were computationally tracked as well. Similar types
of interactions as in the 1:1 complexes were found in the case of the higher stoichiometry complexes.
Analysis of the HNCO/N2/Ar spectra after deposition indicates that the 1:1 hydrogen-bonded
complex is prevalent in argon matrices with a small amount of the van der Waals structures also
present. Upon annealing, complexes of the 1:2 and 2:1 stoichiometry were detected as well.

Keywords: hydrogen bond; van der Waals interaction; vibrational spectroscopy; computational
chemistry; molecular complex; atmospheric chemistry; HNCO

1. Introduction

Non-covalent interactions are often involved in a variety of processes in biology and
chemistry such as protein folding, DNA structure or molecular crystals formation. Weak
molecular interactions have also an important contribution to chemical and physical pro-
cesses taking place in the Earth’s atmosphere [1,2]. The vibrational properties of molecules
taking part in such interactions appear to be very sensitive to the complexation. Therefore,
infrared spectroscopy has been most often used to study various kinds of interactions,
including van der Waals and hydrogen bonding. Among the most often studied weakly
bound aggregates are those containing N2 molecules. Nitrogen, being the most abun-
dant component of the Earth’s atmosphere is considered to be chemically inert. However,
it has an electric quadrupole moment and was found to interact strongly with various
molecules [3]. Such interaction leads to considerable changes in vibrational spectra of the
complexed subunits, as demonstrated, for example, for nitrogen complexes isolated in
low temperature matrices. For molecules with proton donor groups a weak traditional
hydrogen bond of AH· · ·N type (A=O, N, F, Cl, and others) is the most often encountered
specific interaction [4–22]. Examples of the blue shifted hydrogen bonds can also be found
in the literature, for instance, for the N2 complexes with N,N-dimethylformamide [23],
chloroform [24] and difluoromethane [25]. Complexes of the noble gas hydrides with
nitrogen have been shown to induce very large vibrational blue shifts for HXeCl· · ·N2,
HXeBr· · ·N2 [26], HArF· · ·N2, HKrF· · ·N2, HKrCl· · ·N2 [27] as well as for the (NgHNg)+

cations (Ng=Ar and Kr) [28]. Non-hydrogen bonded species formed between nitrogen
and such molecules as dichlorosilylene SiCl2 [29], silylene SiH2 [30] or CO2 [31] have also
demonstrated significant changes in the vibrational spectra of the complex subunits.
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Isocyanic acid HNCO is an atmospheric pollutant that is emitted into the air from
primary and secondary processes. The preliminary sources of this toxic compound are
various combustion processes such as fossil fuel combustion and biomass burning [32].
In urban environments, HNCO can be found, for example, in tobacco smoke [33,34] and in
vehicles’ exhaust [35–37]. The oxidation of atmospheric amines and amides are considered
as secondary sources of HNCO as well [38,39]. Moreover, as a trace gas in ambient air,
when absorbed while breathing, HNCO can participate in the protein carbamylation
reactions, which are addressed in development of cardiovascular impairment, cataracts and
rheumatoid arthritis [32]. In addition to research related to the chemistry of the atmosphere
and in air, properties of HNCO and its isomers, as well as their photolysis channels, have
been studied extensively both theoretically and experimentally [40–58]. However, there
is much less data available on molecular complexes of HNCO [59–63], which would give
insights on how the molecular properties and chemical reactivity of HNCO change upon
intermolecular interactions.

In the present work, we report experimental results on the interaction of HNCO
with nitrogen by using FTIR spectroscopy in an argon matrix. The experimental studies
are supported by quantum chemical calculations at MP2, B2PLYPD3 and B3LYPD3 lev-
els employing the 6-311++G(3df,3pd) and aug-cc-pVTZ basis sets. The properties and
chemical reactivity of van der Waals and hydrogen bonded complexes of atmospheric
constituents, especially those contributing to tropospheric and stratospheric chemistry, are
worth studying. To our knowledge, complexes of isocyanic acid with nitrogen have not
been the subject of either experimental or theoretical studies, and could be of interest for
better understanding of interacting tropospheric gases.

2. Results and Discussion
2.1. Computational Results

Cartesian coordinates of all optimized species are provided in Table S1 in Supplementary
Material. In general, the applied computational methods predicted similar geometries for the
optimized complexes. The differences in the results for various computational approaches
are commented upon below keeping the computational details to the minimum for the
benefit of the experimental findings. In this paper, we present results of the MP2 [64–67],
B2PLYPD3 [68–70] and B3LYPD3 [71–75] calculations using 6-311++G(3df,3pd) [76,77] basis
set. Those obtained for aug-cc-pVTZ [78,79] basis set are available in Supplementary Material.

2.1.1. Structure and Energetics of the 1:1 HNCO· · ·N2 Complexes

At the MP2 and B2PLYPD3 levels of theory three energy minima were found on the
potential energy surface for the 1:1 HNCO complex with nitrogen. The structures related
to these energy minima are shown in Figure 1 together with the adopted numbering.
The first complex (ON1) is characterized by a weak, almost linear N-H· · ·N hydrogen
bond. Two other structures (ON2 and ON3) are bound through a weak van der Waals
interaction. Interestingly, for a sulfur analogue of isocyanic acid, HNCS, two minima were
located on the potential energy surface at MP2/6-311++G(2d,2p) level for interaction with
nitrogen [17]. The first of them, which is the more stable of the two, strongly resembles that
obtained for the HNCO· · ·N2 complex, denoted ON1, whereas in the second one nitrogen
molecule interacts with the sulfur atom of the HNCS moiety. There is no analogous
structure on the potential energy surface for HNCO interaction with N2 to indicate a direct
interaction with the oxygen atom. Instead, here the two other optimized structures (ON2
and ON3) depict the N-atom of the N2 molecule to interact with the N-atom or C-atom of
the HNCO moiety. The most likely reason for this difference is a much higher computed
Mulliken negative charge on the oxygen atom compared to that found on the sulfur atom
in the HNCS molecule (−0.677 versus −0.081 at MP2/6-311++G(3df,3pd)) and double the
positive charge on the carbon atom in HNCO compared to HNCS (1.460 versus 0.760).
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Figure 1. The MP2 optimized structures of the 1:1 HNCO· · ·N2 complexes. The positions of the bond
(3,−1) critical points derived from AIM calculations are shown by small green circles.

AIM calculations were performed on the three HNCO· · ·N2 complexes to scrutinize
the type of interaction involved. Table 1 shows the MP2 calculated values of intermolecu-
lar distances and angles as well as values of two important topological AIM parameters:
the electron density ρ(r) and its Laplacian ∇2ρ(r) at the bond critical points. These pa-
rameters are useful to determine the type of interaction in molecular systems. For the
ON1 complex the values of both the electron density ρ(r) and its Laplacian ∇2ρ(r) at the
BCP are in the proper ranges for hydrogen bonding of 0.0002–0.034 au and 0.024–0.139 au,
respectively [80,81]. For the two other complexes, the ∇2ρ(r) values are smaller being
outside the abovementioned interval, and thus indicating van der Waals interactions for
ON2 and ON3.

Table 1. Interatomic distances (Å), angles (degree) and electron density parameters of the inter-
molecular bond critical points (au) of the HNCO complexes with N2 (1:1) computed at the MP2/6-
311++G(3df,3pd) level.

Complex

Intermolecular Parameters 1 AIM Parameters

Interatomic Distances Angle
BCP ρ(r) ∇2ρ(r)

H· · ·Y X· · ·Y X–H· · ·Y
ON1 4.372 6.258 170.7 H1· · ·N5 0.0106 0.0419
ON2 6.187 N2· · ·N5 0.0048 0.0197
ON3 5.992 C3· · ·N5 0.0051 0.0215

1 X: N or C; Y: N.

Interestingly, using the B3LYPD3 methods combined with either applied basis sets
led to the two stable minima ON1 and ON2, whereas the ON3 structure was not found
to exist. Based on the structures shown in Figure 1, the ON3 structure indicates a C· · ·N
interaction, whereas the other structures indicate the N2 molecule interacts more directly to
the nitrogen-containing end of HNCO. Tables 2 and S2 (Supplementary Material) present
the computed interaction energies for all 1:1 HNCO· · ·N2 complexes, and based on the
results acquired for the other computational levels, one could address this to a flat potential
energy surface and negligible interaction energy well for B3LYPD3 calculations. A more
rigorous study of the origin of this discrepancy between computational levels is outside the
scope of this study. Alas, the discussion on energetics of the complexes is based primarily
on the MP2 and B2PLYPD3 results.

All three ON1, ON2 and ON3 complexes are characterized by low interaction energies
Eint in the range of 3.10–6.78 kJ mol−1 (MP2) and 2.59–6.61 (B2PLYPD3) kJ mol−1 (see
Tables 2 and S2). Among the three structures, the hydrogen bonded complex ON1 is the
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most stable one with the highest (the most negative) interaction energy. Out of the two van
der Waals structures (ON2 and ON3) the more stable, at both levels of theory, is the ON3 in
which the N5 atom of the nitrogen molecule interacts with the C-atom of the HNCO moiety.
The ON2 form, in which N2 interacts with the N-atom of the acid, is the less stable of the
two van der Waals complexes. It is worth noting that the order of stability is identical and
the values of interaction energy Eint and relative energy ∆E obtained using both methods
are very similar. However, as can be seen from Tables 2 and S2, the order of the relative
Gibbs free energy values ∆G does not follow the order of the relative energies ∆E, and
in consequence, the less stable ON2 complex has a higher predicted abundance than the
two other complex species. This observation is qualitatively adequate being based on
room temperature calculations, which reflect thermal energies large enough to compete
with the intermolecular interactions found in the complexes studied here. In the context
of atmospheric chemistry and matrix isolation experiments employed here, which are
connected with much lower temperatures, the interaction between the molecular subunits
strongly favor the strongest existing interaction, the hydrogen-bonded ON1 structure.
On the other hand, even though such complexes are short-lived and of low probability
compared to the molecular subunits in the gas phase, they can contribute to the light-matter
interaction, and provide additional channels for energy intake. For low temperature solid
state chemistry, like ices, the probability of formation of such complexes increases, thereby
affecting their photochemical participation.

Table 2. BSSE corrected interaction energies Eint, relative energies ∆E, relative Gibbs free energies
∆G (kJ mol−1), abundance at 298 K A (%) and entropic contributions at 298 K T∆S (kJ mol−1) of the
HNCO· · ·N2 complexes of the 1:1 stoichiometry calculated at MP2, B2PLYPD3 and B3LYPD3 levels
with the 6-311++G(3df,3pd).

Complex
MP2 B2PLYPD3 B3LYPD3

Eint ∆E ∆G A T∆S 1 Eint ∆E ∆G A T∆S Eint ∆E ∆G A T∆S

ON1 −6.53 0.00 4.72 9 −7.79 −6.49 0.00 5.40 7 −8.90 −6.40 0.00 4.51 14 −7.91
ON2 −3.10 3.40 0.00 61 0.00 −2.59 3.86 0.00 63 0.00 −2.68 3.72 0.00 86 0.00
ON3 −4.52 2.00 1.76 30 −3.11 −4.31 2.21 1.87 30 −3.44

1 The calculated vibrational contribution to entropy is equal to (MP2) 86.58, 92.82, 90.32, (B2PLYPD3) 86.20, 93.32,
90.57 and (B3LYPD3) 86.87, 93.21 cal mol−1 K−1 for ON1, ON2 and/or ON3, respectively.

2.1.2. Structure and Energetics of the 1:2 and 2:1 HNCO· · ·N2 Complexes

For HNCO interacting with two nitrogen molecules, four stable forms were located
on the potential energy surface using the MP2 method. These structures are presented in
Figure 2 and the MP2 calculated values of intermolecular distances and angles as well as
values of two AIM parameters: the electron density ρ(r) and its Laplacian ∇2ρ(r) at the
bond critical points are gathered in Table S3 in Supplementary Material. The analysis of
the geometry of the 1:2 HNCO complexes with N2 shows, similarly to the 1:1 complexes,
the presence of hydrogen and van der Waals intermolecular bonds. The calculated values of
the AIM parameters suggest that these two types of the non-covalent interactions between
the three moieties contribute to the stability of these ternary complexes. The presence of
three bond critical points and their location reflect the appearance of the (3, +1) ring critical
points due to the complex formation in O2N1, O2N2 and O2N4, indicating their consistent
topology [80]. Similarly to the 1:1 complexes, not all MP2 optimized structures were found
using DFT methods. Both B2PLYPD3 and B3LYPD3 failed to reproduce the O2N4 structure.
According to the MP2 calculations, no hydrogen bond is present in the O2N2 structure,
and the three components are bound only by intermolecular van der Waals interactions.



Molecules 2022, 27, 495 5 of 16

Molecules 2022, 27, x 5 of 17 
 

 

presence of three bond critical points and their location reflect the appearance of the (3, 
+1) ring critical points due to the complex formation in O2N1, O2N2 and O2N4, indicat-
ing their consistent topology [80]. Similarly to the 1:1 complexes, not all MP2 optimized 
structures were found using DFT methods. Both B2PLYPD3 and B3LYPD3 failed to re-
produce the O2N4 structure. According to the MP2 calculations, no hydrogen bond is 
present in the O2N2 structure, and the three components are bound only by intermolec-
ular van der Waals interactions. 

 
Figure 2. The MP2 optimized structures of the 1:2 HNCO complexes with N2. The positions of the 
bond (3,−1) and ring (3,+1) critical points derived from AIM calculations are shown by small green 
and red circles, respectively. 

As shown in Tables 3 and S4 in Supplementary Material, all optimized 1:2 com-
plexes have similar interaction energies in the range of 9.00 to 12.43 kJ mol−1. The most 
stable structure for all employed computational levels is the O2N1 complex exhibiting a 
N-H…N hydrogen bond and a C…N van der Waals interaction. Points of attachment of 
N2 molecules in O2N1 are analogous to those in the 1:1 complexes ON1 and ON3. 

  

Figure 2. The MP2 optimized structures of the 1:2 HNCO complexes with N2. The positions of the
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and red circles, respectively.

As shown in Tables 3 and S4 in Supplementary Material, all optimized 1:2 complexes
have similar interaction energies in the range of 9.00 to 12.43 kJ mol−1. The most stable
structure for all employed computational levels is the O2N1 complex exhibiting a N-
H· · ·N hydrogen bond and a C· · ·N van der Waals interaction. Points of attachment of N2
molecules in O2N1 are analogous to those in the 1:1 complexes ON1 and ON3.

Table 3. BSSE corrected interaction energies Eint and relative energies ∆E (kJ mol−1) of the
HNCO· · ·N2 complexes of the 1:2 stoichiometry calculated at MP2, B2PLYPD3 and B3LYPD3 levels
with the 6-311++G(3df,3pd) basis set.

Complex
MP2 B2PLYPD3 B3LYPD3

Eint ∆E Eint ∆E Eint ∆E

O2N1 −11.67 0.00 −11.13 0.00 −11.34 0.00
O2N2 −11.00 0.69 −10.17 0.98 −10.04 1.26
O2N3 −9.58 2.10 −9.04 2.08 −9.04 2.27
O2N4 −9.25 2.47

Ten structures were optimized for interaction of two HNCO molecules with N2 us-
ing MP2 method. Three of them, which are relevant to the experimental findings, are
presented in Figure 3 and other structures are shown in Figure S1 in Supplementary Mate-
rial. Data concerning energetics, geometry and AIM parameters of the 2:1 complexes are
gathered in Tables 4, S5 and S6.
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Table 4. The BSSE corrected interaction energies Eint and relative energies ∆E (kJ mol−1) of the
HNCO· · ·N2 complexes of the 2:1 stoichiometry calculated at MP2, B2PLYPD3 and B3LYPD3 levels
with the 6-311++G(3df,3pd) basis set.

Complex
MP2 B2PLYPD3 B3LYPD3

Eint ∆E Eint ∆E Eint ∆E

2ON1 −24.77 0.00 −24.60 0.00 −24.85 0.00
2ON2 −23.81 1.09 −23.97 0.71 −24.81 0.19
2ON3 −22.89 2.02 −22.64 2.07 −23.56 1.43
2ON4 −22.13 2.62 −22.72 1.86 −24.31 0.63
2ON5 −21.17 3.88 −22.13 2.70 −22.84 2.26
2ON6 −20.38 4.31 −20.67 3.83 −21.80 2.96
2ON7 −19.50 5.19 −19.66 4.84 −20.88 3.89
2ON8 −18.37 6.32 −18.70 5.79 −20.84 3.97
2ON9 −18.28 6.43 −18.62 5.90 −19.75 5.04
2ON10 −16.48 8.18 −17.03 7.44 −18.74 6.06

As it is seen in Figures 3 and S1, interaction of two HNCO molecules with nitrogen
leads to interesting structures. Most of them contain a HNCO dimer bound by N-H· · ·N
(2ON1, 2ON2 and 2ON3) or N-H· · ·O (2ON5, 2ON6, 2ON7 and 2ON9) hydrogen bonds,
and additional interaction of hydrogen bond or van der Waals type with the nitrogen
molecule. Three other structures contain the HNCO dimer bound by C· · ·O van der Waals
interactions (2ON4, 2ON8 and 2ON10).

The 2:1 complexes are characterized by relatively similar interaction energy values
between complex structures ranging from −26.02 to −16.48 kJ mol−1 (see Tables 4 and S6).
The three most stable structures, 2ON1, 2ON2 and 2ON3, presented in Figure 3, contain
the N-H· · ·N hydrogen bonded HNCO dimer interacting with the N2 molecule.

2.2. Matrix Isolation Infrared Spectra

A blank experiment was conducted for HNCO isolated in an argon matrix and the
spectrum obtained agreed with those published in the literature [45,47]. It is interesting
to note that the isocyanic acid monomer was found to rotate in an argon matrix [82].
In consequence, in the νNH stretching region of HNCO three bands due to the split ro-
tational 0←1 transition are observed. Additionally, two components of the absorption
due to the 0←0 transition originating from Fermi resonance are present. The unperturbed
νNH fundamental in an argon matrix is at 3511.5 cm−1 [47]. The second intense band
of monomeric HNCO, due to the asymmetric deformation mode νasNCO, is located at
2259.0 cm−1. The other bands, arising from the δHNC and δNCO deformations, are charac-
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terized by relatively high intensity, and they should, in addition to the νNH and νasNCO
bands, serve as good markers providing information about the structure of the studied
complexes [60]. Of the six infrared active modes of isocyanic acid, two vibrations, νsNCO
stretching and γNCO deformation, are expected to give rise to very weak bands [47].

The present analysis of the HNCO/N2/Ar spectra is based on changes observed in
the νNH stretching region. Additionally, two other spectral regions are taken into account,
namely asymmetric stretching νasNCO and deformation δNCO. The remaining modes are
either strongly coupled or give rise to very weak bands.

2.2.1. HNCO· · ·N2 Complexes of the 1:1 Stoichiometry

When HNCO/Ar and N2/Ar mixtures were co-deposited at 15 K (10 K for measure-
ments) several new bands were observed as compared with the HNCO/Ar spectrum.
Figure 4 shows the νNH, νasNCO and δNCO regions of the spectra of the HNCO/N2/Ar
matrices obtained after deposition at two different HNCO/N2 ratios compared to the
HNCO/Ar spectrum. The difference spectrum is presented in the upper part of the figure,
as well showing new bands appearing upon complexation. In the spectra of the deposited
HNCO/N2/Ar matrices (traces b and c in Figure 4), two new bands appeared in the νNH
stretching region: the more intense of the two being at 3494.0 cm−1 and the second one
at 3499.5 cm−1. The intensity ratio of these two bands is constant in the spectra inde-
pendently on the concentration used. Thus, they are assigned to the 1:1 HNCO· · ·N2
complexes. These bands are accompanied by new absorptions at 2260.5 and 578.5 cm−1

in the νasNCO and δNCO regions, respectively. Based on the observed changes in the
HNCO/N2/Ar spectrum, an attempt can be made to determine the structure of the 1:1
HNCO· · ·N2 complexes formed in the matrices after deposition. Table 5 summarizes the
selected wavenumber shifts calculated for the 1:1 complexes using the MP2, B2PLYPD3
and B3LYPD3 computational methods compared to the experimental results. In addition,
theoretical infrared data and intensities obtained for the monomers and the 1:1 complexes
are presented in Table S7 in Supplementary Material.

Table 5. Selected wavenumber shifts (cm−1) calculated for the 1:1 complexes using the MP2,
B2PLYPD3 and B3LYPD3 methods with the 6-311++G(3df,3pd) basis set compared to the exper-
imental results. The calculated intensities (km mol−1) of the bands are given in parentheses.

MP2 B2PLYPD3 B3LYPD3
Mode Exp.1

ON1 ON2 ON3 ON1 ON2 ON3 ON1 ON2

−25
(405)

−6
(169)

−9
(163)

−25
(401)

−5
(155)

−8
(149)

−23
(392)

−4
(155) νNH −17.5,

−12.0
+2

(706)
−2

(631)
−2

(636)
+2

(732)
−1

(654)
−2

(654)
+2

(798)
0

(712) νasNCO +1.5,
−1.0

+21
(76)

−3
(83)

−6
(97)

+22
(63)

−3
(72)

−4
(81)

+20
(67)

−3
(75) δNCO +5.0,

−5.5
1 The experimental shifts were calculated relative to the corresponding monomer band positions at 3511.5, 2259.0
and 573.5 cm−1, respectively.

Comparison of the theoretical vibrational shifts with those found experimentally indi-
cates that none of the applied methods reproduce the shifts observed in the HNCO/N2/Ar
spectra. However, a set of bands with the shifts of −17.5, +1.5 and +5.0 cm−1 relatively
well fits to the shifts predicted for the most stable structure ON1 (see Figure 1). Both νNH,
νasNCO are well reproduced whereas the shift of the δNCO mode is strongly overestimated.
A possible explanation for this difference can be that the δNCO vibration is strongly coupled
with the in-plane δHNC deformation mode. The second, weaker set of the observed bands
with the shifts of −12.0, −1.0 and −5.5 cm−1 fits well to either of two less stable structures
ON2 or ON3. Thus, in addition to the ON1 structure, one of the ON2 or ON3 structures is
also present, in smaller amount, in the matrices obtained directly after deposition.
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Figure 4. (A) The νNH, νasNCO and δNCO regions in the spectra of matrices: HNCO/Ar = 1/6000
(a), HNCO/N2/Ar = 1/2/5600 (b), HNCO/N2/Ar = 1/4/5600 (c); (B) the difference spectrum (d)
obtained by subtracting the spectrum (a) from the spectrum (c) (pink trace). Letters M and D denote
the HNCO monomer and dimer bands, respectively.

It is worth noting that an improvement of the agreement between the experimental
and theoretical spectral results was obtained when the calculated shifts in the complexes
were compared with those calculated for the corresponding HNCO complexes with an
argon atom. These results are shown in Table S8 in Supplementary Material.

2.2.2. HNCO· · ·N2 Complexes of the 1:2 and 2:1 Stoichiometry

Figure 5 shows the νNH, νasNCO and δNCO regions of the spectra of the HNCO/N2/Ar
matrix obtained after deposition compared to the spectrum of the same matrix after annealing
for 10 min at 33 K (10 K for measurement). The corresponding difference spectrum is also
presented to show spectral changes upon annealing. Tables 6 and 7 show the selected
wavenumber shifts calculated for the 1:2 and 2:1 complexes using the MP2, B2PLYPD3
and B3LYPD3 methods compared to the experimental results. Additionally, the computed
infrared wavenumbers, wavenumber shifts and intensities obtained for all the 1:2 and 2:1
complexes are presented in Tables S9 and S10 in Supplementary Material. The analysis of the
HNCO/N2/Ar spectra obtained after annealing for 10 min at 33 K reveals that the amount of
the 1:1 HNCO· · ·N2 complex increases upon annealing. Simultaneously, many new bands
appear, indicating that complexes with a higher stoichiometry are formed. These new bands
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are marked in the difference spectrum (Figure 5B) by showing the shifts compared to the
corresponding HNCO monomer band positions.
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Table 6. Selected wavenumber shifts (cm−1) calculated for the 1:2 complexes using the MP2,
B2PLYPD3 and B3LYPD3 methods with the 6-311++G(3df,3pd) basis set compared to the exper-
imental results. The calculated intensities (km mol−1) of the bands are given in parentheses.

MP2 B2PLYPD3 B3LYPD3
Mode Exp.1

O2N1 O2N2 O2N3 O2N4 O2N1 O2N2 O2N3 O2N1 O2N2 O2N3

−35
(380)

−33
(398)

−31
(397)

−11
(159)

−32
(376)

−31
(391)

−28
(394)

−29
(364)

−23
(345)

−26
(386) νNH −31.0

0
(662)

0
(740)

0
(661)

−1
(604)

0
(687)

0
(769)

0
(688)

0
(748)

0
(837)

+1
(751) νasNCO

+16
(73)

+22
(81)

+19
(69)

−6
(96)

+17
(61)

+21
(68)

+19
(58)

+16
(66)

+16
(78)

+17
(62) δNCO +22.5

1 The experimental shifts were calculated relative to the corresponding monomer band positions at 3511.5, 2259.0
and 573.5 cm−1, respectively.

Comparison of the experimental vibrational shifts with those predicted by computa-
tional methods allows us to assign these bands to both 1:2 and 2:1 complexes of HNCO with
nitrogen. The position of two new bands appearing in the νNH and δNCO regions at 3480.5
and 596.0, with the shifts of −31.0 and +22.5 cm−1 fits very well to the shifts predicted for
the three most stable HNCO complexes with N2 of the 1:2 stoichiometry, namely O2N1,
O2N2 and O2N3. Since the calculated shifts of these modes are very similar for all these
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three structures, the obtained experimental spectra do not allow us to determine which
of the 1:2 forms are present in the matrix after annealing. The fourth O2N4 complex is
characterized by wavenumber shifts observed in the experimental spectra obtained upon
deposition of the matrix (a set of bands with the −12.0, −1.0 and −5.5 cm−1 shifts) and
assigned to one of the 1:1 species (ON2 or ON3) (see paragraph 2.2.1.). However, this
set of bands does not increase their intensity on annealing, allowing us to exclude the
O2N4 structure.

Table 7. Selected wavenumber shifts (cm−1) calculated for selected 2:1 complexes using the MP2,
B2PLYPD3 and B3LYPD3 methods with the 6−311++G(3df,3pd) basis set compared to the experi-
mental results. The calculated intensities (km mol−1) of the bands are given in parentheses.

MP2 B2PLYPD3 B3LYPD3
Mode Exp.1

2ON1 2ON2 2ON3 2ON1 2ON2 2ON3 2ON1 2ON2 2ON3

−64
(361)

−61
(340)

−39
(177)

−64
(367)

−60
(339)

−36
(163)

−60
(344)

−53
(315)

−34
(163) νNH

−51.5, −54.5, −68.5, −76,5

−145
(769)

−150
(770)

−153
(784)

−154
(780)

−157
(762)

−158
(780)

−170
(830)

−174
(810)

−171
(808) −141.0, −154.5, −158.5

+5
(486)

+5
(21)

+5
(697)

+7
(532)

+6
(32)

+7
(724)

+9
(635)

+8
(43)

+9
(799) νasNCO

+9.0, +5.0

−6
(1090)

−7
(1553)

−9
(650)

−7
(1103)

−8
(1599)

−10
(679)

−7
(1145)

−8
(1738)

−9
(734) −3.0, −7.0

+66
(0)

+63
(37)

+61
(22)

+61
(1)

+62
(2)

+57
(2)

+64
(2)

+65
(3)

+61
(4) δNCO

n.o.

+4
(187)

+11
(26)

−5
(72)

+9
(145)

+13
(20)

−3
(60)

+10
(137)

+14
(22)

−1
(60) +8.0, +2.5, −7.0

1 The experimental shifts were calculated relative to the corresponding monomer band positions at 3511.5, 2259.0
and 573.5 cm−1, respectively.

There are also bands in the spectra of the annealed HNCO/N2/Ar matrices which
show larger shifts than those observed for the 1:2 complexes. The values of these shifts are
shown in Table 7, and compared to the corresponding predicted values for the three selected
2:1 complexes. The corresponding shifts for other 2:1 geometries are summarized in Table
S10 in Supplementary Material. The results collected in Table 7 show that annealing of the
HNCO/N2/Ar matrices also leads to the formation of complexes with the 2:1 stoichiometry.

The analysis of the wavenumber shifts and intensities predicted for different 2:1 com-
plexes allows us to indicate the three structures, which are most probably formed in the
matrix upon annealing (see Figure 3). The presence of two acid molecules in such com-
plexes determines that there are two vibrations of each type. The doublet band predicted
for the νNH, νasNCO and δNCO modes are characterized by distinctly different shifts.
They are also expected to be of high intensity, with an exception of one of the δNCO
modes. The bands identified in the experimental spectra and assigned to the 2:1 species are
identified by the observed vibrational shifts very close to those predicted by computational
methods. Similarly to the 1:2 stoichiometry structures, the vibrational shifts expected for
the three considered structures are close to each other. However, since there are multiple
bands observed in the spectra after annealing (see Figure 5), probably all three geometries
of the 2:1 complexes are present in the matrices and it is not possible to unequivocally
distinct them based on the existing data. Different structures are formed most likely in local
relaxation processes, and the form of ternary complex is therefore deduced by the near
vicinity distribution of complex subunits after deposition.

3. Experimental and Computational Details
3.1. Matrix Isolation FTIR Studies

Isocyanic acid, HNCO, was obtained by heating cyanuric acid powder (Acros Organics,
98%) at ca. T = 450 ◦C under vacuum in a quartz vessel. The HNCO vapor was condensed
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in a liquid-nitrogen trap, passed several times through P2O5 to remove traces of water and
finally stored in a 250 mL glass bulb. The gaseous mixtures were prepared by mixing of
HNCO and N2 (Messer, 6.0) with argon (Messer, 5.0) in two containers in a stainless steel
vacuum system. Matrices were deposited through two jets onto a CsI window kept at 15 K.
Pressure of the gas mixtures and the deposition rates were controlled by piezo transducers
(model 902B, MKS Instruments, Uni-Export Instruments Polska, Warsaw, Poland) installed
in both deposition lines. Low temperature was obtained using a closed cycle helium
cryostat (APD-Cryogenics) and measured by a silicon diode sensor coupled with the digital
controller (Scientific Instruments). Infrared spectra were taken at 10 K in a transmission
mode with 0.5 cm−1 resolution by means of a Bruker IFS 66 Fourier Transform spectrometer
(Bruker Polska Sp. z o.o., Poznań, Poland) equipped with a liquid cooled MCT detector.

3.2. Computational Methods

Computational studies for the 1:1, 1:2 and 2:1 complexes formed between HNCO and
N2 were carried out using Gaussian16 program package [83]. Structures of monomers and
complexes were optimized at the MP2 [64–67], B2PLYPD3 [68–70] and B3LYPD3 [71–75]
levels of theory using the 6-311++G(3df,3pd) [76,77] and aug-cc-pVTZ [78,79] basis sets.
The initial geometry of the 1:1 complexes was based on that found for HNCS· · ·N2 [17].
The initial 1:2 and 2:1 structures were derived from the optimized 1:1 complexes and the
structures of the HNCO dimer. Optimization of the complex structures was done with the
Boys–Bernardi full counterpoise method by Dannenberg [84,85]. The interaction energies
were estimated by subtracting the energies of the isolated monomers with the frozen
geometry from the energy of the complexes. Vibrational wavenumbers and intensities were
computed at the same levels using a harmonic approximation to confirm that the optimized
structures correspond to the minima on the potential energy surfaces and to support the
analysis of the experimental data. Spectral shifts upon complexation were obtained as the
difference between the complex and monomer vibrational wavenumbers.

The topological analysis of the electron density (AIM) [86] was performed at the MP2/
6-311++G(3df,3pd) level using AIM studio program (Version 19.10.12, Professional) [87],
allowing us to characterize various types of interactions present in the aggregates.

4. Conclusions

For the first time, the results of theoretical and FTIR matrix isolation studies of weakly
bound complexes formed between isocyanic acid and nitrogen are presented and discussed.
The MP2 method revealed three, four and ten stable structures for HNCO complexes with N2
of the 1:1, 1:2 and 2:1 stoichiometry, respectively. Using the other two computational methods
(B2PLYPD3 and B3PYPD3), a smaller number of the stable geometries was optimized for
the 1:1 and 1:2 interactions (two and three, respectively). Based on the AIM results, it was
shown that the interacting subunits are bonded either by the N-H· · ·N hydrogen bond or by
different van der Waals forces. Experimentally, HNCO complexes with N2 of three different
stoichiometries were detected. Directly upon deposition of the matrix, the 1:1 species are
present. Annealing at 33 K leads to the formation of higher aggregates HNCO with nitrogen
of the 1:2 and 2:1 stoichiometry. Both experimental and computational studies indicate that
HNCO and nitrogen molecules can engage into specific intermolecular interactions, leading
to notable vibrational spectral changes. In the atmospheric and space chemistry context,
such interactions could become important in low temperatures, and could induce additional
energy intake channels in IR and UV/VIS photon energy regions in HNCO· · ·N2 complexes
and aggregates.

A number of nitrogen complexes with various proton donors has been previously stud-
ied in argon matrices. Table 8 shows the experimental relative shifts of the AH stretching
mode in the AH· · ·N2 hydrogen bonded complexes isolated in argon matrices. Comparison
of the shifts indicates that isocyanic acid forms a complex with nitrogen of comparable
strength to that of formic acid, but it is apparently weaker than the complexes of nitro-
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gen with hydrogen fluoride and nitric acid. Additionally, this comparison indicates that
HNCO· · ·N2 is a plausible molecular complex in atmospheric contexts.

Table 8. The relative shifts observed for hydrogen bonded complexes of HA with nitrogen isolated in
argon matrices.

Proton
Donor HA

Relative
Shifts (%) 1 Reference Proton

Donor HA
Relative

Shifts (%) Reference

HF 0.99 [4] HNCO 0.50 This work
HNO3 0.97 [14] HNCS 0.46 [17]

CF3COOH 0.91 [15] HONO-trans 0.34 [13]
H2SO4 0.56 [16] HCl 0.27 [88]

HCOOH 0.53 [11] CH3OH 0.19 [9]
1 The relative shifts were calculated as ∆νAH/νAH· · ·N2.

Supplementary Materials: The following supporting information can be downloaded online, Figure S1:
The MP2 optimized selected structures of the 2:1 HNCO complexes with N2. The positions of the
bond (3,−1) and ring (3,+1) critical points derived from AIM calculations are shown by small green
and red circles, respectively; Table S1: The MP2 cartesian coordinates of all 1:1, 1:2 and 2:1 optimized
species of HNCO with N2; Table S2: BSSE corrected interaction energies Eint, relative energies ∆E,
relative Gibbs free energies ∆G (kJ mol−1), abundance at 298 K A (%) and entropic contributions
at 298 K T∆S (kJ mol−1) of the HNCO· · ·N2 complexes of the 1:1 stoichiometry calculated at MP2,
B2PLYPD3 and B3LYPD3 levels with the aug-cc-pVTZ basis set; Table S3: Interatomic distances
(Å), angles (degree) and electron density parameters of the intermolecular bond critical points BCP
(au) and ring critical points RCP(au) of the HNCO complexes with N2 (1:2) computed at the MP2/
6-311++G(3df,3pd) level; Table S4: BSSE corrected interaction energies Eint and relative energies ∆E
(kJ mol−1) of the HNCO· · ·N2 complexes of the 1:2 stoichiometry calculated at MP2, B2PLYPD3 and
B3LYPD3 levels with the aug-cc-pVTZ basis set; Table S5: Interatomic distances (Å), angles (degree)
and electron density parameters of the intermolecular bond critical points BCP (au) and ring critical
points RCP(au) of the HNCO complexes with N2 (2:1) computed at the MP2/6-311++G(3df,3pd)
level; Table S6: BSSE corrected interaction energies Eint and relative energies ∆E (kJ mol−1) of the
HNCO· · ·N2 complexes of the 2:1 stoichiometry calculated at MP2, B2PLYPD3 and B3LYPD3 levels
with the aug-cc-pVTZ basis set; Table S7: Theoretical infrared wavenumbers (υ, cm−1), wavenumber
shifts (∆υ, cm−1) and intensities (I, km mol−1) for monomers and 1:1 complexes using the MP2,
B2PLYPD3 and B3LYPD3 methods with basis sets 6-311++G(3df,3pd) and aug-cc-pVTZ; Table S8:
Selected wavenumber shifts (cm−1) calculated for the 1:1 complexes using the MP2, B2PLYPD3
and B3LYPD3 methods with the 6-311++G(3df,3pd) basis set. The shifts were calculated relative
to the values obtained for the corresponding HNCO· · ·Ar complexes. The calculated intensities
(km mol−1) of the bands are given in parentheses; Table S9: Theoretical infrared wavenumbers
(υ, cm−1), wavenumber shifts (∆υ, cm−1) and intensities (I, km mol−1) for 1:2 complexes using
the MP2, B2PLYPD3 and B3LYPD3 methods with basis sets 6-311++G(3df,3pd) and aug-cc-pVTZ;
Table S10: Theoretical infrared wavenumbers (υ, cm−1), wavenumber shifts (∆υ, cm−1) and intensi-
ties (I, km mol−1) for 2:1 complexes using the MP2, B2PLYPD3 and B3LYPD3 methods with basis
sets 6-311++G(3df,3pd) and aug-cc-pVTZ.
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