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Abstract: Lung cancer has been recognized as one of the most often diagnosed and perhaps most
lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases
has bumped into various limitations and challenges, including non-targeted drug delivery, short
drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS),
a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed
β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit) that
exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocom-
patible, has emerged as an essential element for the development of a nano-particulate delivery
vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the
CS backbone has made it easy for the modification and functionalization of CS to be developed into a
nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state
of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will
be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently,
various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other
restrictions of conventional drug administration for lung cancer treatment, are covered.

Keywords: nanomedicine; chitosan nanoparticle; drug delivery systems; controlled release; lung cancer

1. Introduction

Over the last decade, the incidence and mortality rate of cancer has remained one of
the leading causes of death worldwide, second to cardiovascular diseases [1]. Based on the
analysis of the World Health Organization (WHO), every sixth death in the world is due
to cancer [2]. Approximately 1.8 million new lung cancer cases are discovered annually,
and about 1.6 million deaths were reported among them, with 4–17% 5-year survival rates
liable on stage and regional difference [3–5]. This incidence rate is highly related to the
uptake and consumption of tobacco according to gender and habits of people in different
geographical areas [6]. Lung cancer can be classified into two main categories, small cell
lung carcinoma (SCLC) that accounts for about 15% of all lung cancer, and non-small cell
lung carcinoma (NSCLC), accounting for the other 85%. SCLC is known as an aggressive
lung tumor that is heavily related to cigarette smoking, with patients often diagnosed with
metastatic disease [7]. NSCLC is further sub-divided into adenocarcinoma (most common
cases), squamous cell carcinoma, and large cell carcinoma [8]. Adenocarcinoma is most
common in NSCLC, which arises from small airway epithelial cells, type II alveolar cells,
which secrete mucus and other substances, while squamous-cell carcinoma arises from
squamous cells in the airway epithelial cells in the bronchial tubes in the center of the
lungs, and large cell carcinoma often arises in the central part of the lung [9]. Researchers
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have formulated several means of therapy such as surgery, radiation, and chemotherapy
to treat cancer patients, but chemotherapy remains the most significant treatment among
these approaches, with synthetic drugs such as anthracyclines being the most potent
chemotherapeutic drugs used [10]. The four most prominent anthracyclines are epirubicin,
doxorubicin, idarubicin, and daunorubicin [11]. Yet, the severe side effects following the
chemotherapy due to non-specific destruction have become the main constrain for the
treatment, including cardiotoxicity, nausea, and alopecia [12,13].

Arising from these issues, research focus has shifted to the utilization of nanotech-
nology to increase treatment efficacy and increase treatment safety. Polymeric nanopar-
ticles are a large family which can generally be divided into natural and synthetic forms.
The term polymer can be defined as macromolecules that are made up of bulky repeat-
ing units arranged in a chain-like structure, presenting an assortment of alignments,
structures, and characteristics [14,15]. Natural polymers are comprised of two major
types, polysaccharides- and protein-based polymers, whereas synthetic polymers include
polyethers, polyesters, poloxamers, and recombinant protein-based polymer [14,16]. Al-
though synthetic polymers have greater flexibility in terms of structure rationalization,
natural polymers such as hyaluronic acid, chitosan, and alginate are still more desirable
due to their biodegradability and biocompatibility, they are inexpensive and able to be
modified [17–19]. Consequently, the utilization of chitosan nanoparticle (CNP) systems has
been widely recognized by researchers due to their various advantageous characteristics,
including being biocompatible, having low toxicity, are easy to prepare, and have tunable
physical properties [20,21]. CS is one of the most prominent natural polyaminosaccha-
rides acquired through the N-deacetylation of chitin, the second most abundant natural
occurring polysaccharide after cellulose [22–24]. The structure of CS is composed of β-(1-
4)-linked D-glucosamine and N-acetyl-D-glucosamine randomly disseminated within the
polymer, enabling its cationic nature [25–28]. Besides, CS also has several features such as
good biocompatibility and biodegradability, non-toxicity, and low allergenicity, which have
fascinated researchers, and allow them to be utilized for numerous applications. More-
over, it was reported that CS possessed several biological properties such as anti-oxidant,
anti-microbial, and anti-tumor activities [29,30]. However, there are numerous challenges
of using these nanoparticles in anticancer treatments, such as their biocompatibility and
toxicity in biological systems, the high attrition of anti-cancer agents in clinical trials, the
slow progress of nanomedicines therapeutics to market, technical and cost involved in
up-scaling and manufacturing, and poor understanding about the heterogeneity of disease
in the patient population [31,32].

The CNP-based nanoparticles in drug delivery have been utilized in various dis-
eases treatment, including cancer-related diseases, gastrointestinal diseases, pulmonary
diseases, ocular infections, and drug delivery across the blood-brain barrier [33–37]. CNP
possessed several features that enabled its utilization as a vital drug delivery vector, such
as enhance delivery and therapeutic efficacy of drugs [38,39], improved intracellular accu-
mulation [40,41], and controlled release properties [42]. Similar to other nanoparticulate
delivery systems, CNP has a protective layer after the encapsulation of therapeutics into
the core of nano-particles. The conventional methods of drug consumption such as oral
delivery, sublingual delivery, and rectal delivery are always preferred by patients due to
the ease of consumption widespread acceptance by patients [43]. However, the therapeutic
efficacy of these medications is often less desired as the drugs that are consumed, especially
orally, need to go through many different paths such as the digestive tract, gastrointestinal
tract, and liver to reach the target site, which may lead to the cleavage or degradation
by the enzymes or extreme pH environment before they reach the site of absorption and
bloodstream [44,45]. Besides that, many drugs may become insoluble at low pH levels
in the digestive tract, which may significantly reduce the bioavailability of the drugs to
be absorbed into the bloodstream [46]. In order to overcome the obstacles faced by con-
ventional methods, nano-mediated drug delivery systems such as CNPs have received
more attention as a delivery system for drugs. The mucoadhesive properties of CNPs also
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contribute to the absorption and enhanced intracellular accumulation of drugs delivered
by CNPs. As mentioned by Tiyaboonchai, both in vitro and in vivo experiments found that
CNPs can enhance absorption through the combination of mucoadhesion and transient
opening of tight junctions of the mucosal membrane [47]. The interaction between cationic
CS and anionic mucin has been attributed to the mucoadhesive properties of CS, which
elongates the contact time between the encapsulated drugs and the absorptive surface, and
subsequently prolongs the half-life of drug clearance, which in turn enhanced the absorp-
tion [48]. Besides that, reports in the literature also show that positively charged CNPs
exhibit electrostatic interactions with negatively charged cell membranes, thus revealing a
greater uptake through the endo-cytosis pathway [49,50].

The study of Hassan et al. also demonstrated that CNPs promote intracellular ac-
cumulation by observing fluorescently-labeled glutamic acids (GA) with and without
encapsulation by CNP under a fluorescence microscope. The results showed that the
fluorescence signal was detected only in cells that were treated with with fluorescein isoth-
iocyanate (FITC) labeled-GA (FITC-GA) encapsulated CS nanoparticles and was found
mainly accumulated in the cell cytoplasm, while no fluorescence signal was detected in
cells treated with free FITC-GA [51]. Additionally, CNP as a prominent drug delivery
system has been reported to successfully encapsulate various therapeutics from chemother-
apeutic drugs, such as doxorubicin, paclitaxel, and carboplatin, to natural anti-cancer
compounds such as curcumin and hydrocaffeic acid [52–57]. As reported by Zare et al.,
doxorubicin encapsulated CNP was able to achieve nearly 90% of intestinal permeation
post oral administration to the rat model [53]. Besides, Xu et al. has conducted an experi-
ment that described the CNP encapsulation of paclitaxel to study the anti-cancer efficacy
against DU-145 prostate cancer cell lines indicated increased growth inhibition effects with
an increased concentration of paclitaxel [54]. Khan et al. also described the curcumin
encapsulated CNP had enhanced water solubility, bioavailability, and cytotoxic efficacy
against various cancer cell lines as compared with free curcumin [58]. On the other hand,
Nashaat et al. utilized CNPs for the oral delivery of albumin. An in vivo experiment found
that administration of albumin-loaded CNPs had greater enzymatic stability, sustained
release, and higher serum concentration as compared with the free albumin [59]. The
examples mentioned above have suggested CNP as a promising nano-carrier of anti-cancer
therapeutics. Therefore, this review highlights multiple applications of CNP-based systems
and their controlled release properties for delivering various therapeutic agents to attain
high loading, enhanced therapeutic efficacy, pro-longed retention time, and overcome
multidrug resistance (MDR) as effective lung cancer treatment modalities.

2. Current State of Chitosan Nanoparticles in Various Fields of Application
2.1. Advantages

The utilization of nanoparticles for the encapsulation of cargos such as various thera-
peutic drugs or compounds and genetic materials has been reported by many researchers
over the years. As shown in Figure 1, for example, the brief mechanism of a therapeutic-
encapsulated CNP system for lung cancer treatment has been illustrated. CS is one of
the most prominently used natural polyaminosaccharides due to its characteristics, in-
cluding good biocompatibility and biodegradability, ease of synthesis, non-toxicity, non-
immunogenic, and applicable to a wide range of therapeutics [20,60–62]. Besides, as
compared with other biodegradable polymers having a pharmacopeial monograph, CS
is known as the only polymer that exhibits a cationic character, which resulted in its uti-
lization as a drug delivery system [63]. Additionally, CS was known to possess inhibitory
effects on proliferation of tumor cells, tumor-related angiogenesis, and metastasis, and thus
demonstrating good anticancer activity [64]. Due to these advantages, it has fascinated
the researchers to CNP in numerous applications. Previous toxicology evaluation study
of CNP was conducted by Wang et al. on the embryonic development of zebrafish, and
it was found that the zebrafish treated by CNPs with an average size of 84.86 nm had no
significant mortality (<10%) at 120 h post-fertilization (hpf), even at the high concentration
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of 200 mg/L [65]. Additionally, this result was supported by another organ-specific toxi-
cology study on zebrafish embryos by Abou-Saleh et al. They reported a 100% survival
rate of embryos with no morphological and physiological abnormalities were observed
after exposure to CNPs at 200 mg/L at 96 hpf [66]. Apart from that, CNPs have been
reported to enhance the therapeutic efficacy of therapeutics, especially in tumor therapy,
through passive targeting or enhanced permeation and retention (EPR) effects [67–69]. It
has been suggested by the previous study of Ai et al. where copper (CuSO4) loaded CNPs
showed greater therapeutic efficacy than free CuSO4 groups against osteosarcoma assessed
through in vitro cytotoxicity assay, reactive oxygen species (ROS) analysis, and caspase 3
and 7 apoptotic activities analysis due to better internalization of CNP system [70]. On the
other hand, On et al. also developed a non-toxic indocyanine green (ICG) and cyanine 5.5
(Cy5.5)-coupled tumor-targeting CNP-based system, which displayed outstanding tumor
accumulation and prolonged biodistribution profiles in both rabbit squamous cancer cell
(VX2) tumor-bearing mouse and rabbit models probably due to the EPR effects of CNP [71].

Figure 1. The illustration of the mechanism of chitosan nanoparticles (CNPs) for lung cancer treat-
ment. The therapeutics were encapsulated into CNPs and delivered to the lung to achieve greater
therapeutic efficacy.

Moreover, it was reported that CS and CS derivatives possessed several biological
properties such as anti-oxidant [72–74], anti-microbial [75–77], anti-inflammatory [78–80],
and anti-tumor activities [81–83]. The anti-oxidation properties of CS were suggested
to be closely related to its degree of deacetylation and molecular weight, where a lower
molecular weight CS was more advantageous than higher molecular weight CS in the
removal of free radicals while highly deacetylated CS had superior antioxidant activity
compared to less deacetylated CS [84–86]. It was supported by previous studies that the
free radical scavenging activity of CS may be attributed to the structure of CS with amino
and hydroxyl groups attached to the C-2, C-3, and C-6 positions of the pyranose ring of CS,
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and higher radical elimination activity due to the presence of the high number of amino
groups in highly deacetylated CS [87–89]. Additionally, the anti-microbial properties of
CS have largely contributed to industry applications, especially in wound dressing, food
preservation, and pollutants control [77,90]. In food preservation, CS has been widely
studied to be used as edible food coating films to acts as an oxygen and low water vapor
barrier for fruits and vegetables, extending their shelf life, and at the same time, reducing
microorganism growth [91,92]. However, in the context of pollutant removal, Sun et al.
proposed that CS had enhanced the antibacterial filter materials for ventilation applications
against Escherichia coli showing its decent antimicrobial properties [93].

It has been further shown by a previous study of Al-Sherbini et al. that the develop-
ment of CS/silver bionanocomposites has aided in photodegradation of organic pollutants,
adsorption of heavy metals pollutants, and also showed antibacterial activities on both
gram-negative (E. coli) and gram-positive bacteria ( gram positive. bacillus) [94].

2.2. Challenges

However, apart from the advantages of CS and its derivatives in various fields as
mentioned above, there are numerous challenges remaining to be resolved to improve its
use in the future. One of the main concerns is about the safety of CS and its derivatives,
especially in biomedical applications. Generally, CS has been categorized as relatively
safe due to its biodegradability and biocompatibility properties. It has been reported
that elimination of CS was low molecular weight CS can be excreted through the kidney,
while the high molecular form can be renally excreted after degraded into fragments [95].
Nevertheless, the utilization of the native form of CS is restricted, especially in wound
management applications, mainly due to its water insolubility, high viscosity, and ten-
dency to coagulate with proteins at high pH values [96]. Besides, Hu et al. has reported
concentration-dependent toxicity of CNPs in zebrafish embryos [97]. It has also been
suggested by the early study of Huang et al. that CNPs exhibited a cytotoxicity effect at
concentrations higher than 0.741 mg/mL [98]. However, it was described by Sonin et al.
that an extended 14 days of CNPs treatment in rats did not reveal any significant toxicity
effects as assessed by hematological and biochemical parameters of the blood [99]. It has
therefore inferred that the toxicity of CS might be due to the size of the CNPs and also the
usage of different types of crosslinkers [100–102]. Glutaraldehyde, for example, is one of
the highly effective cross-linking agents but is toxic to biological systems [103,104]. Besides,
Parhi has also revealed that crosslinkers such as glutaraldehyde and glyoxal can potentially
initiate toxicity in vivo [105].

2.3. Opportunities

Despite the challenges encountered by CS and its derivatives, the emergence of
nanobiotechnology has opened opportunities in several fields, including agriculture, phar-
maceutical, biomedicine, and the food industry [98]. Besides that, the CNP system has
also contributed to several other fields of applications such as antimicrobial [106,107],
pollutants removal [108], energy resources [109], and catalysis applications [110]. CNPs
have been widely utilized in pharmaceutical and biomedicine fields due to their structural
flexibility, leading to ease of modifications, conferred controlled release properties, provide
protection for active components from degradation and localized retention [21,100,111]. In
the pharmaceutical field, various drug delivery applications have been reported, including
mucosal delivery, cancer drug delivery, anti-microbial drug delivery, ocular delivery, and
vaccine delivery, which demonstrated the outstanding properties of CNPs to aid in the
delivery of drugs/therapeutics [60,112].

Liu et al. reported a carboxymethylated CNP system to deliver the antiepileptic drug,
carbamazepine, intra-nasally, which able to bypass the blood-brain barrier so as to enhance
the brain drug concentration and therapeutic efficacy. This modified CNP system had
nanoparticles 218.76 ± 2.41 nm in size with 80% high entrapment efficiency, and this system
showed an increase in drug bioavailability and enhanced targeting properties through both



Molecules 2022, 27, 473 6 of 27

in vitro and in vivo studies. [113]. Moreover, both the in vitro and in vivo investigation of
Pawar and Jaganathan concluded that a glycol CNP system had high loading efficacy for
hepatitis B vaccine and therefore suggested the potential of a CNP system for mucosal
delivery of vaccines [114]. Additionally, evidence in the literature has shown that CNP
systems have successfully aided in the delivery of cancer drugs [115,116]. Viravaidya-
Pasuwat and colleagues developed an O-succinyl CS pluronic copolymer conjugated
with an anti-HER2 monoclonal antibody for targeted delivery of doxorubicin (DOX) with
enhanced therapeutic efficacy towards MCF-7 breast cancer cells [117].

Zare et al. have also shown that DOX encapsulated by a CNP system had about
12.7 fold greater intestinal permeation than that of free DOX, which suggested enhanced
drug delivery by a CNP system [53]. On the other hand, paclitaxel (PTX) encapsulated
in a CNP system has been reported and exhibited significantly greater anticancer prop-
erties than free PTX against MDA-MB-231 breast cancer cells. The PTX loaded CNP was
226.7 ± 0.70 nm in size and displayed sustained-release properties with enhanced cyto-
toxicity and apoptotic efficacy than the non-encapsulated counterpart [118]. A previous
study by Aydin and Pulat proposed that 5-fluorouracil (5-FU) encapsulated CNP exhibited
a pH-responsive controlled release pattern, while a recent study conducted by Smith et al.
revealed that 5-FU encapsulated CNP possessed enhanced cellular uptake efficacy in HCT-
116 colorectal carcinoma cells and significantly inhibited the growth of 2D and 3D HCT-116
spheroid model [119,120]. Besides, Chatzitaki et al. reported chitosan-coated polylactic
acid-co-glycolic acid (PLGA) nanoparticles for the nasal delivery of ropinirole hydrochlo-
ride served as a potential therapeutic route for Parkinson’s disease treatment [121]. The
recent study of Migone and colleagues also revealed a quaternary ammonium chitosan-
methyl-β-cyclodextrin conjugate for delivery of neuropeptide dalargin (DAL). In vitro
studies showed the fascinating ability of this nanoparticle system to deliver DAL across
the blood-brain barrier to the central nervous system [122].

3. Drug Release Mechanisms of Nanoparticle Systems

The first introduction of controlled drug delivery was in 1952, which has progressed
for more than six decades [123]. A controlled release drug delivery system is developed for
the delivery and maintenance of drugs level within the minimum toxic concentration (MTC)
and the minimum effective concentration (MEC) for an extended duration [124]. Controlled
release properties have been comprised of extended-release, sustained-release, delayed-
release, and targeted-release [125]. These advantageous properties of nanoparticles were
assessed through two different measures, using drug release mechanisms and mathematical
modeling models. These two different aspects are often correlated with each other and will
be discussed in a later section.

3.1. Drug Release Mechanisms

Generally, the drug release mechanism of CNPs is divided into three different types.
The first mechanism is the swelling of CS (swelling of polymer), diffusion of drug through
polymeric matric or adsorbed drug, and degradation/erosion or combination of both
degradation and erosion [113,126,127]. The swelling of a polymer, which results in pores
creation, and also the diffusion of drugs from polymer surface have always been associated
with the initial burst release occurrence in CNPs [128]. However, the CS derivatives have
been suggested to effectively aid in changing the release rate of drugs from nanoparti-
cles, providing tunable drug release, and influencing the pharmacokinetic profile of the
encapsulated drug [129,130].

The diffusion-controlled drug release system was divided into monolithic- and reservoir-
type, where both were generally initiated by drug permeated through the interior of the
polymeric matrix and to the adjacent medium [131]. Interestingly, diffusion may be related
to the swelling or erosion of a polymer. The diffusion-controlled release is also known as
Fick’s law of diffusion, where described the solute transport route in which the relaxation
time of polymer is much greater than the diffusion time of characteristic solvent [132].
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The mathematical equation of diffusion is given by Fick’s law of diffusion, as shown in
Equation (1) [132]

F = −D ∂c/∂x (1)

where F is the rate of transfer per unit area of section (flux), c is the concentration of the
drug, and D is the diffusion coefficient (diffusivity). There are some assumptions to be
made in order for the parameters of Fick’s law to be derived, which include the pseudo-
steady condition is regulated throughout the drug release process, the mean distance
of drug diffusion through the polymeric matrix is greater than the diameter of solute
particles, and the maintenance of sink conditions are offered by the adjacent medium of
the nanoparticles [133,134].

The swelling of the polymer is a volumetric-growth process in which denoted by the
water imbibition into the polymer until the polymer dissolves [135,136]. The swelling of
a polymer is dependent on various features, including the nature/amount of polymer,
cross-linking density, the pH of the surrounding fluid, and temperature [135,137,138]. The
polymer chains will experience disentanglement and subsequently initiated the release
of the drug from the matrix when the polymer happenstance the adjacent medium and
instigated polymer swelling. Additionally, the rate of drug absorption from the site
of delivery in vivo is suggested to be correlated with the rate of drug availability for
membrane transport or cellular uptake. It was elucidated by the previous study of Fonseca-
Santos and Chorilli, that there are three important factors that contributed to the swelling-
drug release profile, which are the hydrophilicity of the polymer, the swelling rate of
polymer, and the density of the polymer chains [139].

The degradation and erosion release mechanism is amongst the most popular drug
release mechanism as retrieval after the drug is released is not required due to the non-toxic
and excretable characteristics of the delivery system [140]. Both degradation and erosion
of polymers are correlated features, where degradation may often lead to succeeding
physical erosion as bonds break. The erosion of polymer has been divided into two types,
which are surface (heterogeneous) erosion and bulk (homogeneous) erosion since the early
1980s [141,142].

Bulk erosion occurs when water invades the polymer more rapidly than hydrolysis
can occur [143]. Under these circumstances, the polymer chain scission processes will take
place throughout the polymer due to the presence of water throughout the matrix. The rate
of initial hydrolysis may be very slow due to the length of polymer chains, while the initial
scissions may limit the hydrolysis since it will provide high mobility to the chains, which
allows the migration of chains and formation of crystallites. Nonetheless, the hydrolysis
may be augmented after a certain degree of chains have been hydrolyzed. Additionally,
the erosion will be autocatalytic in case that the chain scission occasioned the formation
of acidic end groups [144]. Herein, the drug release of polymers through bulk erosion
can be summarized in three different phases. In the first phase, the drug is released from
the exterior of the device or from pores that are linked to the surface. The second phase
describes the initial degradation of the polymer, and the remaining drug is trapped in the
device. In the last stage, the polymer is degraded, and the trapped drug is released rapidly
from the device [132].

Meanwhile, the occurrence of surface erosion can be initiated by both conditions were
either when water invasion is slow or when hydrolysis is rapid, which starts at the exposed
surface and moves downwards [145]. Polyanhydride is one of the model polymers that
undergo surface erosion, which has extraordinarily hydrophobic polymer characterized
by repeating units of anhydride groups in the polymer backbone [146]. The hydrolytically
labile anhydride bonds of polyanhydrides in the interior of the polymer matrix are evaded
from water, and the drug release with hydrolysis can happen only at or adjacent to the
surface [147]. Thus, it has indicated that the remarking characteristic of surface erosion
is that device dimensions decrease with time. However, the rate of erosion may vary
between different sizes and shapes of devices, which was correlated with exposed surface
area [144,148].
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3.2. Mathematical Modeling Fitting of Drug Release Kinetics

Generally, the controlled-release mechanism can be categorized into several forms,
including diffusion, swelling, and erosion, as mentioned above. Consequently, various
types of nanomaterial with different physical and chemical properties and also the nature
of the encapsulated drugs will be released through different routes. Therefore, it is vital to
identify the release mechanism of drugs/therapeutics and ensure the release in a controlled
manner. To date, various mathematical models have been utilized for the fitting of different
drug release mechanisms. Among these models, zero-order, first-order, the Higuchi model,
the Korsmeyer-Peppas model, and the Hixson-Crowell model have often been used as the
models for the drug release fitting of nanoparticles and will be further discussed in the
following sections [149,150]

3.2.1. Zero-Order

Theoretically, the drug delivery system that has a zero-order drug release profile is the
ideal system and pursued by researchers to achieve a low dosing rate with a uniformly
release profile without initial burst release throughout the entire release duration [151].
The respective mathematical equation is shown in Equation (2)

Qt = Q0 + K0t, (2)

where Q0 = initial amount of drug; Qt = cumulative amount of drug release at time “t”;
K0 = zero-order release constant.

This elimination of zero-order kinetics takes place at a constant rate following a linear
elimination phase as the system becomes saturated, independent of the plasma concen-
tration [152]. However, in reality, there are several restrictions that limited drug release to
achieve a zero-order profile, including the properties and matrices of the nanomaterials, the
influence of the external environment, and the properties of the cargos [153]. Thus, there
are various release models such as a first-order model, Higuchi model, Hixson-Crowell
model, and Korsmeyer-Peppas model that have been modulated.

3.2.2. First-Order

The first-order model was first suggested by Gibaldi and Feldman in 1967 and later
by Wagner in 1969 [154]. The mathematical equation is shown in Equation (3)

log Qt = log Q0 + K1t (3)

where Qt is the cumulative percentage amount of drug released at time t; Q0 is the initial
amount of the drug; K1 is the first-order release constant; t is time.

It has been commonly employed to define the absorption and/or elimination of an
assortment of therapeutic agents. The elimination in first-order kinetics dependent on the
concentration of only one reactant (drug) and the drug is eliminated at a constant fraction
per unit of time, which also means that the elimination will increase proportionally as the
plasma concentration increases, following an exponential elimination phase as the system
never attains saturation [150]. Nonetheless, it is a simple model and widely adapted to
various nano-carriers. The previous study of Smits et al., for instance, has revealed that the
release of liposomal prednisolone phosphate in mice following in vitro administration in
mice followed the first-order release profile for all experimental tissues study [155].

3.2.3. Higuchi Model

Next, the Higuchi model was described by Higuchi in 1961 on his study of the rate of
release of ointment bases containing drugs in suspension [156]. The mathematical equation
of the Higuchi model is presented in Equation (4)

Qt = Q0 + KHt1/2 (4)
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where Qt is the cumulative percentage amount of drug released at time t; Q0 is the initial
amount of the drug; KH is the Higuchi constant; t is time.

This model appeared as one of the most famous and most frequently utilized models
for the release of cargos from matrix systems. There are several important rules that
must be followed in this model: (I) the initial concentration of therapeutic existed in the
matrix is much greater than its solubility; (II) the diffusion of therapeutic happens only
in one direction where the edge effect is negligible; (III) the thickness of the system is
much greater than the size of the therapeutic; (IV) the swelling and/or dissolution of the
matrix is insignificant; (V) the diffusivity of therapeutic is persistent; (VI) the perfect sink
circumstances are achieved [157].

3.2.4. Hixson-Crowell Model

On the other hand, the Hixson-Crowell model is another well-known release model
that was revealed by Hixson and Crowell in 1931 upon the discovery of a collection of
particles’ fixed area is comparative to the cube root of its volume, while its mathematical
equation is presented in Equation (5) [150]
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concentration of only one reactant (drug) and the drug is eliminated at a constant fraction 
per unit of time, which also means that the elimination will increase proportionally as the 
plasma concentration increases, following an exponential elimination phase as the system 
never attains saturation [150]. Nonetheless, it is a simple model and widely adapted to 
various nano-carriers. The previous study of Smits et al., for instance, has revealed that 
the release of liposomal prednisolone phosphate in mice following in vitro administration 
in mice followed the first-order release profile for all experimental tissues study [155]. 

3.2.3. Higuchi Model 
Next, the Higuchi model was described by Higuchi in 1961 on his study of the rate 

of release of ointment bases containing drugs in suspension [156]. The mathematical equa-
tion of the Higuchi model is presented in Equation (4) 

Qt = Q0 + KHt1/2 (4)

where Qt is the cumulative percentage amount of drug released at time t; Q0 is the initial 
amount of the drug; KH is the Higuchi constant; t is time. 

This model appeared as one of the most famous and most frequently utilized models 
for the release of cargos from matrix systems. There are several important rules that must 
be followed in this model: (I) the initial concentration of therapeutic existed in the matrix 
is much greater than its solubility; (II) the diffusion of therapeutic happens only in one 
direction where the edge effect is negligible; (III) the thickness of the system is much 
greater than the size of the therapeutic; (IV) the swelling and/or dissolution of the matrix 
is insignificant; (V) the diffusivity of therapeutic is persistent; (VI) the perfect sink circum-
stances are achieved [157]. 

3.2.4. Hixson-Crowell Model 
On the other hand, the Hixson-Crowell model is another well-known release model 

that was revealed by Hixson and Crowell in 1931 upon the discovery of a collection of 
particles’ fixed area is comparative to the cube root of its volume, while its mathematical 
equation is presented in Equation (5) [150] ∛Qt − ∛Q0 = KHCt (5)

where Qt is the cumulative percentage amount of drug released at time t; Q0 is the initial 
amount of drug at time t; KHC is the Hixson-Crowell constant. 

This model is commonly used for pharmaceutical systems such as tablets, in which 
the dissolution rate is equivalent to the surface of the dosage form; the surface area erodes 

(5)

where Qt is the cumulative percentage amount of drug released at time t; Q0 is the initial
amount of drug at time t; KHC is the Hixson-Crowell constant.

This model is commonly used for pharmaceutical systems such as tablets, in which
the dissolution rate is equivalent to the surface of the dosage form; the surface area erodes
consistently over time while the geometrical form remained unchanged. A previous study
conducted by Malana and Zohra showed the in vitro release study of tramadol hydrochloric
acid from chemically cross-linked ternary-polymeric hydrogels matrix tablet [158]. The
study revealed that formulations of different concentrations of polymers and drug payloads
were well suited to the Hixson-Crowell release model.

3.2.5. Korsmeyer-Peppas Model

Additionally, the Korsmeyer–Peppas model was derived from the Power law, which
is a more comprehensive model to term the drug release from a polymeric system. This
model was established by Korsmeyer et al. in 1983 to describe the exponential relationship
between the release of drug and the time where its mathematical equation was shown in
Equation (6) [159]

Qt = KKPtn, (6)

where Qt is the cumulative amount percentage of drug released at time t; KKP is the
Korsmeyer-Peppas constant; n is the release exponent describing the drug release mechanism.

This Power Law model is advantageous for the study of polymeric drug release
systems, especially when the release mechanism is unfamiliar or when multiple release
mechanisms are involved [160].

This section has summarized the various drug release mechanisms of nanoparticulate
drug delivery systems. The drug release of polymeric nanoparticles was categorized in
diffusion, swelling, and degradation/erosion, which are characterized differently by the
composition, ratio of composition, interactions between the components, and preparation
methods [161]. Apart from that, the rate of drug release has been fitted into various
mathematical modeling equations as mentioned above, where the controlled release of
drugs from nanoparticles over an extended period of time in a controlled drug release
system [162]. Subsequently, numerous modifications of CS will be discussed in the next
section to discuss its potential to be used as controlled release delivery vehicles.

4. Modification of Chitosan Nanoparticle Systems

Despite the advantages of CNP as a great nano-carrier system, there are some limita-
tions that exist, such as low encapsulation efficiency for poorly water-soluble compounds
and low solubility in physiological pH, which limits the usage of this system [163,164].
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For example, CS itself has poor solubility in a solution above pH 6 and has poor encap-
sulation for hydrophobic drug candidates, which require glycol modifications to the CS
to attain greater encapsulation and delivery efficiency [165]. In order to overcome these
shortcomings, various modifications of the traditional CNP system have been carried out
by researchers. The modifications were generally categorized into two classes which are
physically and chemically routes to alter the features like stability, mucoadhesion, and
solubility for different purposes [166].

4.1. Physical Modification of Chitosan Nanoparticles

The physical modification of CS nanoparticles involves physically mixing two or
more polymers to create a new, improved material with altered physical characteristics,
including chemical, structural, and biological properties [167,168]. Some common polymers
utilized for physical modification include polyvinyl alcohol, polyethyl oxide, and polyvinyl
pyrrolidone [169]. For example, Risbud et al. used poly(vinyl pyrrolidone) (PVP)-modified
CS nanoparticles to develop a hydrogel to encapsulate amoxicillin, an effective antibiotic
in treating peptic ulcers caused by Helicobacter pylori [170]. The antibiotic was effective
under in vitro conditions but scored poorly in in vivo situations which was suggested to
be due to sub-effective bactericidal concentrations available at the site and their instability
after oral administration. However, the CS-PVP, semi-interpenetrating polymer network
(semi-IPN)-based controlled release antibiotic delivery system was found to be well-suited
for use in a gastric environment. Moreover, a previous study of the development of
curcumin encapsulated CS-polyvinyl alcohol silver nanocomposite to achieve enhanced
anti-microbial activities [171]. On the other hand, Smith et al. have proposed a rapid self-
assembled and physically cross-linked poly(ethylene glycol) (PEG)ylated CNPs in a single
step manner by using the Flash NanoPrecipitation route to develop a high monodispersity
nanoparticle system [172]. On the other hand, a recent study conducted by Liu et al.
also demonstrated a PVP-modified amphiphilic CNP system for delivery of paclitaxel
with enhanced antitumor inhibition in in vivo mice models without significant sub-acute
toxicity [173].

4.2. Chemical Modification of Chitosan Nanoparticles

Subsequently, the chemical modification of CS can be achieved by modifying the pri-
mary amine groups of CS through chemical, photochemical, radiation, enzymatic grafting,
and plasma-induced methods. Due to the presence of the large amount of amino (-NH2)
and hydroxyl (-OH) groups with chemical activities in CS, numerous well-known CS deriva-
tives have been developed by researchers through acylation, alkylation, quaternization,
phosphorylation, graft copolymerization, phthaloylation, sulfonation, carboxymethylation,
and carboxyalkylation of CS, as shown in Figure 2 [174]. Generally, the most common
chemical modification route for CS is through N-substitution, where the reaction occurs
through the amino functional group of CS [175]. Additionally, the O-substitution of CS,
where the reaction occurs through the hydroxyl functional group, is also a common route
for chemical modification of CS [176,177]. Yet, the O-substitution of CS often requires
protection and deprotection of primary amino groups due to the higher reactivity of amino
groups than hydroxyl groups [178,179]. The N,O-substitution that is involved in the substi-
tution of both the amino and hydroxyl functional groups of CS will also usually provide
an amphipathic property, and at the same time, can be used to enhance the hydrophobic
and hydrophilic features of CS [180].
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Figure 2. The various modification routes of chitosan (CS). Figure and reaction conditions were
adapted from the study of Sajid et al., with modifications [174].

A previous study demonstrated that quaternized N-trimethyl CS chloride is a great
candidate for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell
monolayers and proposed it to be an intestinal absorption enhancer for hydrophilic macro-
molecules [181]. Besides, Zhu et al. have also conducted thiolation modifications to CNPs
to prepare thiolated CS sodium alginate nanoparticles and accomplished a greater mucoad-
hesive feature, higher stability, and a more effective treatment than the unmodified version
towards human corneal epithelium cell lines [182]. On the other hand, the modifications to
the CNP system have been reported to be capable of improving its drug delivery properties.
As reported by Elgadir et al., various modifications of CNP can subsequently enhance the
drug delivery properties comprising gene expression properties, mucoadhesive properties,
and permeation enhancing properties [112]. It was supported by the study of Jintapat-
tanakit et al. that PEGylated trimethylated CNPs enhanced their mucoadhesive properties
up to 3.4-fold, which enhances its interpenetration and, in turn, its delivery properties [183].
It was further supported by evidence that thiolated CNP has shown penetration enhance-
ment properties than unmodified CNP, which, in turn, indicated an absorption enhancing
effect of a nano-carrier system in intestinal tissue [184].

The discussion in this section has shown various examples of modification, which
suggests that CNP-based systems can be further modified for improvement to attain
functionalization purposes, including solubility, higher encapsulation efficiency, and thera-
peutic efficacy. As shown in Figure 2, several examples of modification can be pursued for
CS, including methylation, N-alkylation, and N-acylation of CS. These modifications of
CS have exerted additional features to the CNP system for enhanced delivery and efficacy
of drugs. Besides that, Table 1 has also suggested that CNP holds great potential as a
prominent system to be utilized and applied to various kinds of drugs and in a wide range
of sectors. Henceforth, evidence from the literature reveals that CS and its derivatives have
high elasticity and potential due to their flexibility and efficacy in improving the current
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state of pharmaceutical and biomedical applications. Additionally, the controlled release
properties of CNP or modified CNP system can also further enhance the efficacy of various
drugs and reduce the concomitant effects of traditional drug administration routes, and
this will be further discussed in the following section.

Table 1. Applications of chemically-modified CNP-based systems.

CS Derivatives Application Reference

Methylated N-Aryl CS Derivatives An enhanced agent for in vitro paracellular permeation and
in vivo adjuvant activity post oral administration to mice. Suksamran et al. [185]

Quaternary CS magnetic composite
modified with ammonium salt and

combined with iron (II and III) oxide
(Fe3O4) nanoparticles

A pH-dependent bioadsorption agent for methyl orange
and chromium (VI) with homogeneous monolayer

chemisorption behavior process.
Li et al. [186]

Acylated N,N,N-trimethyl CS
nanopolyplexes associated with
single-stranded oligonucleotides

Stable and nontoxic nanopolyplexes with enhanced cell
transfection efficiency towards HeLa/Luc705 cell line. Santos et al. [187]

N-acylated CS with glutaric
anhydride in an aqueous acetic

acid-methanol

Water soluble N-(4-carboxybutyroyl) CS derivative with
improved antibacterial activity against Agrobacterium

tumefaciens and Erwinia carotovora. and antifungal activity
against Botrytis cinerea, Pythium debaryanum, and Rhizoctonia

solani

Badawy and Rabea. [188]

O-(3,6-hydroxyethyl) CS Improved water solubility, anticoagulation activity, and
antibacterial activity against Escherichia coli. Liu et al. [189]

Poly(ethylene glycol)-grafted-CS
hydrogel

An improved delivery vector for delivery of T lymphocytes
for brain tumor immunotherapy and potentially improved

the glioblastoma immunotherapy.
Tsao et al. [190]

Polyurethane-grafted-CS copolymer
A biocompatible and hemocompatible copolymer with

sustained release of tetracycline hydrochloride fitted with
the Korsmeyer-Peppas release model.

Mahanta et al. [191]

3,6-O-sulfonated CS

Human papillomavirus (HPV) infection inhibition via
directly HPV capsids binding or indirectly blockage by host
PI3K/Akt/mTOR pathway interference to prevent the entry

of HPV16 through cell autophagy.

Gao et al. [192]

2-hydroxyethylacrylate-grafted-CS Controlled release of levofloxacin and proposed promising
solution for topical wound management. Siafaka et al. [193]

CS-N-2-hydroxypropyl trimethyl
ammonium chloride

Enhanced water solubility and moisture-retention capacity,
with antimicrobial activities against, Staphylococcus aureus, S.

epidermidis, Bacillus subtilis, and Candida albicans.
Chi et al. [194]

Amino acid-grafted and N-acylated
CS thiomers three-dimensional

hydrogel scaffolds

A promising cytocompatible three-dimensional
bio-scaffolds for potential cartilage repair applications. Borsagli et al. [195]

Glutaraldehyde cross-linked
carboxymethyl CS

Biocompatible with good hemostatic effect with an
improved healing effect on liver injury in rats. Zhang et al. [196]

5. The Role of Controlled Release Chitosan Nanoparticle Systems for Lung
Cancer Treatment

To date, innumerable modalities such as therapeutic drugs, peptides, DNA, siRNA,
and vaccines have been delivered using CNP-based nanoparticle systems [112,197–199].
Additionally, CS and its derivatives have been suggested applicable in the recent COVID-19
pandemic infection treatment, characterized by acute respiratory distress syndrome due to
their molecular weight, degree of substitution, and substituent type [200,201]. The encap-
sulation of therapeutics by nanoparticles can potentially increase the bioavailability and
cellular uptake and can thereby reduce the total dosage of therapeutics to be consumed by
patients [202]. Subsequently, the applications of a CNP system in lung cancer therapy and
its controlled release properties benefited from the increased loading, increased duration of
treatment, and reduced multidrug resistance will be discussed in the following section.
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5.1. Increased Loading and Therapeutic Efficacy

The CS is soluble in a dilute acidic environment, and the basic amino groups will
be protonated to the ionizable soluble R-NH3

+ form with a positive charge [203,204].
The mucoadhesive properties of CS, due to its cationic charge nature, give it enhanced
adherence to the mucosa of lung epithelial cells and extended the release of encapsulated
therapeutics [205–207]. Our research group has previously studied the encapsulation
of two different natural compounds, namely silibinin and protocatechuic acid, using a
palmitic acid hydrophobically modified-CNP system. In vitro studies have found that the
therapeutic efficacy of these two low solubility natural compounds was enhanced against
the A549 human lung cancer cell line with about a one-fold increment of drug loading with
sustained-release properties compared to their unmodified counterparts. [83,163]. These
outcomes have suggested that the drug dosage used for disease treatment can be reduced
to prevent the undesirable concomitant effects bring along with high drug concentrations.
The recent study of Othman et al. was found to be congruent with our findings, where
single- and dual-loading of L-ascorbic acid and thymoquinone into the palmitic acid-CNP
system were enhanced and presented controlled release properties [208]. On the other
hand, the previous study of Almutairi et al. showed that the encapsulation of raloxifene, an
FDA-approved anti-cancer drug with hyaluronic acid-decorated CNPs, could effectively
induce cytotoxic effects and apoptotic death in the A549 cell line as compared with the free
drug at the same concentration [209]. Additionally, Babu et al. has shown an effective RGD
(arginine-glycine-aspartic acid) peptide-modified polylactic acid-co-glycolic acid (PLGA)-
CNP system for delivery of integrin αvβ3 receptor-targeted PTX towards non-small cell
lung cancer (NSCLC) cells as compared with free drug and non-targeted counterparts and
possessed negligible effects on normal human bronchial epithelial (NHBE) cells [210]. This
evidence from the literature, therefore, demonstrates the outstanding efficacy of CNP-based
systems in increased drug loading and therapeutic efficacy for lung cancer treatment.

5.2. Increased in Duration/Time Persistence

The elongated therapeutic duration endowed by CNP has been suggested to be
strongly associated with their controlled-release properties [211–213]. Various release
kinetic model has been introduced in the previous section, while the advantages and some
examples of controlled-release CNP-based systems in drug delivery will be discussed at
this point. According to Bhowmik et al., the advantages of a controlled release system has
included the reduced in the fluctuation of drug concentration in blood, reduced in total
drug required as compared with the conventional route, which can, in turn, reduce the
local and systemic drug toxicity, and the reduced of administration frequency which can
lead to improved patient obedience [214]. Consequently, the utilization of the CNP-based
system has emerged as one of the most popular drug delivery vehicles. This biocompatible
system has not only been employed for drug delivery but also in several biomedical and
pharmaceutical applications, including anti-microbial applications, tissue engineering,
cancer treatment, imaging, and gene delivery [64,72,215,216]. One of the key factors that
have led to the development of these applications is the controlled release properties of
CNP-based systems that prolong the drug release duration after administration [217,218].

Wang et al. have previously developed a folic acid conjugated poly(ethylene glycol)
CNP (FA-PEG-CNP) system for the delivery of gemcitabinein (GEM) for lung cancer
treatment. The in vitro assessment revealed GEM sustained release properties of up to
10 days while their use in an in vivo tumor-bearing female Balb/c mouse model indicated
the distribution of GEM delivered by FA-PEG-CNP system was significantly higher in
A549 tumor compared to other organs further outlined the longer residence of GEM
in the target organ [219]. Besides, Rosiere et al. have described the synthesis of folate-
grafted CS solid lipid nanoparticle system to enhance the delivery of paclitaxel for lung
tumor therapy via inhalation route and able to penetrate the M109-HiFR murine lung
carcinoma cell subline in vivo [220]. Fascinatingly, this study has revealed a prolonged
pulmonary exposure of up to 6 h to paclitaxel with the limited systemic distribution.
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Additionally, Chen et al. have highlighted the prolonged drug release of methotrexate
(MTX) and pemetrexed (PMX) dual drug-loaded methoxy poly(ethylene glycol) modified-
CNP (MTX-PMX-pCNPs). The in vitro release study has revealed extended sustained
release behavior of drugs for up to six days, and the cell viability assessment has shown
that MTX-PMX-pCNPs have a significantly higher cytotoxicity effect towards the A549
cell line, especially in the prolonged incubation time points as compared with the non-
encapsulated counterpart [221]. Thus, these previous studies have presented the efficacy of
the CNP-based system for the prolonged release of therapeutics and protruded its potential
to be employed as delivery vehicles for lung cancer treatment.

5.3. Mitigation of Multidrug Resistance (MDR)

Multidrug resistance (MDR) was first discovered in bacterial strains upon the discov-
ery of penicillin in 1928 and was followed by a huge number of antibiotics [222,223]. One
of the most critical concerns that arose from this discovery was methicillin-resistant Staphy-
lococcus aureus (MRSA), which is resistant not only to methicillin but also to many other
classes of antibiotics and disinfectants, and became the main source of hospital-acquired
infections [224,225]. A similar situation occurs in cancer therapy, where conventional
chemotherapeutics often encounter the problem of MDR and account for more than 90% of
the mortality in cancer patients [226–228]. This state of resilience against mechanistically
and structurally distinct drugs that may be intrinsic (primary) or acquired (secondary)
during treatment, as a response to chemotherapy [229–231]. Statistical analysis has shown
that most of the chemotherapeutics have significant initial therapeutic efficacy, but the
majority of patients soon develop resistance at the latter stage of treatment. For instance,
approximately 30%—55% of NSCLC patients develop recurrence and subsequently die
from the disease [232,233]. Besides, nearly 20% of pediatric acute lymphoblastic leukemia
patients relapse [234,235]. About 50%—70% of ovarian adenocarcinomas also reoccur in
1 year after treatment [236,237]. one of the major routes strategized to modulate MDR was
the increased intracellular concentrations of drugs in MDR cells, and may possibly elicit
severe subsequent concomitant effects in patients [238,239]. Consequently, CNP-based
system has been studied in order to overcome the impediment of MDR.

The previous study of Zhang et al. has established an α-tocopherol succinate-modified
CNP system to encapsulate paclitaxel (PTX)-D-α-tocopherol succinate prodrug for the en-
hanced loading and delivery of paclitaxel and against the MDR of tumor cells. This
CNP-based system has been shown to be effective at initiating the reversal of MDR through
decreasing mitochondrial membrane potential (MMP), inhibiting ATP synthesis, and
suppressing P-glycoprotein (P-gp) expression, which are characteristic mechanisms of
MDR [240]. Apart from that, Huang and coworkers have shown that dual drug-loading
of cisplatin and demethoxycurcumin into a CD133 antibody surface-modified CNP sys-
tem was able to achieve high efficacy synergistic effects against A549-ON cell line, which
presenting stem-like characteristics and overexpression of CD133, and prepared via trans-
fection of A549 cells by a lentiviral infection system with vectors encoding Oct4 and Nanog
cDNA [241,242]. Since the cancer stem-like cells were known for their MDR features and
their roles in metastasis and cancer reoccur after treatment, the outcome of Huang et al.
has suggested an effective approach to combat MDR lung cancer cells [243,244]. Moreover,
Nascimento et al. have formulated a siRNA encapsulated epidermal growth factor receptor
(EGFR)-targeted CNP system through PEG conjugation [245]. The in vitro studies have
revealed a decent effect in the silencing of the mad2 gene in the A549 cell line, which is an
essential gene that is responsible for the precise chromosome segregation during mitosis
and has served as an alternative in MDR lung cancer treatment. In this context, Table 2 has
listed several studies of CNP-based nanoparticles as drug delivery system, the drug-loaded
onto the system, and their respective outcomes. It has presented the enhanced drug loading
and/or therapeutic efficacy by the CNP-based system, especially in lung cancer treatment,
which shown the relevance with the previous section.
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Table 2. The outcome of drug-loaded CNP-based system for enhanced therapeutic efficacy/prolonged
retention time/anti-MDR.

CNP-Based System Drug Loaded Outcomes Reference

Native CNP system Curcumin (Cu)

In vitro studies revealed enhanced permeation of Cu
through Strat-M® membrane and possessed controlled

release properties in both pH 5.0 (first-order) and pH 7.4
(Higuchi) with negligible cytotoxicity towards human

keratinocyte (HaCat) cell line compared to free Cu.

Nair et al. [56]

Native CNP system Endostatin (ES)

The encapsulation of ES into CNP has prolonged the
retention time of ES in vivo. The combined treatment of

Lewis lung carcinoma (LLC) mouse
Xenografts using ES-CNP and paclitaxel had significantly

improved antitumor efficacy through suppressed
proliferation and angiogenesis in the tumor tissues.

Xie et al. [246]

Native CNP system Alphastatin (As)

In vitro studies have revealed high stability of the system
and the sustained release properties of As for up to six
days. Next, in vivo study of subcutaneous LA975 lung

carcinoma xenograft in a T739 mouse model showed the
greatest antiangiogenic effects and good

hemocompatibility compared to the
non-encapsulated counterparts.

Zhang and Hu [247]

Native CNP system Docetaxel (Doc)

The in vitro studies showed the release of Doc from
Doc-CNP using sustained-release proparticles (Higuchi

release kinetic model) and possessed a significantly higher
cytotoxicity effect in both dose- and time-dependent

manners towards A549 cells compared to free Doc. The
in vivo study using A549 xenograft nude mice also shown

an enhanced anti-proliferative effect as compared with
free Doc.

Nair and
Velmurugan [248]

Folic acid conjugated
CNP system
(FLA-CNP)

Temozolomide
(TMZ)

The TMZ-FLA-CNP was found to possess controlled- and
sustained-release of TMZ with the highest

antiproliferative efficacy against A549 lung cancer cell line
as compared with TMZ-CNP and free TMZ. In vivo

studies using A549 xenografted BALB/c-nu/nu athymic
mice showed targeted delivery by pulmonary deposition

and significantly higher tumor growth suppression as
compared with TMZ-CNP and free TMZ.

Li et al. [249]

CS/ poly(lactic acid)/
graphene

oxide/TiO2 composite
nanofibrous scaffolds
(CS/PLA/GO/TiO2)

Doxorubicin (Dox)

The CS/PLA/GO/TiO2/Dox showed the
controlled-release of Dox (Korsmeyer–Peppas release

kinetic model) for up to 14 days. The anti-proliferation
efficacy of Dox was enhanced by the scaffolds and
augmented with higher CS/PLA/TiO2/DOX/GO

nanofibers concentration and the presence of magnetic
field towards the A549 cell line.

Samadi et al. [250]

Carboxymethyl
dextran conjugated
CNP (CMD-CNP)

insulin-like growth
factor 1 receptor
specific siRNA

(IGF-1R-siRNA)
and doxorubicin

(Dox)

The in vitro studies have presented the dual drug loading
of IGF-1R-siRNA and Dox by CMD-CNP has enhanced
the anti-migration, cytotoxicity, and apoptosis efficacy
against A549 cell line as compared with a single-drug

loading and free drug counterpart.

Shali et al. [251]

CS/poly(ethylene
glycol)-anisamide

(CTS/
PEG-AA) system

Gemcitabine
(GEM)

The CTS/PEG-AA system showed the sustained-release
of GEM for up to 15 days with enhanced in vitro cellular

uptake and the most competitive cytotoxicity efficacy
against A549 cells compared to CTS/PEG and free GEM.

The in vivo study also showed superior tumor
suppression against A549 subcutaneous tumors in mice in
which revealed targeted delivery of GEM to the target site.

Garg et al. [252]
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Table 2. Cont.

CNP-Based System Drug Loaded Outcomes Reference

Native CNP system Curcumin (Cu)

The Cu-CNP was released in a sustained-release manner
for more than seven days and found with greater

cytotoxicity efficacy even compared with Cu dissolved
in DMSO solvent against HT1299 human lung cancer
cell line. The in vivo studies using Swiss albino mice

revealed that Cu-CNP possessed enhanced lung
localization and were more competent in preventing
benzo(a)pyrene-induced lung cancer as indicated by
downregulation of proliferating cell nuclear antigen

(PCNA), expression of p65 expression pERK.

Vijayakurup [253]

Nucleolin-targeting
aptamer AS1411 and

luminescent gold
nanoclusters (AuNCs)
functionalized CNP
(AuNCs-CS-AS1411)

system

Methotrexate
(MTX)

MTX@AuNCs-CS-AS1411 showed the greatest in vitro
anticancer effect against A549 cells compared to free

MTX and MTX@AuNCs-CS as specified by an apoptotic
death analysis. In vivo studies using A549 xenografted

BALB/C nude mice have shown that
AuNCs-CS-AS1411 conferred targeted delivery of MTX
and effectively suppressed the tumor growth compared

to free MTX.

Guo et al. [254]

Folate and
carboxymethyl-β-

cyclodextrin grafted
trimethyl CNP system

Doxorubicin (Dox)
and siRNA

Apart from showing satisfactory encapsulation
efficiency, the grafted CNP system possessed

pH-dependent controlled sustained release properties
and significantly enhanced the therapeutic efficacy of

the drugs,

Zhang et al. [255]

Cetuximab conjugated
CNP (Cet-CNP)

system

Quercetin (QUE)
and Paclitacel

(PTX)

The Que encapsulated Cet-CNP synergistically
improved the cytotoxicity of PTX in A549 and reversed

resistance in PTX resistant A549/Taxol cells. Besides,
in vivo study revealed that the Que-PTX dual-loaded

Cet-CNP had tumor growth inhibition in PTX-resistant
xenografts.

Wang et al. [256]

Chitosan coated PLGA
nanoparticles

(CS-PLGA-NP) system
Resveratrol (RES)

The CS-PLGA-NP system showed improved stability
and sustained release properties. Besides, the RES

encapsulated CS-PLGA-NP showed significantly greater
(about one-fold) cytotoxicity and apoptotic activities

against H1299 lung cancer cells than the free
drug counterpart.

Aldawsari et al. [257]

Native CNP system
Morinda citrifolia

essential oil
(MCEO)

The MCEOs-encapsulated CNPs had more than one-fold
lower IC50 values as compared to free MCEOs (95

µg/mL, and 40 µg/mL, respectively) against A549 cells.
Rajivgandhi et al. [258]

Native CNP system boswellic acid
(BWA)

The BWA encapsulated CNP showed enhanced
therapeutic effects against A549 cells because of greater

cellular uptake, sustained-release properties, and
enhanced antiproliferative effects as compared with

free BWA.

Solanki et al. [259]

Hydrophobic
deoxycholic acid

(DCA)
poly(amidoamine)
dendronized CNP

(DCA-PAMAM-CNP)
system

Doxocubicin (Dox)
and pDNA

The co-delivery of Dox and pDNA by using the
DCA-PAMAM-CNP system achieved a high

transfection efficiency of up to 74% in the 293T kidney
cell line. Besides, a low dosage of co-delivered Dox was
capable of improving transgene expression, presenting a

synergistic effect.

Chen et al. [260]

Native CNP system
Anti-programmed
cell death protein
ligand 1 (aPD-L1)

The aerosol inhalation delivery system of aPD-L1 by
CNP has been suggested to be a potent immunotherapy

against lung metastasis through activation of the
immune system by promoting the infiltration of
different immune cells, especially CD8+ T cells.

Jin et al. [261]
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6. Conclusions

Present cancer therapeutic approaches have encountered various circumstances that
often resulted in limited therapeutic efficacy. The underlying basis of the failure is multi-
factorial, comprising short retention time of drugs, non-targeted delivery of drugs, and
MDR. CNPs have been proven to be a promising nano-carrier system by previous studies
due to their advantageous features in different sectors, especially in the biomedical field, in
which they are capable of enhancing the therapeutic efficacy and cellular uptake of several
anti-cancer drugs. Noticeably, the development of a CNP-based system has relieved the
disadvantages of conventional cancer disease treatment with enhanced therapeutic efficacy
and reduced MDR. The CS structure endowed with high flexibility has made it possible
for it to be modified and given increased functionalization, overcoming the impediments
in current pharmaceutical and biomedical applications. Nonetheless, further ongoing
research on CS-related nanobiotechnology should be conducted in order to improve the
current medical level and to develop medications with high therapeutic efficacy so as
minimize the pain that patients have to endure and at the same time maximize the efficacy
of therapeutic drugs.
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