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Abstract: The biosorption of pollutants using microbial organisms has received growing interest in the
last decades. Diatoms, the most dominant group of phytoplankton in oceans, are (i) pollution tolerant
species, (ii) excellent biological indicators of water quality, and (iii) efficient models in assimilation and
detoxification of toxic metal ions. Published research articles connecting proteomics with the capacity
of diatoms for toxic metal removal are very limited. In this work, we employed a structural based
systematic approach to predict and analyze the metalloproteome of six species of marine diatoms:
Thalassiosira pseudonana, Phaeodactylum tricornutum, Fragilariopsis cylindrus, Thalassiosira oceanica,
Fistulifera solaris, and Pseudo-nitzschia multistriata. The results indicate that the metalloproteome
constitutes a significant proportion (~13%) of the total diatom proteome for all species investigated,
and the proteins binding non-essential metals (Cd, Hg, Pb, Cr, As, and Ba) are significantly more than
those identified for essential metals (Zn, Cu, Fe, Ca, Mg, Mn, Co, and Ni). These findings are most
likely related to the well-known toxic metal tolerance of diatoms. In this study, metalloproteomes that
may be involved in metabolic processes and in the mechanisms of bioaccumulation and detoxification
of toxic metals of diatoms after exposure to toxic metals were identified and described.

Keywords: diatoms; marine pollution; metal detoxification; toxic metal; metalloproteome

1. Introduction

Anthropogenic activity mainly due to mining, technological activities, and agricultural
applications have led to a vast dispersion of toxic metals in natural environments [1–3].
Toxic metals are introduced into the atmosphere, soil, coastal, and marine environments
through a variety of sources, including emissions and wastewater from metal-based indus-
tries, improper waste disposal, as well as from household effluents [4,5]. Once dispersed,
toxic metals can be taken in by humans through food, water, and air and accumulated
in the body, affecting various biological functions and causing multiple organ damage
and serious diseases such as cancer [1,6]. Thus, environmental pollution of toxic metals
(in the form of their ions) is a problem of great concern, leading to increasing interest
in the scientific community in developing methodologies to address and reduce their
harmful effects.

In recent years, techniques that utilize biological mechanisms of microorganisms and
plants to eradicate hazardous contaminants and restore polluted environments to their
original condition are increasingly being used. Thanks to their characteristic enzymes
and biological processes such as bioaccumulation, biomineralization, bioabsorption, and
biotransformation, these organisms maintain the homeostasis of toxic metals and use them
as a source of energy for their growth and development [7,8]. In this way, diatoms have
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developed resistance to toxic metals, adapting their metabolism in order to survive in an
environment polluted with these contaminants [8–10].

Diatoms are the most dominant and diverse group of phytoplankton, which account
for 45% oceanic primary productivity due to their higher growth rate and competitive
characteristics over other groups of microalgae [11]. Diatoms are unicellular eukaryotic mi-
croscopic plants with approximately 200 genera and more than 100,000 species. Diatom cells
exist within a unique silica cell wall, known as frustules, which is synthesized intracellularly
by the polymerization of silicic acid monomers. During biosorption and bioaccumulation
(when algae adsorb toxic metals), exposed parts of the diatoms undergo substitution of
different metal ions or complexation with toxic metals at the frustules [12]. Furthermore,
the principal organic constituents of a diatom’s cell walls, peptidoglycans, polysaccharides,
lipids, and proteins, act as biotic ligands for metal binding [13,14]. Molecular mechanisms
of diatoms enables them to differentiate between essential and non-essential metals (for
human life) for their growth and development [10,15,16]. The metal binding to the surface
depends on metal requirements for intracellular metabolic activities and consequently
some toxic metal ions are transported into the cells and utilized for different metabolic
functions [10]. Upon their accumulation, the microalgae produce reactive oxygen species
(ROS), which act as signaling molecules in order to control cell metabolism [17] and induce
a programmed cell death process in various diatom species [18,19].

Diatoms have attracted considerable attention due to their success in various environ-
mental conditions, and studies that utilize genetic manipulation and metabolic engineering
are needed to provide insight into their adaptation capacity [20]. Due to their short life
cycles, diatoms are used as bioindicators of water quality in rivers, lakes, and oceans by
changing their diversity and density [21–23], and recently diatom applications for specific
industrial wastewater treatment have been investigated [24].

Though diatom algae are one of the most studied species in terms of cellular and
molecular responses to metal toxicity, the identification of metalloproteome that is involved
in their characteristic biosorption machinery is very limited. The holistic identification of
the metallo-binding proteins/enzymes and the elucidation of possible correlations with the
metabolic pathways responsible for metal sequestration by diatoms is a crucial prerequisite
for their molecular manipulation in order to improve survival rates and stability when
exposed to high metal concentration and to discover novel artificial bio-chelators for toxic
metals decontamination [20,25].

In this work, we identified the metalloproteomes for essential (Zn, Cu, Ca, Co, Fe,
Mg, Mn, Ni) and non-essential (Cd, Hg, Pb, Ba, Cr, As) metal ions for six marine diatoms
species: Fistulifera solaris, Fragilariopsis cylindrus, Phaeodactylum tricornutum, Thalassiosira
pseudonana, Thalassiosira oceanica, and Pseudo-nitzschia multistriata, by applying a systematic
structure-based approach. This study allowed highlighting possible molecular linkages
between the metalloproteome of diatoms and their cellular mechanism of bioaccumulation,
homeostasis, and detoxification after their exposure to an environment contaminated by
toxic metals. Their intracellular metabolic activities and their unique adaptation in marine
environments poor in essential metals are also discussed.

2. Materials and Methods
2.1. Identification of Diatom Metalloproteomes

Metal-binding proteomes of six marine diatoms species (Table 1) have been identified
by applying a systematic structure-based approach used previously to propose putative
metalloproteomes in various organisms, such as bacteria, viruses, and toxicological mod-
els [26–28]. The approach combines strategies based on structural data and annotation to
identify known metal-binding domains in their sequences [29,30].
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Table 1. UniProt IDs and proteome size of the six species of diatoms studied.

Proteome ID Organism Strain Number of Proteins Number of Characterized
Proteins in UniProt Database

UP000198406 Fistulifera solaris JPCC DA0580 20.319 10.169

UP000095751 Fragilariopsis cylindrus CCMP1102 18.075 7.692

UP000000759 Phaeodactylum tricornutum CCAP 1055/1 10.465 10.447

UP000001449 Thalassiosira pseudonana CCMP1335 11.718 6.672

UP000266841 Thalassiosira oceanica CCMP1005 34.431 6.681

UP000291116 Pseudo-nitzschia multistriata B856 11.907 4.108

All 3D structures of Zn2+ Cu1+/2+, Ca2+, Co2+/3+, Fe2+/3+, Mg2+, Mn2+/4+, Ni2+,
Cd2+, Hg2+, Pb2+, Ba2+, Cr2+/3+ and As3+—binding proteins have been provided by the
Protein Data Bank (PDB) (https://www.rcsb.org/, accessed on 10 November 2021) and
MetalPDB (https://metalpdb.cerm.unifi.it/, accessed on 10 November 2021) [31]. From
these structures, each specific metal-binding pattern (MBP) involved in the interaction
of specific proteins with the specific metal was extracted. This set served as the starting
point for the search of MBP in the diatom proteomes. All the proteomes were downloaded
from the protein resource UniProt (https://www.uniprot.org/, accessed on 10 November
2021) [32]. Then, to achieve maximal identification coverage, all the diatom proteomes
were analyzed for the relevant Pfam (protein families) metal-binding domains [33]. Each
protein was scanned for the occurrence of Pfam domains using the HMM search function of
HMMER 3.1b2 (http://hmmer.org/, accessed on 10 November 2021) [34] and a threshold
of 0.05 for the E value (as calculated by Pfam). False positives were filtered out by searching
MBPs in the retrieved protein sequences, and by rejecting those lacking the MBPs. The
MBP filter was applied, assuming that the predicted proteins contained all the ligands of
the MBP with spacing within each sequence maintained within ±20% of total number of
amino acids (or ±1 amino acid for short spacing).

2.2. Functional Classification, Gene Ontology Annotation, and Localization of Metal-Binding Proteins

Functional classification of metalloproteins was obtained using DAVID web server
(https://david.ncifcrf.gov/, accessed on 10 November 2021) [35]. Gene Ontology (GO)
terms were retrieved by ClueGO plug-in [36] of Cytoscape v.3.0.0 [37] and the KEGG
pathway annotation [38]. The subcellular localization of metalloproteins was based on
UniProt web source [32].

3. Results
3.1. Non-Essential Metal Binding (Non-EMB) Proteome of Six Diatom Species

The identified metalloproteins bound to non-essential metals (relative to the sum of
Cd, Hg, Pb, Ba, Cr and As proteins), represent 11%, 10.5%, 8.3%, 8.2%, 8%, and 8% of the
Thalassiosira pseudonana, Phaeodactylum tricornutum, Pseudo-nitzschia multistriata, Fistulifera
solaris, Thalassiosira oceanica, and Fragilariopsis cylindrus proteome, respectively. All the
non-essential metal binding (non-EMB) proteins (for the six diatom species) are listed in
the Supplementary Materials (datasheet-1) and their percentage contents per species are
illustrated in Figure 1. Recurrent proteins that bind to different metals were identified and
the average percentage of unique binding proteins for the six diatoms per metal type was
calculated: 2.2%, 0.01%, 6.8%, 0.01%, and 1.2% for Cd, Hg, Pb, Ba, Cr, and As, respectively.
The Pb-binding proteins showed, in all the diatom proteomes, the highest content (up to
9%), followed by Cd (up to 3%), Hg, As and Ba (up to 1.9%), and Cr (less than 1%). The
majority of non-EMB proteins is localized in the membrane (62%), then in the cytoplasm
(12%), and the ribosome (12%). The average enzymatic content in the non-EMB proteomes
of six diatom species is ~53%. The percentage of non-EMB binding enzymes in the total

https://www.rcsb.org/
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number of enzymes for each diatom species and their classification, based on Enzyme
Commission (EC) numbers, are presented in Figure 2 and Table 2.
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Figure 2. The percentage of metal binding enzymes in the total number of enzymes for the six diatom
species analyzed.

Table 2. Classes of the enzymes and their average % content in non-EMB and EMB in proteomes of
the six diatom species studied in this work.

Enzyme Class E.C Number
Average % Content

EMB Proteome Non-EMB Proteome

Oxidoreductases 1 13 6

Transferases 2 24 19

Hydrolases 3 30 27

Lyases 4 6 2.5

Isomerases 5 2.4 2

Ligases 6 5 0

Translocases 7 3.4 0

The most significant molecular function GO terms represented in non-EMB proteomes
refer to catalytic activity (53%), transmembrane transporter activity (11%), structural con-
stituent of ribosome (7%), and antioxidant activity (1%). The majority of the proteins that
are ribosomal and involved in antioxidant activity are Pb- and Hg-binding molecules,
respectively. Sixty-four percent of the enzymes are involved in metabolic processes, taking
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part in a complex sequence of controlled biochemical reactions (metabolic pathways) which
allow diatoms to grow, maintain, and respond to environmental changes. In particular,
the majority of them are involved in the production of primary metabolites lactic acid
and certain amino acids (87%) and in nitrogen metabolism (87%). The rest are involved
in catabolic pathways: break down of carbon compounds with release of energy used by
diatom cells (17%) and in methylation (6.7%).

3.2. Essential Metal Binding (EMB) Proteome of Six Diatom Species

The identified EMB proteins (relative to the sum of Zn, Cu, Ca, Co, Fe, Mg, Mn, and
Ni proteins) represent 6.2%, 5.9%, 5.6%, 4.9%, 4.7%, and 4.1% of the Fistulifera solaris, Phaeo-
dactylum tricornutum, Thalassiosira pseudonana, Pseudo-nitzschia multistriata, Fragilariopsis
cylindrus, and Thalassiosira oceanica proteome, respectively. All the EMB proteins are listed
in the Supplementary Materials (datasheet-2) and their percentage contents per species are
illustrated in Figure 3. Recurrent proteins that bind to different metals were identified and
the average percentage of unique binding proteins for the six diatoms per metal type was
calculated: 2.9%, 0.08%, 0.5%, 0.0%, 1.3%, 0.9%, 0.5%, and 0.09% for Zn, Cu, Ca, Co, Fe, Mg,
Mn, and As, respectively.
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Figure 3. The percentage content of EMB proteins in the proteomes of the six diatoms studied in the
present work.

In all species of diatoms, the Zn-binding proteins have the highest content (up to
3%), followed by Fe (up to 1.5%), Mg (up to 1%), Mn and Ca (up to 0.5%), and Co, Cu
and Ni (less than 0.1%). The majority of EMB proteins is localized in the membrane (55%)
and then in the cytoplasm (11%). The average enzymatic content in the EMB proteomes
of the six diatom species is ~33%. The percentage of EMB binding enzymes in the total
number of enzymes for each diatom species and their classification, based on Enzyme
Commission (EC) numbers, are presented in Figure 2 and Table 2. The most significant
molecular function GO terms represented in EMB proteomes refer to catalytic activity (33%),
molecular function regulator (2%), antioxidant activity (1.7%) and transcription regulator
activity and transmembrane transporter activity (less than 1%). Eighty-four percent of the
identified enzymes are involved in metabolic pathways. The majority of them is involved
in the production of primary metabolites (73%), in nitrogen metabolism (66%), in catabolic
pathways (11%), and in methylation and protein glycosylation (3% and 1.4%, respectively).

3.3. Non-Essential Metal Binding in Essential Metal Binding Sites in Diatom Metalloproteins

Since diatoms are microorganisms with a unique toxic metal tolerance and a mecha-
nism that utilizes toxic metals in the catalytic site of enzymes in the absence of the associated
essential metal, in this work, we attempted to discover possible EMB proteins that could
bind a toxic metal. Based on the present analysis, the content of the proteins with EMB
motifs that was identified in the non-EMB proteome in all six diatom proteomes ranges
from 6 to 7%. Specifically, the averages of the possible binding rates of non-essential metals
to each type of EMB motif in diatom proteomes are presented in pie charts in Figure 4.
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non-EMB proteome for the six diatom species studied.

Based in the present analysis, the most important diatom enzymes that share EMB and
non-EMB motifs are: (i) Cu2+ transmembrane transporter and electron transfer activity (for
instance plastocyanin), (ii) Ca2+ binding proteins (including Calmodulin, Phosphoinositide
phospholipase C and Peptidylprolyl isomerase), and (iii) Mg2+ transmembrane transporters
and Mg2+ binding proteins with catalytic activity, including transferring phosphorus-
containing groups, protein kinase, and hydrolase activity.

4. Discussion

This work describes, for the first time, an in silico identification of the metalloproteome
for marine diatoms, a group of phytoplankton efficient in assimilation and detoxification
of toxic metal ions. The results indicate that the metalloproteome constitutes a significant
proportion of the total proteome of diatoms (~13%). Specifically, in the six species of
diatoms analyzed, the non-EMB proteome is significant larger than those observed for
essential metals, (for instance in Thalassiosira oceanica, they are 8% and 4.1%, respectively).
In EMB proteome, the Zn-binding proteins have the highest content (up to 3%), followed
by Fe (up to 1.5%), Mg (up to 1%), Mn and Ca (up to 0.5%), and Co, Cu and Ni (less than
0.1%). These results are in agreement with data from other organisms: Zn-binding proteins
have the highest content and constitute up to 9%, 5%, and 6% of the metalloproteome
in Eukarya, Bacteria, and Archea, respectively [39]. In eukaryotes and prokaryotes, the
size of the Cu proteome was below 1% [40]. The higher frequency for the Zn-binding
proteins was somehow expected because Zn2+ is one of the most abundant metal ions in
living organisms and it is bound to proteins or enzymes which are involved in a variety of
fundamental biological processes.

In non-EMB proteome, the Pb-binding proteins showed the highest content (up to
9%), followed by Cd (up to 3%), Hg, As and Ba (up to 1.9%), and Cr (less than 1%).
The above non-EMB protein contents are comparable to those previously reported for
Tetrahymena sp. [26,41]. Tetrahymena are ciliated protozoa that inhabit streams, lakes, and
ponds and are mostly known for their use as a tool for toxicological studies and “whole-cell
biosensor” (WCB) for detecting toxic metals pollution in aquatic or soil samples [26,28].
Interestingly, in diatoms, the content of enzymes is higher in non-EMB compared to EMB
proteome. That means that toxic metals may be involved in large-scale metabolic processes
and multiple cellular pathways. In fact, the majority of non-EMB proteins were enzymes
involved in organic substances, nitrogen compounds, biosynthetic and primary diatoms
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metabolic processes, and the rest of them has important biological functions (including
antioxidant activity and transmembrane transporter activity).

Various toxic metals ions, including Cd2+ may bind to Zn2+ and Cu2+-coordination
motifs of proteins in archaeal, bacterial, and eukaryotic organisms (metallothioneins [42],
zinc transporters [26,43] and proteolytic enzymes [44], RING domains of E3 ligases [45,46],
superoxide dismutase [47,48], catalase [49,50], and glutathione reductase [51,52]). Also,
previous studies have shown that ion sensors like calmodulin (CaM, calcium sensor)
are activated effectively by other metals (i.e., Pb2+ and Ba2+), in fact with higher affinity
than Ca2+ [53–55]. These observations could be explained, at least in part, by a similar
coordination geometry for both Ca2+, Pb2+ and Ba2+ in the EF-hands of CaM, suggesting
similar mechanisms when CaM is activated by different metal ions. It was proposed
that the toxicity-related activation mechanism of CaM by lead may have two aspects:
hyperactivation at low concentration of Pb2+ and inactivation at high concentrations,
leading to the possible study of this molecule as a concentration sensitive sensor for
Pb2+ [53]. According to the present study, predicted non-EMB proteins are enzymes with
typical Zn-, Cu-, Ca-, Co-, Fe-, Mg-, Mn-, and Ni-binding motifs. This observation is
in agreement with the remarkable ability of diatoms for the biogeochemical cycling of
cadmium and their significant competitive advantage to survive in an oceanic environment
poor in essential metals, but rich in toxic metals (usually Cd). Diatoms utilize Cd2+ as a
catalytic metal ion in carbonic anhydrase, leading to lowest cadmium concentrations in
surface water than the depths [56,57].

Our study reveals that essential metal binding motifs that could utilize non-essential
metal ions belong mostly to proteins with metal ion transporter activity: Copper trans-
porter, CaM (Ca+2-transporter), H(+)-exporting diphosphatase (Mg+2-transporter), and
Transmembrane protein 163 and PHD domain-containing protein (Zn+2-transporters).
These results suggest that Ca, Mg, Cu, and Zn proteins and enzymes could be involved
in toxic metal homeostasis, subcellular distribution, and detoxification, after diatom’s
exposure to toxic metals, since essential metal transmembrane transporters may constitute
the main candidates for non-essential toxic metal uptake in diatoms.

Diatoms are excellent biological indicators, and they are used as bio-monitors of
pollution. Several studies indicate that diatoms are pollutant-resistant species which varies
from one species to another in response to their habitat and the types of metals they are
exposed to [10]. This study reveals the order Pb2+ > Cd2+ > Hg2+ for the toxic metal binding
capability of diatom proteomes. According to the literature, Thalassiosira pseudonana and
Phaeodactylum tricornutum, have been characterized as toxic metal tolerant diatom species
and potential candidates for toxic metal removal applications [58,59]. Since these two
diatoms have a slightly higher content of non-EMB proteins compared to the others, we can
suppose that the other four diatoms (Fragilariopsis cylindrus, Thalassiosira oceanica, Fistulifera
solaris, Pseudo-nitzschia multistriata) probably exhibit the same toxic metal tolerant capacity.

The volume of research work done on application of diatoms for toxic metal removal
is quite sparse compared to green and blue green algae [12]. Some reports revealed possible
biosorption and bioaccumulation of toxic metals by diatoms. For instance: (i) in Thalassiosira
oceanica, the Cd absorption process involves Cd intake during Fe deficiency [60,61], (ii) in
Thalassiosira pseudonana, Cd, Cu, and Zn absorption involves antioxidant activity, ROS
scavenging [62], and (iii) in Phaeodactylum tricornutum, Cd, Pb, and Cu absorption involves
phytochelatins and antioxidant enzymes [15,63,64]. Based on our results, the proteins
which are involved in the experimentally reported Cd absorption of Thalassiosira oceanica
are proteins with Cd-binding motif and cation transporter activity such as: the ATPase-
coupled cation transmembrane transporter (HMA domain-containing protein, UniProt ID:
K0SDM0), and the ion trans domain-containing protein (UniProt ID: K0S7Z5), and intra-
cellular calcium binding receptor CaM (UniProt ID: K0T731). In Thalassiosira pseudonana,
the reported Cd, Cu, and Zn absorption may be facilitated through proteins with binding
motifs that could replace essential metals (Cu, Zn, and Fe) by non-essential ones (Cd) and
antioxidant activity such as: Superoxide dismutase (UniProt ID: B8C2J5), Cytochrome
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C peroxidase (UniProt ID: B5YMA2), Ascorbate peroxidase (UniProt ID: B8CFA9), and
Catalase-peroxidase (UniProt ID: B8CF21). Finally, in Phaeodactylum tricornutum, the mech-
anism of the reported absorption of toxic Cd and Pb may involve antioxidant enzymes
with binding motifs that could substitute Fe by Cd and Pb, such as Catalase-peroxidase
(UniProt ID: B5Y4Y9), Ascorbate peroxidase (UniProt ID: B7G384), and Superoxide dismu-
tase (UniProt ID: B7FPQ3).

5. Perspectives

In the present work, metalloproteome of six species of marine diatoms: Thalas-
siosira pseudonana, Phaeodactylum tricornutum, Fragilariopsis cylindrus, Thalassiosira oceanica,
Fistulifera solaris, and Pseudo-nitzschia multistriata was analyzed. The main outcomes are the
discovery of possible molecular linkages between metalloproteome of diatoms and (i) their
cellular machinery for the toxic metal bioaccumulation, homeostasis, and detoxification
after diatom’s exposure to toxic metals, (ii) their intracellular metabolic activities, and
(iii) the unique adaptation of diatoms to marine life in essential metal-poor environments.
As the published research on proteome level regarding the application of diatoms for toxic
metal removal is limited, this work and the provided list of diatom metalloproteins could
be useful for future studies related to individual metal binding enzymes of various diatoms
and offer insights useful for metabolic engineering efforts for biotechnological production
of strains with high-toxic metal removal performing. Moreover, these results are of interest
in ecotoxicology, where the mechanisms underlying the metal tolerance in marine diatoms
remain a matter of research. The discovering of novel natural or artificial bio-chelators of
toxic metals would broaden the spectrum of their metal binding affinity and consequently
the collection of metal contaminants in polluted water by diatoms as transgenic plants
are not able to do so without soil. Furthermore, the optimization of metal recovery by
diatoms could be even used to recover raw materials from wastewater, reducing the cost of
their purification.

Supplementary Materials: The following supporting information can be downloaded online. datasheet-
1 (non-EMB proteome), datasheet-2 (EMB proteome).
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