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Abstract: Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr)
treated with sodium hydroxide (NaOH) at 10–50% w/v. The objective of this research was to
determine the effect of NaOH concentrations on morphology, mechanical properties, and water
barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice
starch and CMSr powders were examined. Fourier transform infrared spectroscopy (FT-IR), X-ray
diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate the chemical
structure, crystallinity, and thermal properties of the CMSr films. As the NaOH concentrations
increased, the DS of CMSr powders increased, which affected the morphology of CMSr powders;
a polyhedral shape of the native rice starch was deformed. In addition, the increase in NaOH
concentrations of the synthesis of CMSr resulted in an increase in water solubility, elongation at break,
and water vapor permeability (WVP) of CMSr films. On the other hand, the water contact angle,
melting temperature, and the tensile strength of the CMSr films decreased with increasing NaOH
concentrations. However, the tensile strength of the CMSr films was relatively low. Therefore, such a
property needs to be improved and the application of the developed films should be investigated in
the future work.

Keywords: mechanical properties; morphology; water vapor permeability; solubility; NaOH

1. Introduction

Carboxymethyl starch (CMS) was firstly modified in 1924 by the reaction of starch
with sodium monochloroacetate in an alcohol solution [1,2]. In general, water solubility in-
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creased as the substitution level (DS) increased. CMS is widely used in food, cosmetic, and
pharmaceutical industries. Among starch derivatives, CMS is of particular interest because
of its outstanding properties. For example, CMS is commonly used as a thickener in the
formulation of textile printing pastes. In addition, CMS is typically used as an additive in
the paper industry and a water-soluble polysaccharide [3]. The DS is the average number of
functional groups introduced into the anhydroglucose unit (AGU) and could be produced
with a very wide variety of carboxymethyl group substitutions [4]. CMS synthesized from
potato starch had excellent solubility in cold water and high viscosity due to the high DS
value [5]. Therefore, etherified starch derivatives received great attention [6]. CMS is mostly
used as a stabilizing agent in food production applications such as ice cream, vegetables,
and drinks. Furthermore, CMS is a preservative in fresh meat products and crops. CMS
is applied as an additive in non-food manufacturing (i.e., resizing and printing in the
cloth industry [7,8] and controlled drug release suspending agent in the pharmaceutical
industry [9]). CMS is also used as a binder and tablet film for covering medicines, medicine
formulation, and gel-based coating materials [10,11]. In addition, CMS was introduced
in polymers to obtain a hydrophilic behavior of film, i.e., carboxymethyl cellulose [12,13],
carboxymethyl chitosan [14], and carboxymethyl starch [15,16]. Moreover, CMS-based
films are soluble in cold water and their physicochemical properties are dependent on their
DS values [3].

Rice starch is a highly intensive starting material for producing edible and biodegrad-
able films because it is a natural polymer and mass production is possible from sustainable
agricultural resources [17]. Moreover, rice starch is renewable, low cost, and it can partially
or fully replace other edible and biodegradable polymers [18]. Although, the function
of native rice film is specified because the film is brittle, slightly opaque, and does not
dissolve in cold water [19]. To overcome such problems, plasticizers are added during the
film creation process to increase flexibility and reduce internal hydrogen bonds between
polymer chains, which increase free volume and the gap between molecular chains of
polymer [20]. The most generally used plasticizers in starch-based films are polyols; for
example, glycerol, poly(ethylene glycol), and sorbitol, which are mostly used due to their
hydrophilic properties [21]. Glycerol-plasticized films show higher solubility [22], mois-
ture absorption, and flexibility [23] than sorbitol-plasticized films. Laohakunjit et al. [24]
reported that rice starch films plasticized with sorbitol had better oxygen barrier properties
than films plasticized with glycerol. Additionally, rice starch was also combined with
alternative materials; for example, agar [25], gelatin [26], chitosan [27,28], methylcellu-
lose [29], carboxymethyl cellulose [12], and carboxymethyl chitosan [28,30]. Moreover,
starch modification under chemical reaction is one of the main methods which has been
employed to develop starch films with unique characteristics and properties [31]. The
addition of chitosan into rice starch increased the water barrier property, but no changes in
the mechanical properties of rice starch–chitosan films [27]. Introduction of carboxymethyl
chitosan into rice starch improved the mechanical properties and thermal stability of
films [28]. The incorporation of propolis extract into rice starch/carboxymethyl chitosan
films enhanced their antioxidant and antimicrobial properties [30]. Moreover, Rachtanapun
et al. [31] studied the effect of sodium hydroxide (NaOH) concentrations on properties of
carboxymethyl rice starch (CMSr). They found that the morphology of the CMSr granules
was deformed when the NaOH concentration increased, which was correlated with DS. In
addition, viscosity increased, whereas the crystallinity of the CMSr decreased. The effect
of reaction parameters, amount of NaOH, sodium monochloroacetate, and reaction time
on the DS of carboxymethyl yam (Dioscorea esculenta) starch was studied by Nattapulwat
et al. [32]. The experimental results showed that the optimal ratio of NaOH and sodium
monochloroacetate to anhydroglucose unit was 1.80 and 2.35, respectively, for 4.8 h, which
succeeds the DS for 0.19.

Although, a few studies have been carried out regarding the effect of NaOH concentra-
tions on the properties of CMSr powders, we attempted to investigate the effect of NaOH
concentrations on water solubility, functional group, morphology, thermal analysis, contact
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angle, mechanical properties (elongation at break and tensile strength), and water vapor
permeability (WVP) of CMSr films.

2. Results and Discussion
2.1. Degree of Substitution (DS) of CMSr Powder

The effect on different NaOH concentrations on the DS of the CMSr powder was
examined. The result found that the DS value of CMSr powder increased with higher
NaOH levels. The value of DS showed 0.08, 0.23, 0.31, 0.38, and 0.32 with 10%, 20%,
30%, 40%, and 50% NaOH concentrations, respectively. However, with the 50% NaOH
concentration, the DS of CMSr powder was gradually decreased. The DS value could be
explained by a two-step reaction of carboxylation. The first step is the alkalization of starch,
where sodium hydroxide reacts with the hydroxyl group of rice starch molecules and is
converted to aloxides [31]. The second step is generated from the first step at the strongest
alkaline concentration. Etherification also occurs as a side reaction; the reaction between
sodium hydroxide and sodium monochloroacetate to sodium glycolate form [1]. In general,
an increase in DS because of a reduction of crystallinity in the polysaccharides facilitates
the carboxymethylation reaction affected by a high concentration of base and acid [6].
Conversely, the DS decreases because of the side reactions dominated by high sodium
glycolate by-products [33,34]. An increase in DS affects the water solubility in polysaccha-
rides, such as cellulose [13,15,35], chitosan [14,36], and starch [16,31]. Moreover, the DS of
carboxymethylation depends on particle sizes [14], solvents [37], types of polymers [36,38],
and times and temperatures of reactions [39]. Nattapulwat et al. [32] studied the effect
of NaOH, sodium monochloroacetate, and reaction time on DS of carboxymethyl yam
starch (Dioscorea esculenta). The optimal ratio of NaOH (1.80) to sodium monochloroacetate
(2.35) was used for 4.8 h, which resulted in a DS of 0.19. There are also previous studies
relating to carboxymethyl cellulose that determined the effect of NaOH concentrations
on the degree of substitution (DS). For example, carboxymethyl cellulose from asparagus
stalk end (CMCas) with various NaOH concentrations by Klunklin et al. [33]. The results
showed that CMCas at a concentration of 30% of NaOH for the carboxymethylation reac-
tion had a maximum DS of 0.98. In addition, Rachtanapun et al. [34] studied carboxymethyl
cellulose from nata de coco (CMCn) with Acetobacter xylinum starting NaOH concentrations
from 20% to 60%. In the carboxymethylation process, optimal conditions include using a
NaOH content of 30 g/100 mL as the highest DS value (0.92). Including the experiment
of Rachtanapun et al. [13], carboxymethyl durian rind (CMCd) was synthesized using
different concentrations of NaOH. The results showed that the DS value of CMCd increased
with increasing NaOH concentration and obtained a maximum DS of 0.87 at a 30% (w/v)
NaOH concentration.

2.2. Scanning Electron Microscopy of CMSr Powders

The morphological characteristic of the CMSr powders with different NaOH con-
centrations was examined using SEM. As shown in Figure 1, native rice starch showed
several individual granules with a polyhedral form and smooth surface (Figure 1a,A). The
size and appearance of the granules began to change when the NaOH concentration was
increased. The granules of CMSr treated with NaOH concentrations of 10% and 20% were
similar to the native rice starch with slight damage as shown in Figure 1b,B,c,C, but at
20% NaOH concentration, the granules started agglomeration (Figure 1c). Conversely, the
CMSr powder treated with the NaOH concentration (30% and 40%) showed individual
granules with irregular shapes (Figure 1d,D,e,E). At 50% NaOH concentration, the CMSr
powder exhibited an agglomerated form (Figure 1f,F), whereas the CMSr treated with 60%
NaOH showed a gel-like aspect in which isolated granules of CMSr obviously disappeared
(Figure 1g,G). This result is the same as that found in carboxymethyl cassava starch [40].
As the NaOH concentration increased, the damage of the surface area of the rice starch
granules increased because alkaline solutions may reduce the strength and stability of
the granular molecular arrangement, resulting in a loss of granulation [31]. Alkalization
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changed the granules, making them weaker with a loss of crystallinity, and thereby allow-
ing the etherifying agents higher entrance to the starch molecules in carboxymethylation
processes [6]. Therefore, this result corresponds to the DS value, leading to a correlation
between the NaOH concentration with the DS of the CMSr [31].
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Figure 1. The SEM micrographs of (a) rice starch powder, and CMSr powders synthesized with
(b) 10%, (c) 20%, (d) 30%, (e) 40%, (f) 50%, and (g) 60% NaOH concentrations at 1000× followed by
(A) rice starch film, and CMSr film synthesized with (B) 10%, (C) 20%, (D) 30%, (E) 40%, (F) 50%,
and (G) 60% NaOH concentrations at 5000×.

2.3. FT-IR of Native Rice Starch Film and CMSr Films

FT-IR was used to analyze functional group variations in the native rice starch film
and CMSr films, as shown in Figure 2. The substitution reaction of CMSr via the car-
boxymethylation is related to change in functional groups, including the hydroxyl group
(–OH stretching), the C–H stretching carbonyl group (C=O stretching), hydrocarbon groups
(–CH2 scissoring), and ether groups (–O– stretching) at 3200–3600, 3000, 1600, 1450, and
1000–1200 cm−1, respectively [31,33,34]. The absorption bands of CMSr treated with 10%
NaOH was similar to native rice starch film. The intensity of the carbonyl group (C=O
stretching) and hydrocarbon groups (–CH2 scissoring) of CMSr films slightly increased
with increasing NaOH concentrations ranging from 10% to 20%, whereas such functional
groups remarkably increased at the higher NaOH concentrations (30–50%). These sig-
nificant changes confirmed that carboxymethylation took on the rice starch molecules,
which was similar to the carboxymethylation of mung bean starch [11] and yam starch [32].
However, the CMSr powder treated with 60% NaOH could not form as a film due to
the side reaction effect between NaOH and sodium monochloroacetate forming sodium
glycolate, which is consistent with the result of Lawal et al. [6]. Thus, the properties of
sample treated with 60% NaOH was not investigated.

2.4. SEM of Rice Starch Film and CMSr Films

Scanning electron micrographs of cross-sections of rice starch film and CMSr films with
different NaOH concentrations are shown in Figure 3. The film was cut with liquid nitrogen
to obtain a cross-section. The rice starch film showed a rough surface and a small granule,
which may be caused by a low water solubility of rice starch powder in film forming [41],
as in Figure 3a,A. The surface of the CMSr film treated with a 10% NaOH concentration
presented an uneven surface (Figure 3b,B) due to the poor water solubility of CMSr powder
affected by a lower DS (0.08). This is consistent with the morphology of CMSr powder
with remaining crystalline granules (Figure 1b,B), which could not completely dissolve
in water during the film forming. Conversely, an increase in the NaOH concentration
(e.g., 20–50% NaOH) apparently affected the morphology of the CMSr films, resulting in
a smoother film surface (Figure 3c–f,C–F) due to a higher DS (in the range of 0.23–0.38
for 20–50% NaOH). This is related to destruction of the crystalline structure of the starch
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granules and the formation of carboxymethyl groups on their surface as described in SEM
micrographs (Figure 1c–f,C–F) and FT-IR spectra [15,34], leading to their easy dissolving in
water during film forming. However, the CMSr powder treated with 60% NaOH could not
form as a film because of the consequent collapse of the crystal structure affected by the
side reaction due to the excess of NaOH as explained in the previous section.
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Figure 3. The SEM micrographs of (a) rice starch film, and CMSr film synthesized with (b) 10%,
(c) 20%, (d) 30%, (e) 40%, and (f) 50% NaOH concentrations at 1000× followed by the cross-section
micrographs of (A) rice starch film, and CMSr film synthesized with (B) 10%, (C) 20%, (D) 30%,
(E) 40%, and (F) 50% NaOH concentrations at 2000×.

2.5. X-ray Diffraction (XRD) of Native Rice Starch Film and CMSr Films

XRD patterns of the native rice starch film and the CMSr films with different NaOH
concentrations are shown in Figure 4. The diffraction pattern of native rice starch films
showed characteristic peaks at 14.9, 17.0, 18.0, and 22.8◦ 2θ, corresponding to a C-type
crystalline pattern [31,42]. The CMSr films with a 10% NaOH concentration showed a
similar pattern compared to the native rice starch film, but lower intensity. At higher NaOH
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concentrations (20–50% NaOH), the C-type crystalline pattern [31,42] of the CMSr films
disappeared due to loss of crystallinity, attributing to the rupture of starch granules during
the modification through carboxymethylation [33], as shown in SEM results (Figure 1). In
general, NaOH treatment decreases the crystallinity of polysaccharide polymers caused
by the breaking of hydrogen bonds [34]. The present research is also consistent with
other works, such as carboxymethyl cassava starch [15], carboxymethyl rice starch [31],
carboxymethyl cellulose from asparagus stalk ends [33], and carboxymethyl cellulose from
nata de coco [34].
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2.6. Differential Scanning Calorimetry (DSC) of Native Rice Starch Film and CMSr Films

In general, crystallinity plays a significant role in the material’s barrier and mechanical
properties, which can be investigated by DSC [43]. The thermal property of native rice
starch and CMSr films with different NaOH concentrations is shown in Figure 5. The
melting temperature (Tm) of native rice starch film was 173.7 ◦C. The Tm of CMSr films
treated with 10% and 20% NaOH were 168.2 and 154.7 ◦C, which were lower than that
of the native rice starch film. The Tm of the CMSr films synthesized with 30%, 40%, and
50% NaOH were 167.0, 135.6, and 108.6 ◦C, respectively. The area under the endother-
mic peak expresses the heat (enthalpy) of fusion (∆H), reflecting the crystallinity of the
polymeric films [44]. The native rice starch film showed a sharp endothermic peak and
a high heat of fusion. The endothermic peak of CMSr films treated with lower NaOH
concentrations (10–20% NaOH) were similar to that of the native rice starch film but shifted
toward low temperatures together with the reduction of ∆H, indicating a reduction of
crystallinity of films. This phenomenon occurred because the intermolecular force (i.e.,
H-bond) between rice starch molecules was slightly disturbed from the formation of bulky
groups (i.e., carboxymethyl group), affecting the chain arrangement of the native starch
and number of crystalline granules. At higher NaOH concentrations (30–50% NaOH), the
endothermic peak of CMSr films became broader and remarkably shifted toward low tem-
peratures, implying the loss of rice starch’s crystallinity, attributed to a great substitution
of the carboxymethyl group. As previously described, the higher NaOH concentrations
strongly affected the intermolecular force by breaking the H-bonding between rice starch
molecules, resulting in the disruption of the crystalline structure of the native rice starch
molecules [45]. This phenomenon facilitated the carboxymethylation reaction between
sodium monochloroacetate and rice starch molecules, leading to the greater substitution of
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the carboxymethyl group on the rice starch molecules [46]. This result was consistent with
the DS, FT-IR, XRD, and SEM results. In addition, the present result was also similar with
carboxymethyl cellulose from asparagus stalk ends [33], carboxymethyl bacterial cellulose
from nata de coco [34], and carboxymethyl cellulose powder and films from Mimosa pigra
peel [35].
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2.7. Percentage of Soluble Matter (%SM) of Native Rice Starch Film and CMSr Films

Figure 6 shows the effect of NaOH concentrations on the %SM of CMSr films. The
native rice starch film has a very low %SM (2.07), which indicated an insolubility in
water. At lower NaOH concentrations (10% and 20% NaOH), the %SM of CMSr films
slightly increased (3.58 and 3.82), but were mostly insoluble in water, indicating a lower
formation of the carboxymethyl group. Obviously, the CMSr films treated with higher
NaOH concentrations (30–50% NaOH) exhibited higher %SM (89.49, 95.72, and 99.70
for 30%, 40%, and 50% NaOH treatments, respectively), suggesting an increase in water
solubility of the CMSr films. This implied that the %SM of the CMSr films was dependent
on the DS and morphological structure of the synthesized CMSr powders affected by higher
NaOH concentrations, as explained in the DS, FT-IR, and SEM results. This confirmed that
the sufficient NaOH concentration resulted in a higher carboxymethylation reaction and a
greater polarity of the CMSr films [14]. The finding is similar to the investigation of sodium
carboxymethyl mung bean starch granules [9].
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2.8. Contact Angle of Native Rice Starch Film and CMSr Films

The water contact angle is the most common parameter used to describe the hy-
drophilicity of film surfaces [47]. Hydrophilicity of polymeric film can be investigated
by the water contact angle. As shown in Figure 7 and Table 1, a dynamic water contact
angle of all films decreased with time (0–50 s) due to the chemical affinity between water
and polymeric films [48]. The dynamic water contact angles of the native rice starch were
slightly changed in the range of 93.9–90.9 with time. The dynamic water contact angles of
the CMSr films treated with 10–20% NaOH concentrations were similar to that of the native
rice starch, but relatively lower water contact angles. At higher NaOH concentrations
(30–50% NaOH), the water contact angle of CMSr films notably decreased with time, and
lower than that of the native rice starch and those treated with lower NaOH concentrations.
The lower dynamic water contact angle implied the enhancement of the hydrophilic behav-
ior of the CMSr films treated with higher NaOH concentrations, attributed to the higher
formation of the carboxymethyl group [2,47,49]. This is consistent with the results of DS,
FT-IR, and the soluble matter (%SM) of CMSr films.
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Table 1. Dynamic water contact angle images of native rice starch film and CMSr films synthesized with 10%, 20%, 30%, 40%, and 50% NaOH concentrations with
time (0–50 s).

Samples
Time (s)

0 10 20 30 40 50

Rice starch
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Table 1. Cont.

Samples
Time (s)

0 10 20 30 40 50

30% NaOH
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2.9. Water Vapor Permeability (WVP)

The effect of different NaOH concentrations on the WVP of CMSr films is shown
in Figure 8. Notably, the WVP of the CMSr films was significantly dependent on NaOH
concentrations used in the carboxymethylation reaction. As the NaOH concentrations
increased (10–30% NaOH), the WVP of the CMSr films slightly increased. This indicated
a slight increase in hydrophilicity of the CMSr films due to a little formation of the car-
boxymethyl group (polar group) on the rice starch molecules and a reduction of crystallinity
in the CMSr films [3,28,50]. Whereas at very high concentrations (40–50% NaOH), the
WVP of the CMSr films was obviously increased, suggesting a significant improvement of
hydrophilicity character due to the greater formation of the carboxymethyl group on the
starch molecules and the loss of crystallinity in the CMSr films [2,6,29]. This result is in
agreement with the DS, FT-IR, and dynamic water contract angle results, which confirmed
the enhancement of polarity and hydrophilicity of the CMSr films.
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2.10. Tensile Strength (TS) and Elongation at Break (%E)

The TS and %E of polymeric films are commonly investigated, in which the mechan-
ical property is dependent on the crystallinity, intermolecular forces, and ionic charac-
ter [33,51,52]. The different NaOH concentrations affected the TS values and %E of CMSr
films as shown in Table 2. The native rice starch exhibited the highest TS, but lowest %E,
indicating the behavior of the brittle polymeric film due to the strong intermolecular force
(H-bond) between the native rice starch molecules and the high crystallinity in the native
rice starch film as described in the XRD and DSC results. At lower concentrations (20–50%),
the TS of the CMSr films slightly decreased due to the reduction of crystallinity, relating to
the destruction of crystalline granules of the native rice starch [30,32,41]. However, as the
NaOH concentration (30–50%) increased, the TS of the CMSr notably decreased because of
the reduction of intermolecular force between rice starch molecules as well as the reduction
and loss of crystallinity, as explained in the XRD and DSC results.
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Table 2. Tensile strength (MPa) and elongation at break (%) of CMSr films synthesized with different
NaOH concentrations.

Type of Film Tensile Strength (MPa) Elongation at Break (%)

0% NaOH-CMSr 10.75 ± 2.25 a 7.56 ± 1.72 a

10% NaOH-CMSr 9.87 ± 1.42 a 11.36 ± 2.18 b

20% NaOH-CMSr 4.39 ± 1.86 b 22.98 ± 2.73 c

30% NaOH-CMSr 4.46 ± 1.73 b 29.64 ± 3.08 d

40% NaOH-CMSr 2.75 ± 1.28 c 53.03 ± 4.49 e

50% NaOH-CMSr 2.86 ± 1.02 c 25.08 ± 1.16 c

Different letters (a,b,c . . . ) indicate significant differences (p < 0.05) between CMSr films synthesized with different
NaOH concentrations within the same column.

The %E of the CMSr films slightly increased with increasing NaOH concentrations,
indicating the behavior of flexible CMSr films. This was attributed to reduction of crys-
tallinity. Nawaz et al. [53] reported several factors that affect the chemical properties,
physical properties, and applications of starch. It has been found to induce changes in the
crystalline starch amorphous form in starch gel formation. The amount of water in the
CMSr films increased, increasing the %E. These reasons agree with the observations in the
work of Phan et al. [25]. Thus, CMSr films led to decreased TS, but they increased %E with
increasing NaOH concentrations.

Moreover, there is research that describes the relationship between DS values for
TS and %E. Phan et al. [25] reported that the TS is presented to the rise of the DS since
replacing the methyl group, carboxymethyl, makes an expansion in the ionic type and
intermolecular forces between the polymer groups. However, Klunklin et al. [33] explained
that with a greater concentration of NaOH, TS was lowered because of sodium glycolic
acid, a by-product from the reaction of CMC and synthetic biodegradable polymer. Rach-
tanapun et al. [35] indicated that the relation of CMC films from Mimosa pigra showed that
the TS of CMC films from Mimosa pigra increased with increased NaOH concentrations
(20–30 g/100 mL) and Rachtanapun et al. [54] studied CMC film from mulberry paper
waste and found that with the concentration of NaOH increasing, TS increased, and may
cause hydrolysis of the cellulose chain.

3. Materials and Methods
3.1. Materials

Native rice starch was obtained from the Thai Flour Industry Co., Ltd. (Bangkok,
Thailand). Analytical grade glacial acetic acid, hydrochloric acid, isopropanol, sodium
chloride, sodium hydroxide (Merck KGaA, Darmstadt, Germany), and chloroacetic acid
(Sigma-Aldrich, Darmstadt, Germany) were used as received, and all were of commercial
grade. Methanol, absolute, 99.8%, reagent was purchased from the Northern Chemical Co.,
Ltd. (Chiang Mai, Thailand).

3.2. Synthesis of Carboxymethyl Rice Starch (CMSr)

The synthesis of CMSr was conducted by following the method detailed in Rachtana-
pun et al. [31]. Briefly, 400 mL of isopropyl alcohol was dissolved in 30 g of monochloroacetic
acid. Then, it was added to 100 g of native rice starch and stirred well. Different concen-
trations of NaOH (10%, 20%, 30%, 40%, 50%, and 60% w/v of water) were studied, then
heated for 20 min at 50 ◦C. Glacial acetic acid was added to neutralize the solution. Finally,
the solution was filtered and rinsed 4 times with 95% methanol in the CMSr purification.
The modified CMSr was evaporated at 50 ◦C for 17 h and left through an 80-mesh sieve
(Scheme 1).
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3.3. Degree of Substitution (DS)

The CMSr’s DS was performed following Klunklin et al. [33] and Rachtanapun et al.
[34] by the USP XXIII method. Calculation of the number of hydroxyl groups replaced by
carboxymethyl groups and sodium carboxymethyl groups at C2, 3, and 6 in the cellulose
structure was used. The equation for finding the DS value is as follows (1):

DS = A + S (1)

where A is the DS of carboxymethyl acid and S is the DS of sodium carboxymethyl. M is
consumption of the titration to end point (mEq) and C is the number of ash after ignition
(%) as shown in Equations (2) and (3).

A =
1150M content

(7120 − 412M − 80C) content
(2)

S =
(162 + 58A)C content
(7120 − 80C) content

(3)

3.4. Preparation of Native Rice Film and CMSr Films

In this study, 1.5 g of native rice and CMSr powders with different NaOH concen-
trations (3% w/v) was individually dissolved in 50 mL distilled water, and was stirred
under 70 ◦C for 10 min. After that, sorbitol (30% w/w of powders) was added into the
solution and was continuously stirred. Then, the resultant solution was degassed to release
all air bubbles using an ultrasonic bath (the Elmasonic S series model S10H, J.J. Science
Lab Co., Ltd., Bangkok, Thailand). The solution was cast in flat plastic plates (15 × 15 cm)
to produce the films, following drying overnight at 50 ◦C. Then, the CMSr films were
removed from the plates. The CMSr films with 12–14% of moisture content were kept at
27 ± 2 ◦C and 54 ± 2% relative humidity (RH) for 24 h [31].

3.5. Characterizations
3.5.1. Fourier Transform Infrared Spectroscopy (FT-IR)

The FT-IR spectra of CMSr films with different NaOH concentrations were recorded at
room temperature using a Nicolet 6700 FT-IR spectrometer (Thermo Electron Corporation,
Waltham, MA, USA) in the range of 4000–400 cm−1 with 64 scans. The DTGS KBr detector
and KBr beam splitter were used to investigate the functional groups of the CMSr film [55].

3.5.2. Scanning Electron Microscopy (SEM)

An LV-scanning electron microscope (JSM 5910 LV, JEOL Ltd., Tokyo, Japan) [13] was
used to investigate the surface morphology of rice starch and CMSr powder, as well as the
cross-section microstructure of CMSr films. Prior to analysis at an acceleration voltage of
15 kV, the powders were coated with gold, whereas the films were frozen in liquid nitrogen,
fractured, and then coated with gold.
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3.5.3. X-ray Diffraction (XRD)

The XRD pattern and crystallinity of the CMSr films with different NaOH concen-
trations were recorded in the reflection mode on an X-ray diffractometer (MiniFlex II,
Rigaku, Tokyo, Japan). The scattering angle (2θ) was scanned from 5 to 60◦ at a scan rate of
5◦/min [33].

3.5.4. Differential Scanning Calorimetry (DSC)

The DSC thermogram of the films was determined using a DSC Q100 (TA Instru-
ments, New Castle, DE, USA). Prior to analysis, films were conditioned at 23 ± 2 ◦C
and 50 ± 10% RH for 48 h. Five milligrams of sample was used and heated from room
temperature to 200 ◦C at a heating rate of 10 ◦C/min, adapted according to the method
of Thanakkasaranee et al. [14]. Nitrogen was operated as a purge gas with a flow rate of
50 mL/min. The report was repeated at least 3 times.

3.5.5. Film Solubility

A method was modified from Phan et al. [25]. Native rice starch and CMSr film was
dried at 105 ◦C for 24 h and then kept in a desiccator. The sample was weighed close to
0.2000 g to determine the initial dry weight (Wi). Using 50 mL of distilled water, the film
sample was dissolved and shaken at 500 rpm for 15 min. Each film was suspended in
50 mL of distilled water and shaken at 500 rpm for 15 min. Then, the film solution was
poured onto a weighted filter paper (Whatman, No. 93). The film solution was dried at
105 ◦C in the oven for 24 h and weighed again to obtain the final dry weight (Wf). The
following equation was used to calculate %SM of the films (Equation (4)):

%SM =
(Wi − Wf)

Wi
× 100 (4)

3.5.6. Dynamic Water Contact Angle

The dynamic water contact angle of the films was determined using a drop shape
analysis (DSA30E, Krüss Co. Ltd., Hamburg, Germany) at 25 ◦C. The water droplet with a
volume of 10.0 ± 0.5 µL was dropped on a solid surface and an image was taken every 10 s
for 50 s [14].

3.5.7. Film Thickness

The film thickness was evaluated with micrometers (model GT-313-A, Gotech Testing
Machines Inc., Taichung City, Taiwan). The CMSr film prepared after NaOH treatment
was compared to a CMSr film plasticized with sorbitol. Each sample was measured in five
different areas and the average thickness was used for the tensile strength, %elongation at
break, and water vapor permeability.

3.5.8. Water Vapor Permeability

The CMSr films with sorbitol as plasticizer were calculated at 25 ◦C using the method
described by Klunklin et al. [33]. The test film was sealed into aluminum cups, each having
an 8 cm diameter and 2 cm depth. A circular film sample (7 cm diameter) was taken, each
cup was covered with 10 g of dry silica gel, and paraffin wax was used to close the cup.
The sealed cups were stored in the desiccator at 52 ± 2% RH at 23.6 ◦C. Any differences
in the sealed cup’s weight were reported every 24 h for 7 days and with a precision of
0.001 g. Weight gain to the cups over time (slope) was estimated. The following equation
was applied to calculate the WVTR with a film area value at 28.27 cm2 (Equation (5)):

WVTR =
slope

f ilm area
(5)
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The WVP (g m2 × 10−4 m−2 day−1.mmHg) was calculated using Equation (6):

WVP =
WVTR × L

∆P
(6)

where L is the film thickness mean (mm), and ∆P is the partial difference in steam pressure
(mmHg) by measuring on both sides of the film sample (the vapor pressure of pure water
at 23.6 ◦C = 21.7782 mmHg). Samples were analyzed in triplicate.

3.5.9. Tensile Strength

Tensile strength (TS) and percentage elongation at break (%E) was measured following
the method of Rachtanapun et al. [34] using a Universal Testing Machine Model 1000 (H1K-
S, London, UK). The film sample was cut into strips of size 10 × 100 mm. All the film strips
were equilibrated at 52 ± 2% RH for 2 days at 25 ± 2 ◦C. The means of 10 replicates of the
test were reported.

3.6. Statistical Analysis

The effect of NaOH concentrations on the properties of the CMSr film were investi-
gated using SPSS software version 20.0 0 (SPSS Inc., Chicago, IL, USA). All measurements
were analyzed in triplicate. The data were presented as the mean ± SD. Analysis of vari-
ance (ANOVA) was used to show a significant difference (p ≤ 0.05) by Duncan’s multiple
range test (DMRT).

4. Conclusions

The different NaOH concentrations used in the chemical modification of the native
rice starch powder affected the morphology and DS of the CMSr powders, as well as the
morphology, mechanical, and water barrier properties of the CMSr films. The increase in
NaOH concentration (10–40%) resulted in an increase in DS of the CMSr powders. However,
at 50% NaOH concentration, the DS decreased due to the partial side reactions by sodium
glycolate (by-products). The higher NaOH concentrations (30–60%) obviously changed the
morphology of the CMSr powders. At 60% NaOH concentration, the CMSr film could not
be formed due to the side reaction effect between NaOH and sodium monochloroacetate
forming sodium glycolate. The increase in NaOH concentrations resulted in the increase
in %SM and WVP, but lower dynamic water contact angle of the CMSr films. The CMSr
film treated with lower NaOH concentrations (10–20%) exhibited the hydrophilic character
similar to that of the native rice starch film. In addition, the Tm and crystallinity of the
CMSr films decreased, which resulted in the decrease in TS and increase in %E. This
study indicated that the CMSr films became more hydrophilic and flexible through the
carboxymethylation reaction, in which such properties of the CMSr films can be controlled
by NaOH concentrations during the chemical modification of the native rice starch powder.
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