Next Issue
Volume 27, February-1
Previous Issue
Volume 27, January-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 27, Issue 2 (January-2 2022) – 251 articles

Cover Story (view full-size image): In the past, the use of mechanochemical methods in organic synthesis was always reported as a bit of a curiosity. Recently, reactive extrusion has rapidly been established as a powerful tool enabling environmentally benign and sustainable chemical syntheses for its ability to perform continuous mechanochemical processes. Compared to conventional methods, reactive extrusion displays high simplicity, safety, and scalability, which can be exploited in a variety of chemical processes. Perspective applications ranging from organic synthesis to catalytic and active materials preparation could highlight the versatility of the technique and the huge potential of solid-phase flow chemistry. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 7203 KiB  
Article
Beneficial Effects of Laurel (Laurus nobilis L.) and Myrtle (Myrtus communis L.) Extract on Rat Health
by Marija Berendika, Sandra Domjanić Drozdek, Dyana Odeh, Nada Oršolić, Petar Dragičević, Marijana Sokolović, Ivona Elez Garofulić, Domagoj Đikić and Irena Landeka Jurčević
Molecules 2022, 27(2), 581; https://doi.org/10.3390/molecules27020581 - 17 Jan 2022
Cited by 9 | Viewed by 3150
Abstract
Polyphenols of Laurel and Myrtle exhibit structural diversity, which affects bioavailability, metabolism, and bioactivity. The gut microbiota plays a key role in modulating the production, bioavailability and, thus the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. [...] Read more.
Polyphenols of Laurel and Myrtle exhibit structural diversity, which affects bioavailability, metabolism, and bioactivity. The gut microbiota plays a key role in modulating the production, bioavailability and, thus the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. The aim of this study was to investigate whether the polyphenolic components of Laurel and Myrtle aqueous extract have beneficial effects on rat health. The growth of lactic acid bacteria (LAB), β-glucuronidase, β-glucosidase, β-galactosidase activity, pH value, body weight change and food efficacy ratio after intragastric treatment of rats with Laurel and Myrtle extract at doses of 50 and 100 mg/kg for two weeks were investigated. The endogenous populations of colonic probiotic bacteria (Lactobacilli and Bifidobacteria) were counted on selective media. According to the obtained data, Laurel extract in the applied dose of 50 and 100 and Myrtle extract (100 mg/kg) positively affects the rats health by increasing the number of colonies of Lactobacilli and Bifidobacteria compared to the control group, causes changes in glycolytic enzymatic activity and minor change in antioxidative tissue activity. In addition, high doses of Laurel increase food efficiency ratio, while Myrtle has the same effect at a lower dose. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products II)
Show Figures

Figure 1

12 pages, 4421 KiB  
Article
Green Synthesis of Indeno[1,2-b]quinoxalines Using β-Cyclodextrin as Catalyst
by Li-Guo Liao, Meng-Meng Song, Jun-Feng Feng, Min Tan, Fan Liu, Zhen-Jiang Qiu, Sheng Zhang and Bang-Jing Li
Molecules 2022, 27(2), 580; https://doi.org/10.3390/molecules27020580 - 17 Jan 2022
Cited by 3 | Viewed by 2138
Abstract
An efficient, mild, and green method was developed for the synthesis of indeno[1,2-b]quinoxaline derivatives via o-phenylenediamine (OPD) and 2-indanone derivatives utilizing β-cyclodextrin (β-CD) as the supramolecular catalyst. The reaction can be carried out in water and in a solid state [...] Read more.
An efficient, mild, and green method was developed for the synthesis of indeno[1,2-b]quinoxaline derivatives via o-phenylenediamine (OPD) and 2-indanone derivatives utilizing β-cyclodextrin (β-CD) as the supramolecular catalyst. The reaction can be carried out in water and in a solid state at room temperature. β-CD can also catalyze the reaction of indan-1,2-dione with OPD with a high degree of efficiency. Compared to the reported methods, this procedure is milder, simpler, and less toxic, making it an eco-friendly alternative. In addition, the β-CD can be recovered and reused without the loss of activity. Full article
(This article belongs to the Special Issue Chemistry of Indoles)
Show Figures

Figure 1

19 pages, 3561 KiB  
Article
Multifunctional Eco-Friendly Synthesis of ZnO Nanoparticles in Biomedical Applications
by Amal Mohamed Al-Mohaimeed, Wedad Altuhami Al-Onazi and Maha Farouk El-Tohamy
Molecules 2022, 27(2), 579; https://doi.org/10.3390/molecules27020579 - 17 Jan 2022
Cited by 22 | Viewed by 2667
Abstract
This work describes an environmental-friendly preparation of ZnO nanoparticles using aqueous oat extract. The advanced electrochemical and optical features of green synthesized ZnONPs displayed excellent antibacterial activity and exhibited an important role in pharmaceutical determinations. The formation of nanoscale ZnO was confirmed using [...] Read more.
This work describes an environmental-friendly preparation of ZnO nanoparticles using aqueous oat extract. The advanced electrochemical and optical features of green synthesized ZnONPs displayed excellent antibacterial activity and exhibited an important role in pharmaceutical determinations. The formation of nanoscale ZnO was confirmed using various spectroscopic and microscopic investigations. The formed nanoparticles were found to be around 100 nm. The as-prepared ZnONPs were monitored for their antibacterial potential against different bacterial strains. The inhibition zones for ZnONPs were found as Escherichia coli (16 mm), Pseudomonas aeruginosa (17 mm), Staphylococcus aureus (12 mm) and Bacillus subtilis (11 mm) using a 30-µg mL−1 sample concentration. In addition, ZnONPs exhibited significant antioxidant effects, from 58 to 67%, with an average IC50 value of 0.88 ± 0.03 scavenging activity and from 53 to 71% (IC50 value of 0.73 ± 0.05) versus the scavenging free radicals DPPH and ABTS, respectively. The photocatalytic potential of ZnONPs for Rhodamine B dye degradation under UV irradiation was calculated. The photodegradation process was carried out as a function of time-dependent and complete degradation (nearly 98%), with color removal after 120 min. Conclusively, the synthesized ZnONPs using oat biomass might provide a great promise in the future for biomedical applications. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

12 pages, 10490 KiB  
Article
A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels
by Diana Morzy, Michael Schaich and Ulrich F. Keyser
Molecules 2022, 27(2), 578; https://doi.org/10.3390/molecules27020578 - 17 Jan 2022
Cited by 7 | Viewed by 2867
Abstract
DNA nanotechnology makes use of hydrophobically modified constructs to create synthetic membrane protein mimics. However, nucleic acid structures exhibit poor insertion efficiency, leading to a low activity of membrane-spanning DNA protein mimics. It is suggested that non-ionic surfactants improve insertion efficiency, partly by [...] Read more.
DNA nanotechnology makes use of hydrophobically modified constructs to create synthetic membrane protein mimics. However, nucleic acid structures exhibit poor insertion efficiency, leading to a low activity of membrane-spanning DNA protein mimics. It is suggested that non-ionic surfactants improve insertion efficiency, partly by disrupting hydrophobicity-mediated clusters. Here, we employed confocal microscopy and single-molecule transmembrane current measurements to assess the effects of the non-ionic surfactant octylpolyoxyethylene (oPOE) on the clustering behavior and membrane activity of cholesterol-modified DNA nanostructures. Our findings uncover the role of aggregation in preventing bilayer interactions of hydrophobically decorated constructs, and we highlight that premixing DNA structures with the surfactant does not disrupt the cholesterol-mediated aggregates. However, we observed the surfactant’s strong insertion-facilitating effect, particularly when introduced to the sample separately from DNA. Critically, we report a highly efficient membrane-spanning DNA construct from combining a non-aggregating design with the addition of the oPOE surfactant. Full article
(This article belongs to the Special Issue DNA Nanostructures at Surfaces)
Show Figures

Figure 1

13 pages, 1874 KiB  
Article
Evaluation of Antibacterial and Antifungal Properties of Low Molecular Weight Chitosan Extracted from Hermetia illucens Relative to Crab Chitosan
by Adelya Khayrova, Sergey Lopatin, Balzhima Shagdarova, Olga Sinitsyna, Arkady Sinitsyn and Valery Varlamov
Molecules 2022, 27(2), 577; https://doi.org/10.3390/molecules27020577 - 17 Jan 2022
Cited by 14 | Viewed by 2548
Abstract
This study shows the research on the depolymerisation of insect and crab chitosans using novel enzymes. Enzyme preparations containing recombinant chitinase Chi 418 from Trichoderma harzianum, chitinase Chi 403, and chitosanase Chi 402 from Myceliophthora thermophila, all belonging to the family [...] Read more.
This study shows the research on the depolymerisation of insect and crab chitosans using novel enzymes. Enzyme preparations containing recombinant chitinase Chi 418 from Trichoderma harzianum, chitinase Chi 403, and chitosanase Chi 402 from Myceliophthora thermophila, all belonging to the family GH18 of glycosyl hydrolases, were used to depolymerise a biopolymer, resulting in a range of chitosans with average molecular weights (Mw) of 6–21 kDa. The depolymerised chitosans obtained from crustaceans and insects were studied, and their antibacterial and antifungal properties were evaluated. The results proved the significance of the chitosan’s origin, showing the potential of Hermetia illucens as a new source of low molecular weight chitosan with an improved biological activity. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Derivatives and Applications II)
Show Figures

Figure 1

14 pages, 2681 KiB  
Article
Structures of Dimer-of-Dimers Type Defect Cubane Tetranuclear Copper(II) Complexes with Novel Dinucleating Ligands
by Ryusei Hoshikawa, Ryoji Mitsuhashi, Eiji Asato, Jianqiang Liu and Hiroshi Sakiyama
Molecules 2022, 27(2), 576; https://doi.org/10.3390/molecules27020576 - 17 Jan 2022
Cited by 6 | Viewed by 2013
Abstract
Only a limited number of multinucleating ligands can stably maintain multinuclear metal structures in aqueous solutions. In this study, a water-soluble dinucleating ligand, 2,6-bis{[N-(carboxylatomethyl)-N-methyl-amino]methyl}-4-methylphenolate ((sym-cmp)3−), was prepared and its copper(II) complexes were structurally characterized. Using [...] Read more.
Only a limited number of multinucleating ligands can stably maintain multinuclear metal structures in aqueous solutions. In this study, a water-soluble dinucleating ligand, 2,6-bis{[N-(carboxylatomethyl)-N-methyl-amino]methyl}-4-methylphenolate ((sym-cmp)3−), was prepared and its copper(II) complexes were structurally characterized. Using the single-crystal X-ray diffraction method, their dimer-of-dimers type defect cubane tetranuclear copper(II) structures were characterized for [Cu4(sym-cmp)2Cl2(H2O)2] and [Cu4(sym-cmp)2(CH3O)2(CH3OH)2]. In the complexes, each copper(II) ion has a five-coordinate square-pyramidal coordination geometry. The coordination bond character was confirmed by the density functional theory (DFT) calculation on the basis of the crystal structure, whereby we found the bonding and anti-bonding molecular orbitals. From the cryomagnetic measurement and the magnetic analysis, overall antiferromagnetic interaction was observed, and this magnetic behavior is also explained by the DFT result. Judging from the molar conductance and the electronic spectra, the bridging chlorido ligand dissociates in water, but the dinuclear copper(II) structure was found to be maintained in an aqueous solution. In conclusion, the tetranuclear copper(II) structures were crystallographically characterized, and the dinuclear copper(II) structures were found to be stabilized even in an aqueous solution. Full article
(This article belongs to the Special Issue Crystal Structures of Metal Complexes)
Show Figures

Figure 1

12 pages, 2942 KiB  
Article
Effects of Physical Properties and Processing Methods on Astragaloside IV and Flavonoids Content in Astragali radix
by Mei-Yin Chien, Chih-Min Yang and Chao-Hsiang Chen
Molecules 2022, 27(2), 575; https://doi.org/10.3390/molecules27020575 - 17 Jan 2022
Cited by 5 | Viewed by 1839
Abstract
The aim of this study was to investigate the effects of the physical properties (diameter size, powder particle size, composition of bark- and wood-tissue, and turnover rate) and processing methods on the content of active ingredients in Astragali radix (AR), a popular Chinese [...] Read more.
The aim of this study was to investigate the effects of the physical properties (diameter size, powder particle size, composition of bark- and wood-tissue, and turnover rate) and processing methods on the content of active ingredients in Astragali radix (AR), a popular Chinese herbal medicine. The astragaloside IV and flavonoid contents increased with decreasing diameter size. Bark-tissue had significantly higher astragaloside IV and formononetin content than that in the wood-tissue. As a higher proportion of bark-tissue is associated with decreasing diameter, a strong correlation was also shown between bark- to wood-tissue ratio and active ingredients’ content. Furthermore, an increase in astragaloside IV content was observed in thin powder as compared to coarse powder ground from the whole root. However, this association between active ingredients’ content and powder particle size was abolished when isolating bark- and wood-tissue individually. Moreover, AR stir-frying with refined honey, a typical processing method of AR, increased formononetin content. The turnover rate of active constituents upon decoction ranged from 61.9–81.4%. Assessing the active constituent contents using its physical properties and processing methods allows for a more comprehensive understanding of optimizing and strengthening the therapeutic potentials of AR used in food and herbal supplements. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Figure 1

18 pages, 1161 KiB  
Article
Evaluation of Total Phenolic and Flavonoid Contents, Antibacterial and Antibiofilm Activities of Hungarian Propolis Ethanolic Extract against Staphylococcus aureus
by Sarra Bouchelaghem, Sourav Das, Romen Singh Naorem, Lilla Czuni, Gábor Papp and Marianna Kocsis
Molecules 2022, 27(2), 574; https://doi.org/10.3390/molecules27020574 - 17 Jan 2022
Cited by 15 | Viewed by 2788
Abstract
Propolis is a natural bee product that is widely used in folk medicine. This study aimed to evaluate the antimicrobial and antibiofilm activities of ethanolic extract of propolis (EEP) on methicillin-resistant and sensitive Staphylococcus aureus (MRSA and MSSA). Propolis samples were collected from [...] Read more.
Propolis is a natural bee product that is widely used in folk medicine. This study aimed to evaluate the antimicrobial and antibiofilm activities of ethanolic extract of propolis (EEP) on methicillin-resistant and sensitive Staphylococcus aureus (MRSA and MSSA). Propolis samples were collected from six regions in Hungary. The minimum inhibitory concentrations (MIC) values and the interaction of EEP-antibiotics were evaluated by the broth microdilution and the chequerboard broth microdilution methods, respectively. The effect of EEP on biofilm formation and eradication was estimated by crystal violet assay. Resazurin/propidium iodide dyes were applied for simultaneous quantification of cellular metabolic activities and dead cells in mature biofilms. The EEP1 sample showed the highest phenolic and flavonoid contents. The EEP1 successfully prevented the growth of planktonic cells of S. aureus (MIC value = 50 µg/mL). Synergistic interactions were shown after the co-exposition to EEP1 and vancomycin at 108 CFU/mL. The EEP1 effectively inhibited the biofilm formation and caused significant degradation of mature biofilms (50–200 µg/mL), as a consequence of the considerable decrement of metabolic activity. The EEP acts effectively as an antimicrobial and antibiofilm agent on S. aureus. Moreover, the simultaneous application of EEP and vancomycin could enhance their effect against MRSA infection. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Graphical abstract

18 pages, 855 KiB  
Review
Spatiotemporal Distribution and Analysis of Organophosphate Flame Retardants in the Environmental Systems: A Review
by Sinozuko Hope Bika, Abiodun Olagoke Adeniji, Anthony Ifeanyi Okoh and Omobola Oluranti Okoh
Molecules 2022, 27(2), 573; https://doi.org/10.3390/molecules27020573 - 17 Jan 2022
Cited by 11 | Viewed by 3157
Abstract
In recent times, there has been a cumulative apprehension regarding organophosphate flame retardants (OPFRs) owing to their high manufacturing and usage after brominated flame retardants were strictly regulated and banned from being distributed and used in many countries. OPFRs are known as the [...] Read more.
In recent times, there has been a cumulative apprehension regarding organophosphate flame retardants (OPFRs) owing to their high manufacturing and usage after brominated flame retardants were strictly regulated and banned from being distributed and used in many countries. OPFRs are known as the main organic pollutants in the terrestrial and aquatic environment. They are very dangerous to humans, plants and animals. They are also carcinogenic and some have been implicated in neurodevelopmental and fertility challenges. OPFRs are distributed into the environment through a number of processes, including the usage, improper disposal and production of materials. The solid phase extraction (SPE) method is suggested for the extraction of OPFRs from water samples since it provides high quality recoveries ranging from 67% to 105% and relative standard deviations (RSDs) below 20%. In the same vein, microwave-assisted extraction (MAE) is highly advocated for the extraction of OPFRs from sediment/soil. Recoveries in the range of 78% to 105% and RSDs ranging from 3% to 8% have been reported. Hence, it is a faster method of extraction for solid samples and only demands a reduced amount of solvent, unlike other methods. The extract of OPFRs from various matrices is then followed by a clean-up of the extract using a silica gel packed column followed by the quantification of compounds by gas chromatography coupled with a mass spectrometer (GC–MS) or a flame ionization detector (GC-FID). In this paper, different analytical methods for the evaluation of OPFRs in different environmental samples are reviewed. The effects and toxicities of these contaminants on humans and other organisms are also discussed. Full article
(This article belongs to the Special Issue Frontiers in Analytical Methods for Water Analysis)
Show Figures

Figure 1

16 pages, 15832 KiB  
Article
The Improved Milk Quality and Enhanced Anti-Inflammatory Effect in Acetylserotonin-O-methyltransferase (ASMT) Overexpressed Goats: An Association with the Elevated Endogenous Melatonin Production
by Hao Wu, Xudai Cui, Shengyu Guan, Guangdong Li, Yujun Yao, Haixin Wu, Jinlong Zhang, Xiaosheng Zhang, Tuan Yu, Yunxiang Li, Zhengxing Lian, Lu Zhang and Guoshi Liu
Molecules 2022, 27(2), 572; https://doi.org/10.3390/molecules27020572 - 17 Jan 2022
Cited by 2 | Viewed by 2231
Abstract
Background: Transgenic animal production is an important means of livestock breeding and can be used to model pharmaceutical applications. Methods: In this study, to explore the biological activity of endogenously produced melatonin, Acetylserotonin-O-methyltransferase (ASMT)-overexpressed melatonin-enriched dairy goats were successfully generated through [...] Read more.
Background: Transgenic animal production is an important means of livestock breeding and can be used to model pharmaceutical applications. Methods: In this study, to explore the biological activity of endogenously produced melatonin, Acetylserotonin-O-methyltransferase (ASMT)-overexpressed melatonin-enriched dairy goats were successfully generated through the use of pBC1-ASMT expression vector construction and prokaryotic embryo microinjection. Results: These transgenic goats have the same normal phenotype as the wild-type goats (WT). However, the melatonin levels in their blood and milk were significantly increased (p < 0.05). In addition, the quality of their milk was also improved, showing elevated protein content and a reduced somatic cell number compared to the WT goats. No significant changes were detected in the intestinal microbiota patterns between groups. When the animals were challenged by the intravenous injection of E. coli, the ASMT-overexpressed goats had a lower level of pro-inflammatory cytokines and higher anti-inflammatory cytokines compared to the WT goats. Metabolic analysis uncovered a unique arachidonic acid metabolism pattern in transgenic goats. Conclusions: The increased melatonin production due to ASMT overexpression in the transgenic goats may have contributed to their improved milk quality and enhanced the anti-inflammatory ability compared to the WT goats. Full article
Show Figures

Graphical abstract

1 pages, 153 KiB  
Correction
Correction: Fan et al. Native Collagen II Relieves Bone Impairment through Improving Inflammation and Oxidative Stress in Ageing db/db Mice. Molecules 2021, 26, 4942
by Rui Fan, Yuntao Hao, Xinran Liu, Jiawei Kang, Jiani Hu, Ruixue Mao, Rui Liu, Na Zhu, Meihong Xu and Yong Li
Molecules 2022, 27(2), 571; https://doi.org/10.3390/molecules27020571 - 17 Jan 2022
Viewed by 1195
Abstract
The authors would like to correct spelling mistakes (undenatured type II collagen) in the title, as well as in the main manuscript including the tables and figures in the title paper [...] Full article
12 pages, 2623 KiB  
Article
Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling
by Atsushi Yoshimori, Filip Miljković and Jürgen Bajorath
Molecules 2022, 27(2), 570; https://doi.org/10.3390/molecules27020570 - 17 Jan 2022
Cited by 8 | Viewed by 3652
Abstract
Deep machine learning is expanding the conceptual framework and capacity of computational compound design, enabling new applications through generative modeling. We have explored the systematic design of covalent protein kinase inhibitors by learning from kinome-relevant chemical space, followed by focusing on an exemplary [...] Read more.
Deep machine learning is expanding the conceptual framework and capacity of computational compound design, enabling new applications through generative modeling. We have explored the systematic design of covalent protein kinase inhibitors by learning from kinome-relevant chemical space, followed by focusing on an exemplary kinase of interest. Covalent inhibitors experience a renaissance in drug discovery, especially for targeting protein kinases. However, computational design of this class of inhibitors has thus far only been little investigated. To this end, we have devised a computational approach combining fragment-based design and deep generative modeling augmented by three-dimensional pharmacophore screening. This approach is thought to be particularly relevant for medicinal chemistry applications because it combines knowledge-based elements with deep learning and is chemically intuitive. As an exemplary application, we report for Bruton’s tyrosine kinase (BTK), a major drug target for the treatment of inflammatory diseases and leukemia, the generation of novel candidate inhibitors with a specific chemically reactive group for covalent modification, requiring only little target-specific compound information to guide the design efforts. Newly generated compounds include known inhibitors and characteristic substructures and many novel candidates, thus lending credence to the computational approach, which is readily applicable to other targets. Full article
Show Figures

Figure 1

17 pages, 2476 KiB  
Article
In Vitro Evaluation of the Cytotoxic Effect of Streptococcus pyogenes Strains, Protegrin PG-1, Cathelicidin LL-37, Nerve Growth Factor and Chemotherapy on the C6 Glioma Cell Line
by Alexandr N. Chernov, Anna Tsapieva, Diana A. Alaverdian, Tatiana A. Filatenkova, Elvira S. Galimova, Mariia Suvorova, Olga V. Shamova and Alexander N. Suvorov
Molecules 2022, 27(2), 569; https://doi.org/10.3390/molecules27020569 - 17 Jan 2022
Cited by 5 | Viewed by 2259
Abstract
Brain cancer treatment, where glioblastoma represents up to 50% of all CNS malignancies, is one of the most challenging calls for neurooncologists. The major driver of this study was a search for new approaches for the treatment of glioblastoma. We tested live S. [...] Read more.
Brain cancer treatment, where glioblastoma represents up to 50% of all CNS malignancies, is one of the most challenging calls for neurooncologists. The major driver of this study was a search for new approaches for the treatment of glioblastoma. We tested live S. pyogenes, cathelicidin family peptides and NGF, assessing the oncolytic activity of these compounds as monotherapy or in combination with chemotherapeutics. For cytotoxicity evaluation, we used the MTT assay, trypan blue assay and the xCELLigence system. To evaluate the safety of the studied therapeutic approaches, we performed experiments on normal human fibroblasts. Streptococci and peptides demonstrated high antitumor efficiency against glioma C6 cells in all assays applied, surpassing the effect of chemotherapeutics (doxorubicin, carboplatin, cisplatin, etoposide). A real-time cytotoxicity analysis showed that the cell viability index dropped to 21% 2–5 h after S. pyogenes strain exposure. It was shown that LL-37, PG-1 and NGF also exhibited strong antitumor effects on C6 glioma cells when applied at less than 10−4 M. Synergistic effects for combinations of PG-1 with carboplatin and LL-37 with etoposide were shown. Combinations of S. pyogenes strain #7 with NGF or LL-37 demonstrated a cytotoxic effect (56.7% and 57.3%, accordingly) on C6 glioma cells after 3 h of exposure. Full article
Show Figures

Figure 1

16 pages, 1264 KiB  
Article
Chemical Composition and Insecticidal Activities of Essential Oils against the Pulse Beetle
by C. S. Jayaram, Nandita Chauhan, Shudh Kirti Dolma and S. G. Eswara Reddy
Molecules 2022, 27(2), 568; https://doi.org/10.3390/molecules27020568 - 17 Jan 2022
Cited by 19 | Viewed by 3087
Abstract
Pulse beetles, Callosobruchus chinensis and Callosobruchus maculatus, are essential pests of cowpea, gram, soybean and pulses. Application of synthetic insecticides against the pulse beetle has led to insect resistance; insecticide residues on grains affect human health and the environment. Essential oils (EOs) [...] Read more.
Pulse beetles, Callosobruchus chinensis and Callosobruchus maculatus, are essential pests of cowpea, gram, soybean and pulses. Application of synthetic insecticides against the pulse beetle has led to insect resistance; insecticide residues on grains affect human health and the environment. Essential oils (EOs) are the best alternatives to synthetics due to their safety to the environment and health. The main objective of the investigation was to study the chemical composition and insecticidal activities of EOs, their combinations and compounds against the pulse beetle under laboratory. Neo-isomenthol, carvone and β-ocimene are the significant components of tested oils using GC-MS. Mentha spicata showed promising fumigant toxicity against C. chinensis (LC50 = 0.94 µL/mL) and was followed by M. piperita (LC50 = 0.98 µL/mL), whereas M. piperita (LC50 = 0.92 µL/mL) against C. maculatus. A combination of Tagetes minuta + M. piperita showed more toxicity against C. chinensis after 48 h (LC50 = 0.87 µL/mL) than T. minuta + M. spicata (LC50 = 1.07 µL/mL). L-Carvone showed fumigant toxicity against C. chinensis after 48 h (LC50 = 1.19 µL/mL). Binary mixtures of T. minuta +M. piperita and M. spicata showed promising toxicity and synergistic activity. EOs also exhibited repellence and ovipositional inhibition. The application of M. piperita can be recommended for the control of the pulse beetle. Full article
Show Figures

Figure 1

11 pages, 691 KiB  
Article
The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro
by Driss Ousaaid, Hassan Laaroussi, Hamza Mechchate, Meryem Bakour, Asmae El Ghouizi, Ramzi A. Mothana, Omar Noman, Imane Es-safi, Badiaa Lyoussi and Ilham El Arabi
Molecules 2022, 27(2), 567; https://doi.org/10.3390/molecules27020567 - 17 Jan 2022
Cited by 8 | Viewed by 3320
Abstract
The main objective of the current study was to determine the physicochemical properties, antioxidant activities, and α-glucosidase and α-amylase inhibition of apple vinegar produced by artisanal and industrial methods. Apple vinegar samples were analyzed to identify their electrical conductivity, pH, titratable acidity, total [...] Read more.
The main objective of the current study was to determine the physicochemical properties, antioxidant activities, and α-glucosidase and α-amylase inhibition of apple vinegar produced by artisanal and industrial methods. Apple vinegar samples were analyzed to identify their electrical conductivity, pH, titratable acidity, total dry matter, Brix, density, mineral elements, polyphenols, flavonoids, and vitamin C. The antioxidant activity of apple vinegar samples was evaluated using two tests, total antioxidant capacity (TAC) and DPPH radical scavenging activity. Finally, we determined α-glucosidase and α-amylase inhibitory activities of artisanal and industrial apple vinegar. The results showed the following values: pH (3.69–3.19); electrical conductivity (2.81–2.79 mS/cm); titratable acidity (3.6–5.4); ash (4.61–2.90); °Brix (6.37–5.2); density (1.02476–1.02012), respectively, for artisanal apple vinegar and industrial apple vinegar. Concerning mineral elements, potassium was the most predominant element followed by sodium, magnesium, and calcium. Concerning bioactive compounds (polyphenols, flavonoids, and vitamin C), the apple vinegar produced by the artisanal method was the richest sample in terms of bioactive compounds and had the highest α-glucosidase and α-amylase inhibition. The findings of this study showed that the quality and biological activities of artisanal apple vinegar were more important than industrial apple vinegar. Full article
Show Figures

Figure 1

14 pages, 2546 KiB  
Article
Real-Time Monitoring Polymerization Reactions Using Dipolar Echoes in 1H Time Domain NMR at a Low Magnetic Field
by Rodrigo Henrique dos Santos Garcia, Jefferson Gonçalves Filgueiras, Luiz Alberto Colnago and Eduardo Ribeiro de Azevedo
Molecules 2022, 27(2), 566; https://doi.org/10.3390/molecules27020566 - 17 Jan 2022
Cited by 3 | Viewed by 1947
Abstract
1H time domain nuclear magnetic resonance (1H TD-NMR) at a low magnetic field becomes a powerful technique for the structure and dynamics characterization of soft organic materials. This relies mostly on the method sensitivity to the 1H-1H [...] Read more.
1H time domain nuclear magnetic resonance (1H TD-NMR) at a low magnetic field becomes a powerful technique for the structure and dynamics characterization of soft organic materials. This relies mostly on the method sensitivity to the 1H-1H magnetic dipolar couplings, which depend on the molecular orientation with respect to the applied magnetic field. On the other hand, the good sensitivity of the 1H detection makes it possible to monitor real time processes that modify the dipolar coupling as a result of changes in the molecular mobility. In this regard, the so-called dipolar echoes technique can increase the sensitivity and accuracy of the real-time monitoring. In this article we evaluate the performance of commonly used 1H TD-NMR dipolar echo methods for probing polymerization reactions. As a proof of principle, we monitor the cure of a commercial epoxy resin, using techniques such as mixed-Magic Sandwich Echo (MSE), Rhim Kessemeier—Radiofrequency Optimized Solid Echo (RK-ROSE) and Dipolar Filtered Magic Sandwich Echo (DF-MSE). Applying a reaction kinetic model that supposes simultaneous autocatalytic and noncatalytic reaction pathways, we show the analysis to obtain the rate and activation energy for the epoxy curing reaction using the NMR data. The results obtained using the different NMR methods are in good agreement among them and also results reported in the literature for similar samples. This demonstrates that any of these dipolar echo pulse sequences can be efficiently used for monitoring and characterizing this type of reaction. Nonetheless, the DF-MSE method showed intrinsic advantages, such as easier data handling and processing, and seems to be the method of choice for monitoring this type of reaction. In general, the procedure is suitable for characterizing reactions involving the formation of solid products from liquid reagents, with some adaptations concerning the reaction model. Full article
(This article belongs to the Special Issue Advances in NMR and MRI of Materials)
Show Figures

Figure 1

11 pages, 2131 KiB  
Article
Diversity of Volatile Compounds in Ten Varieties of Zingiberaceae
by Weiyao Peng, Ping Li, Ruimei Ling, Zhenzhen Wang, Xianhui Feng, Ju Liu, Quan Yang and Jian Yan
Molecules 2022, 27(2), 565; https://doi.org/10.3390/molecules27020565 - 17 Jan 2022
Cited by 14 | Viewed by 2495
Abstract
Zingiberaceae plants are distributed in the tropical and subtropical regions of the world, being used in many famous medicinal materials. Meanwhile, some Zingiberaceae plants are important horticultural flowers because they are green all year round and have special aromas. To conduct an extensive [...] Read more.
Zingiberaceae plants are distributed in the tropical and subtropical regions of the world, being used in many famous medicinal materials. Meanwhile, some Zingiberaceae plants are important horticultural flowers because they are green all year round and have special aromas. To conduct an extensive investigation of the resources of Zingiberaceae plants, the volatile compounds of ten species of Zingiberaceae were extracted and analyzed by GC–MS, including Costus comosus var. bakeri (K.Schum.) Maas, Curcuma rubescens Roxb., Curcuma aeruginosa Roxb., Curcuma attenuata Wall., Hongfengshou, Hedychium coronarium Koeng, Zingiber zerumbet (L.) Smith, Hedychium brevicaule D. Fang, Alpinia oxyphylla Miq., and Alpinia pumila Hook.F. A total of 162 compounds were identified, and most of those identified were monoterpenes and sesquiterpenes. (E)-labda-8(17),12-diene-15,16-dial, n-hexadecanoic acid, 4-methoxy-6-phenethyl-2H-pyran-2-one, and L-β-pinene were found in high concentrations among the plants. These ten species of Zingiberaceae contained some of the same volatiles, but their contents were different. Pharmacological effects may be associated with the diversity of volatiles in these ten plants. Full article
(This article belongs to the Special Issue Chromatographic Science of Natural Products II)
Show Figures

Figure 1

25 pages, 5004 KiB  
Article
Nucleotide Analogues Bearing a C2′ or C3′-Stereogenic All-Carbon Quaternary Center as SARS-CoV-2 RdRp Inhibitors
by Amarender Manchoju, Renaud Zelli, Gang Wang, Carla Eymard, Adrian Oo, Mona Nemer, Michel Prévost, Baek Kim and Yvan Guindon
Molecules 2022, 27(2), 564; https://doi.org/10.3390/molecules27020564 - 17 Jan 2022
Cited by 3 | Viewed by 2326
Abstract
The design of novel nucleoside triphosphate (NTP) analogues bearing an all-carbon quaternary center at C2′ or C3′ is described. The construction of this all-carbon stereogenic center involves the use of an intramoleculer photoredox-catalyzed reaction. The nucleoside analogues (NA) hydroxyl functional group at C2′ [...] Read more.
The design of novel nucleoside triphosphate (NTP) analogues bearing an all-carbon quaternary center at C2′ or C3′ is described. The construction of this all-carbon stereogenic center involves the use of an intramoleculer photoredox-catalyzed reaction. The nucleoside analogues (NA) hydroxyl functional group at C2′ was generated by diastereoselective epoxidation. In addition, highly enantioselective and diastereoselective Mukaiyama aldol reactions, diastereoselective N-glycosylations and regioselective triphosphorylation reactions were employed to synthesize the novel NTPs. Two of these compounds are inhibitors of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2, the causal virus of COVID-19. Full article
Show Figures

Graphical abstract

14 pages, 3677 KiB  
Article
Upgrading the Nutritional Value of PKC Using a Bacillus subtilis Derived Monocomponent β-Mannanase
by Luis-Miguel Gomez-Osorio, Janni Ulnits Nielsen, Helle Jakobe Martens and Reinhard Wimmer
Molecules 2022, 27(2), 563; https://doi.org/10.3390/molecules27020563 - 17 Jan 2022
Cited by 1 | Viewed by 2005
Abstract
Palm kernel cake (PKC) is an abundant side stream that can only be added to non-ruminant feed in small concentrations due to its content of antinutritional factors, mainly galactomannan, which cannot be digested by non-ruminants. β-mannanases can be added to partially hydrolyze galactomannan [...] Read more.
Palm kernel cake (PKC) is an abundant side stream that can only be added to non-ruminant feed in small concentrations due to its content of antinutritional factors, mainly galactomannan, which cannot be digested by non-ruminants. β-mannanases can be added to partially hydrolyze galactomannan to form mannose oligosaccharides, which are known to be prebiotic. We here investigate the action of a β-mannanase from B. subtilis on PKC by colorimetry, NMR and fluorescence microscopy. The amount of mannan oligosaccharides in solution was significantly increased by the β-mannanase and their degree of polymerization (DP) was significantly reduced. There was a dose-response behavior in that larger β-mannanase concentrations increased the amount of soluble mannose oligosaccharides while reducing their average DP. Using confocal immunofluorescence microscopy, solubilization of galactomannan in PKC was clearly visualized. Images show a clear disruption of the cellulose and galactomannan structures of the PKC cell walls. We thus show in this study that using commercial dosages of β-mannanase on PKC can lead to formation of prebiotic compounds. Thus, this study suggests that utilization of PKC in poultry feed formulation might be increased by addition of a β-mannanase and would improve the return on investment. Full article
(This article belongs to the Special Issue Byproducts from the Food Industry)
Show Figures

Figure 1

10 pages, 3323 KiB  
Article
An Electrically and Thermally Erasable Liquid Crystal Film Containing NIR Absorbent Carbon Nanotube
by Zongcheng Miao and Dong Wang
Molecules 2022, 27(2), 562; https://doi.org/10.3390/molecules27020562 - 17 Jan 2022
Cited by 5 | Viewed by 1625
Abstract
Carbon nanotubes (CNTs) coated by a poly(vinylpyrrolidone) (PVP) layer were doped in bistable cholesteric liquid crystal (ChLC) film to provide electric, thermal, or optical erasability controllable films. The CNT/PVP formed a compatible NIR-absorbing film that can generate heat to switch ChLC film from [...] Read more.
Carbon nanotubes (CNTs) coated by a poly(vinylpyrrolidone) (PVP) layer were doped in bistable cholesteric liquid crystal (ChLC) film to provide electric, thermal, or optical erasability controllable films. The CNT/PVP formed a compatible NIR-absorbing film that can generate heat to switch ChLC film from a planar texture to a focal conic texture. The appropriate content of CNT/PVP is provided to achieve a fast thermal response, satisfactory dispersion, and clear display brightness. The ChLC film containing CNT/PVP @ 0.8 (wt.%) saves 51% time at thermal erasing, compared to the ChLC mixture without NIR absorbent. The hybrid organic–inorganic bistable ChLC material reported here extends and offers new applications of ChLC writing tablets. Full article
Show Figures

Figure 1

16 pages, 46951 KiB  
Article
In Silico and In Vitro Structure–Activity Relationship of Mastoparan and Its Analogs
by Prapenpuksiri Rungsa, Steve Peigneur, Nisachon Jangpromma, Sompong Klaynongsruang, Jan Tytgat and Sakda Daduang
Molecules 2022, 27(2), 561; https://doi.org/10.3390/molecules27020561 - 16 Jan 2022
Cited by 7 | Viewed by 2069
Abstract
Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. [...] Read more.
Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure–activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2-trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes. Full article
Show Figures

Figure 1

39 pages, 4393 KiB  
Review
Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review
by Peter Fischer, Petr Mazúr and Joanna Krakowiak
Molecules 2022, 27(2), 560; https://doi.org/10.3390/molecules27020560 - 16 Jan 2022
Cited by 23 | Viewed by 7021
Abstract
Redox flow batteries (RFBs) are an increasingly attractive option for renewable energy storage, thus providing flexibility for the supply of electrical energy. In recent years, research in this type of battery storage has been shifted from metal-ion based electrolytes to soluble organic redox-active [...] Read more.
Redox flow batteries (RFBs) are an increasingly attractive option for renewable energy storage, thus providing flexibility for the supply of electrical energy. In recent years, research in this type of battery storage has been shifted from metal-ion based electrolytes to soluble organic redox-active compounds. Aqueous-based organic electrolytes are considered as more promising electrolytes to achieve “green”, safe, and low-cost energy storage. Many organic compounds and their derivatives have recently been intensively examined for application to redox flow batteries. This work presents an up-to-date overview of the redox organic compound groups tested for application in aqueous RFB. In the initial part, the most relevant requirements for technical electrolytes are described and discussed. The importance of supporting electrolytes selection, the limits for the aqueous system, and potential synthetic strategies for redox molecules are highlighted. The different organic redox couples described in the literature are grouped in a “family tree” for organic redox couples. This article is designed to be an introduction to the field of organic redox flow batteries and aims to provide an overview of current achievements as well as helping synthetic chemists to understand the basic concepts of the technical requirements for next-generation energy storage materials. Full article
(This article belongs to the Special Issue Redox Flow Batteries: Developments and Applications)
Show Figures

Figure 1

13 pages, 25243 KiB  
Article
Musa sp. Leaves Extract Ameliorates the Hepato-Renal Toxicities Induced by Cadmium in Mice
by Karim Samy El-Said, Shaimaa Hussein, Barakat M. Alrashdi, Heba A. Mahmoud, Mahrous A. Ibrahim, Mohamed Elbakry, Hala El-Tantawy, Doaa Ibrahim Kabil and Sabry A. El-Naggar
Molecules 2022, 27(2), 559; https://doi.org/10.3390/molecules27020559 - 16 Jan 2022
Cited by 5 | Viewed by 2146
Abstract
Heavy metals intoxication causes several health problems that necessitate finding new protective and therapeutic approaches. This study aimed to evaluate the impact of Musa sp. leaves extract (MLE) on hepato-renal toxicities induced by cadmium (Cd) in male mice. The phytochemical screening, metal chelating [...] Read more.
Heavy metals intoxication causes several health problems that necessitate finding new protective and therapeutic approaches. This study aimed to evaluate the impact of Musa sp. leaves extract (MLE) on hepato-renal toxicities induced by cadmium (Cd) in male mice. The phytochemical screening, metal chelating activity (MCA), and the median lethal dose (LD50) of MLE were determined. Fifty CD-1 male mice were used and intraperitoneally (i.p.) injected with MLE (1000 to 5000 mg/kg b.wt) for MLE LD50 determination. Another 50 mice were used for evaluating the effect of MLE on Cd toxicity. Blood samples were collected for hematological, liver, and kidney functions assessments. Liver tissue homogenates were used for determination of oxidant/antioxidant parameters. Liver and kidney tissues were harvested for histopathological and molecular investigations. MLE showed potent in vitro antioxidant activities. The MCA and LD50 of the MLE were 75 µg/mL and 3000 mg/kg b.wt, respectively. MLE showed beneficial therapeutic activity against hepato-renal toxicities in Cd-intoxicated mice, evidenced by improving the hematological, biochemical, histopathological, and molecular alterations. Full article
Show Figures

Figure 1

19 pages, 2029 KiB  
Article
Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones: A Comparison of Selected Green Chemistry Methods
by Mario Komar, Tatjana Gazivoda Kraljević, Igor Jerković and Maja Molnar
Molecules 2022, 27(2), 558; https://doi.org/10.3390/molecules27020558 - 16 Jan 2022
Cited by 7 | Viewed by 2289
Abstract
In this study, deep eutectic solvents (DESs) were used as green and eco-friendly media for the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones from different anthranilic acids and aliphatic or aromatic isothiocyanates. A model reaction on anthranilic acid and phenyl isothiocyanate was performed in [...] Read more.
In this study, deep eutectic solvents (DESs) were used as green and eco-friendly media for the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones from different anthranilic acids and aliphatic or aromatic isothiocyanates. A model reaction on anthranilic acid and phenyl isothiocyanate was performed in 20 choline chloride-based DESs at 80 °C to find the best solvent. Based on the product yield, choline chloride:urea (1:2) DES was found to be the most effective, while DESs acted both as solvents and catalysts. Desired compounds were prepared with moderate to good yields using stirring, microwave-assisted, and ultrasound-assisted synthesis. Significantly, higher yields were obtained with mixing and ultrasonication (16–76%), while microwave-induced synthesis showed lower effectiveness (13–49%). The specific contribution of this research is the use of DESs in combination with the above-mentioned green techniques for the synthesis of a wide range of derivatives. The structures of the synthesized compounds were confirmed by 1H and 13C NMR spectroscopy. Full article
Show Figures

Figure 1

14 pages, 1318 KiB  
Article
Separation of Rare-Earth Elements from Nitrate Solutions by Solvent Extraction Using Mixtures of Methyltri-n-octylammonium Nitrate and Tri-n-butyl Phosphate
by Sergei I. Stepanov, Nguyen Thi Yen Hoa, Ekaterina V. Boyarintseva, Alexander V. Boyarintsev, Galina V. Kostikova and Aslan Yu. Tsivadze
Molecules 2022, 27(2), 557; https://doi.org/10.3390/molecules27020557 - 16 Jan 2022
Cited by 1 | Viewed by 2311
Abstract
The article presents data on the solvent extraction separation of rare-earth elements (REEs), such as La(III), Ce(III), Pr(III), and Nd(III), using synergic mixtures of methyltrioctylammonium nitrate (TOMANO3) with tri-n-butyl phosphate (TBP) from weakly acidic nitrate solutions. Specifically, experimental results on separation [...] Read more.
The article presents data on the solvent extraction separation of rare-earth elements (REEs), such as La(III), Ce(III), Pr(III), and Nd(III), using synergic mixtures of methyltrioctylammonium nitrate (TOMANO3) with tri-n-butyl phosphate (TBP) from weakly acidic nitrate solutions. Specifically, experimental results on separation of REEs, for the pair Ce(III)/Pr(III) for quaternary mixtures of REEs (La(III), Ce(III), Pr(III), Nd(III)) and for the pair La(III)/Pr(III) for solutions containing La(III), Pr(III), and Nd(III), are presented. It was shown that effective separation for the pair Ce(III)/Pr(III) from a solution containing 219 g Ce(III)/L, 106 g La(III)/L, 20 g Pr(III)/L, 55 g Nd(III)/L, and 0.1 mol/L HNO3, was achieved using 56 steps of a multistage, counter-current solvent extraction cascade with scrubbing, at an organic-to-aqueous phase volume ratio (O/A) equal to 2/1 on the extraction section and O/A equal to 4/1 on the scrubbing section, using 3.3 mol/L solutions of the mixture TOMANO3-TBP with molar ratio 0.15:0.85 in dodecane. Separation for the pair La(III)/Pr(III) could be achieved using a solvent extraction cascade with scrubbing in 32 steps at O/A equal to 2/1 on the extraction section and O/A equal to 2.8/1 on the scrubbing section of the solvent extraction cascade from a solution containing 258 g La(III)/L, 58 g Pr(III)/L, 141 g Nd(III)/L, and 0.1 mol/L HNO3 with 3.0 mol/L solution of the mixture TOMANO3-TBP with molar ratio 0.2:0.8 in dodecane. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

9 pages, 984 KiB  
Article
Thermochemical Study of 1-Methylhydantoin
by Juan M. Ledo, Henoc Flores, Fernando Ramos and Elsa A. Camarillo
Molecules 2022, 27(2), 556; https://doi.org/10.3390/molecules27020556 - 16 Jan 2022
Viewed by 1342
Abstract
Using static bomb combustion calorimetry, the combustion energy of 1-methylhydantoin was obtained, from which the standard molar enthalpy of formation of the crystalline phase at T = 298.15 K of the compound studied was calculated. Through thermogravimetry, mass loss rates were measured as [...] Read more.
Using static bomb combustion calorimetry, the combustion energy of 1-methylhydantoin was obtained, from which the standard molar enthalpy of formation of the crystalline phase at T = 298.15 K of the compound studied was calculated. Through thermogravimetry, mass loss rates were measured as a function of temperature, from which the enthalpy of vaporization was calculated. Additionally, some properties of fusion were determined by differential scanning calorimetry, such as enthalpy and temperature. Adding the enthalpy of fusion to the enthalpy of vaporization, the enthalpy of sublimation of the compound was obtained at T = 298.15 K. By combining the enthalpy of formation of the compound in crystalline phase with its enthalpy of sublimation, the respective standard molar enthalpy of formation in the gas phase was calculated. On the other hand, the results obtained in the present work were compared with those of other derivatives of hydantoin, with which the effect of the change of some substituents in the base heterocyclic ring was evaluated. Full article
Show Figures

Figure 1

42 pages, 2204 KiB  
Review
Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review
by Saikat Mitra, Shyamjit Paul, Sumon Roy, Hriday Sutradhar, Talha Bin Emran, Firzan Nainu, Mayeen Uddin Khandaker, Mohammed Almalki, Polrat Wilairatana and Mohammad S. Mubarak
Molecules 2022, 27(2), 555; https://doi.org/10.3390/molecules27020555 - 16 Jan 2022
Cited by 33 | Viewed by 8244
Abstract
Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the [...] Read more.
Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders. Full article
(This article belongs to the Special Issue Nutraceuticals in Immune Function II)
Show Figures

Figure 1

18 pages, 4807 KiB  
Article
Discovery of Potential Antiviral Compounds against Hendra Virus by Targeting Its Receptor-Binding Protein (G) Using Computational Approaches
by Faisal Ahmad, Aqel Albutti, Muhammad Hamza Tariq, Ghufranud Din, Muhammad Tahir ul Qamar and Sajjad Ahmad
Molecules 2022, 27(2), 554; https://doi.org/10.3390/molecules27020554 - 16 Jan 2022
Cited by 14 | Viewed by 2488
Abstract
Hendra virus (HeV) belongs to the paramyxoviridae family of viruses which is associated with the respiratory distress, neurological illness, and potential fatality of the affected individuals. So far, no competitive approved therapeutic substance is available for HeV. For that reason, the current research [...] Read more.
Hendra virus (HeV) belongs to the paramyxoviridae family of viruses which is associated with the respiratory distress, neurological illness, and potential fatality of the affected individuals. So far, no competitive approved therapeutic substance is available for HeV. For that reason, the current research work was conducted to propose some novel compounds, by adopting a Computer Aided Drug Discovery approach, which could be used to combat HeV. The G attachment Glycoprotein (Ggp) of HeV was selected to achieve the primary objective of this study, as this protein makes the entry of HeV possible in the host cells. Briefly, a library of 6000 antiviral compounds was screened for potential drug-like properties, followed by the molecular docking of short-listed compounds with the Protein Data Bank (PDB) structure of Ggp. Docked complexes of top two hits, having maximum binding affinities with the active sites of Ggp, were further considered for molecular dynamic simulations of 200 ns to elucidate the results of molecular docking analysis. MD simulations and Molecular Mechanics Energies combined with the Generalized Born and Surface Area (MMGBSA) or Poisson–Boltzmann and Surface Area (MMPBSA) revealed that both docked complexes are stable in nature. Furthermore, the same methodology was used between lead compounds and HeV Ggp in complex with its functional receptor in human, Ephrin-B2. Surprisingly, no major differences were found in the results, which demonstrates that our identified compounds can also perform their action even when the Ggp is attached to the Ephrin-B2 ligand. Therefore, in light of all of these results, we strongly suggest that compounds (S)-5-(benzylcarbamoyl)-1-(2-(4-methyl-2-phenylpiperazin-1-yl)-2-oxoethyl)-6-oxo-3,6-dihydropyridin-1-ium-3-ide and 5-(cyclohexylcarbamoyl)-1-(2-((2-(3-fluorophenyl)-2-methylpropyl)amino)-2-oxoethyl)-6-oxo-3,6-dihydropyridin-1-ium-3-ide could be considered as potential therapeutic agents against HeV; however, further in vitro and in vivo experiments are required to validate this study. Full article
(This article belongs to the Special Issue Computational Methods in Drug Design and Food Chemistry II)
Show Figures

Figure 1

15 pages, 2275 KiB  
Article
Antioxidant Extract from Cleistocalyx nervosum var. paniala Pulp Ameliorates Acetaminophen-Induced Acute Hepatotoxicity in Rats
by Arpamas Chariyakornkul, Waristha Juengwiroj, Jetsada Ruangsuriya and Rawiwan Wongpoomchai
Molecules 2022, 27(2), 553; https://doi.org/10.3390/molecules27020553 - 16 Jan 2022
Cited by 7 | Viewed by 1849
Abstract
The indigenous purplish red fruit, Cleistocalyx nervosum var. paniala (CN), is grown in northern Thailand. The aqueous extract of CN pulp is known to exhibit antioxidant and anticarcinogenic properties. To search for an antioxidant fraction separated from CN, various hydroalcoholic extractions were performed. [...] Read more.
The indigenous purplish red fruit, Cleistocalyx nervosum var. paniala (CN), is grown in northern Thailand. The aqueous extract of CN pulp is known to exhibit antioxidant and anticarcinogenic properties. To search for an antioxidant fraction separated from CN, various hydroalcoholic extractions were performed. The acidified ethanolic extract of CN obtained from 0.5% (v/v) citric acid in 80% (v/v) ethanol yielded greater polyphenol content and DPPH radical scavenging activity when compared with other hydroethanolic extracts. Cyanidin-3-glucoside is a major anthocyanin present in the acidified ethanolic extract of CN (AECN). At a dose of 5000 mg/kg bw, an anthocyanin-rich extract was found to be safe when given to rats without any acute toxicity. To examine the hepatoprotective properties of AECN, an overdose of acetaminophen (APAP) was induced in a rat model, while silymarin was used as a standard reference. The administration of AECN at a dose of 300 mg/kg bw for 28 days improved hepatocyte architecture and modulated serum alanine aminotransferase levels in APAP-induced rats. Furthermore, it significantly decreased serum and hepatic malondialdehyde levels but increased hepatic glutathione content, as well as glutathione peroxidase and UDP-glucuronosyltransferase activities. In conclusion, AECN may effectively reduce oxidative stress induced acute hepatotoxicity in overdose APAP-treated rats through the suppression of oxidative stress and the enhancement of the antioxidant system in rat livers. Full article
(This article belongs to the Special Issue Natural Products in Asia)
Show Figures

Graphical abstract

13 pages, 1627 KiB  
Article
Water-in-Oil-in-Water Double Emulsions as Protective Carriers for Sambucus nigra L. Coloring Systems
by Liandra G. Teixeira, Stephany Rezende, Ângela Fernandes, Isabel P. Fernandes, Lillian Barros, João C. M. Barreira, Fernanda V. Leimann, Isabel C. F. R. Ferreira and Maria-Filomena Barreiro
Molecules 2022, 27(2), 552; https://doi.org/10.3390/molecules27020552 - 16 Jan 2022
Cited by 3 | Viewed by 2767
Abstract
The use of natural colorants is needed to overcome consumer concerns regarding synthetic food colorants′ safety. However, natural pigments have, in general, poor stability against environmental stresses such as temperature, ionic strength, moisture, light, and pH, among others. In this work, water-in-oil-in-water (W [...] Read more.
The use of natural colorants is needed to overcome consumer concerns regarding synthetic food colorants′ safety. However, natural pigments have, in general, poor stability against environmental stresses such as temperature, ionic strength, moisture, light, and pH, among others. In this work, water-in-oil-in-water (W1/O/W2) emulsions were used as protective carriers to improve color stability of a hydrophilic Sambucus nigra L. extract against pH changes. The chemical system comprised water and corn oil as the aqueous and oil phases, respectively, and polyglycerol polyricinoleate (PGPR), Tween 80, and gum Arabic as stabilizers. The primary emulsion was prepared using a W1/O ratio of 40/60 (v/v). For the secondary emulsion, W1/O/W2, different (W1/O)/W2 ratios were tested with the 50/50 (v/v) formulation presenting the best stability, being selected as the coloring system to test in food matrices of different pH: natural yogurt (pH 4.65), rice drink (pH 6.01), cow milk (pH 6.47), and soy drink (pH 7.92). Compared to the direct use of the extract, the double emulsion solution gave rise to higher color stability with pH change and storage time, as corroborated by visual and statistical analysis. Full article
(This article belongs to the Special Issue Nanodelivery of Food Bioactive Compounds)
Show Figures

Figure 1

Previous Issue
Back to TopTop