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Abstract: Let G be a simple graph with the vertex set V = {v1, . . . , vn} and denote by dvi the degree
of the vertex vi. The modified Sombor index of G is the addition of the numbers (d2

vi
+ d2

vj
)−1/2 over

all of the edges vivj of G. The modified Sombor matrix AMS(G) of G is the n by n matrix such that
its (i, j)-entry is equal to (d2

vi
+ d2

vj
)−1/2 when vi and vj are adjacent and 0 otherwise. The modified

Sombor spectral radius of G is the largest number among all of the eigenvalues of AMS(G). The sum
of the absolute eigenvalues of AMS(G) is known as the modified Sombor energy of G. Two graphs
with the same modified Sombor energy are referred to as modified Sombor equienergetic graphs. In
this article, several bounds for the modified Sombor index, the modified Sombor spectral radius, and
the modified Sombor energy are found, and the corresponding extremal graphs are characterized. By
using computer programs (Mathematica and AutographiX), it is found that there exists only one pair
of the modified Sombor equienergetic chemical graphs of an order of at most seven. It is proven that
the modified Sombor energy of every regular, complete multipartite graph is

√
2; this result gives

a large class of the modified Sombor equienergetic graphs. The (linear, logarithmic, and quadratic)
regression analyses of the modified Sombor index and the modified Sombor energy together with
their classical versions are also performed for the boiling points of the chemical graphs of an order of
at most seven.

Keywords: adjacency matrix; Sombor index; modified Sombor matrix; modified Sombor energy;
correlation

1. Introduction

We consider only simple and undirected graphs. The graph theoretical terminologies
used in this paper, without defining them here, can be found in the book [1]. A graph of the
order n with a vertex set V(G) and an edge set E(G) is denoted by G(V, E), or simply by G,
where V(G) = {v1, v2, . . . , vn}. The cardinality of E(G) is the size m of G. The degree of a
vertex v in G is the number of edges incident with v and is denoted by dv. A regular graph
is one in which each vertex has the same degree. The maximum and minimum degrees of
G are denoted by ∆ and δ, respectively. A graph of the order n is also known as an n-vertex
graph. Kn, Ka,b, and Pn denote the n-vertex complete graph, the (a + b)-vertex complete
bipartite graph, and the n-vertex path graph, respectively. Moreover, denote the complete
multipartite graph by Kn1,n2,...,nt , where t ≥ 3, and denote the complete split graph with the
clique size ω and the independence number n−ω by CS(ω, n−ω). Let S+

n be the graph
formed by adding an edge to the star K1,n−1.

By a topological index, we mean a numerical quantity TI calculated from a graph such
that TI remains unchanged under graph isomorphism. Topological indices have several
uses in theoretical chemistry, especially in quantitative structure–activity relationship and
quantitative structure–property relationship studies [2]. For a graph G, its degree-based

Molecules 2022, 27, 6772. https://doi.org/10.3390/molecules27196772 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27196772
https://doi.org/10.3390/molecules27196772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1381-0291
https://orcid.org/0000-0001-8160-4196
https://doi.org/10.3390/molecules27196772
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196772?type=check_update&version=3


Molecules 2022, 27, 6772 2 of 20

topological indices φ [3–5] of the following form are known as bond incident degree
indices [6]:

φ(G) = ∑
uv∈E(G)

φdu ,dv ,

where φdu ,dv is a function with the property φdu ,dv = φdv ,du . For particular choices of φdu ,dv ,
we obtain existing topological indices; for example, the arithmetic–geometric index [7] is
obtained when φdu ,dv = (du + dv)(4dudv)−1/2, the general Randić index [8] is recovered if
φdu ,dv = (dudv)α, (for α = −1/2, we obtain the classical Randić index R [9]), and the general
Sombor index is deduced when φdu ,dv =

(
d2

u + d2
v
)α. From the general Sombor index, we

obtain the recently introduced Sombor (SO) index [10] and the modified Sombor index
mSO [11] by using α = 1/2 and α = −1/2, respectively.

The basic properties of the Sombor index were given by Gutman [10]. Das et al. [12]
presented novel bounds for the Sombor index and gave its relations with several other
topological indices, such as the Zagreb indices. Cruz et al. [13] investigated the Sombor
index for chemical graphs and characterized extremal graphs from the classes of chemical
graphs, chemical trees, and hexagonal systems, with respect to this index. The chemical
applicability of the Sombor index was investigated in [14,15]. Kulli and Gutman initiated
the study of the modified Sombor index and gave its basic properties. Later, Huang and
Liu [16] obtained several interesting properties and bounds of the modified Sombor index,
and they found its relations with some other topological indices, such as the Randić index,
the Harmonic index, the sum-connectivity index, and the geometric–arithmetic index.

The general adjacency matrix (for example, see [4]) associated with φ of G is a real
symmetric matrix, defined by

Aφ(G) = (aφ)ij =

φdu ,dv if uv ∈ E(G)

0 otherwise.
(1)

The set of all eigenvalues of Aφ(G) is known as the general adjacency spectrum of G
and is denoted by λ1(Aφ(G)), . . . , λn(Aφ(G)), indexed in a non-increasing order, where
λ1(Aφ(G)) is known as the general adjacency spectral radius of G. If G is a connected
non-trivial graph and φdu ,dv > 0 for every edge uv ∈ E(G), then by the Perron–Frobenius
theorem, λ1(Aφ(G)) is unique, and its associated eigenvector has positive components.
Moreover, in this case, the inequality |λi(Aφ(G))| ≤ λ1(Aφ(G)) holds for every i ∈
{2, . . . , n − 1, n}. The energy of the graph G associated with the topological index φ is
defined [17] as

Eφ(G) =
n

∑
i=1
|λi(Aφ(G))|.

If φdu ,dv = 1 for every edge uv ∈ E(G), then Aφ(G) coincides with the much-studied
adjacency matrix A(G), and Eφ(G) is the classical graph energy [18] defined as E(G) =

∑n
i=1 |λi|, where λ1, . . . , λn are the eigenvalues of A(G), and the multiset consisting of

these eigenvalues is known as the spectrum of G. The graph energy E(G) has its origin in
theoretical chemistry and helps in approximating the π-electron energy of unsaturated
hydrocarbons. There is a wealth of literature about graph energy and its related topics
(for examples, see [19–25]).

If we take φdu ,dv =
√

d2
u + d2

v in (1), the we obtain the Sombor matrix

AS(G) =


√

d2
u + d2

v if uv ∈ E(G)

0 otherwise.
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We denote each eigenvalue of AS(G) by µi and order them as µ1 ≥ · · · ≥ µn. The mul-
tiset of all eigenvalues of AS(G) is known as the Sombor spectrum of G. The Sombor energy
of G is defined by

ESO(G) =
n

∑
i=1
|µi|.

Two graphs with the same modified Sombor energy are referred to as modified Sombor
equienergetic graphs. Various papers on the spectral properties of the Sombor matrix, involv-
ing Sombor eigenvalues, the Sombor spectral radius, Sombor energy, the Sombor Estrada
index, the relation of energy with Sombor energy, and the Sombor index, have recently
been published (for examples, see [22,26–35]).

The substitution φdu ,dv = (d2
u + d2

v)
−1/2 in (1) yields the modified Sombor matrix

AMS(G) =


1√

d2
u + d2

v
if uv ∈ E(G)

0 otherwise.

The multiset consisting of all of the eigenvalues ρ1, . . . , ρn of AMS(G) is called the
modified Sombor spectrum of G. We assume that ρ1 ≥ · · · ≥ ρn, where ρ1 is called the modified
Sombor spectral radius of G. The modified Sombor energy [16] is defined by

EMS(G) =
n

∑
i=1
|ρi|.

Various properties concerning the modified Sombor matrix can be found in [16].
The chemical applicability of the Sombor indices, such as the predictive and discrimi-

native potentials, was examined by [15]. The Sombor index, the reduced Sombor index,
and the average Sombor index were used to model the entropy and enthalpy of vapor-
ization of alkanes. Some linear models that use one of these indices as the only predictor
showed satisfactory predictive potential. The performance of these models was improved
with the introduction of other topological indices, such as the first Zagreb index as a sec-
ond predictor. Among these three topological molecular descriptors, the reduced Sombor
index showed the best performance. The results of testing the predictive potential of the
Sombor indices indicate that these descriptors may be successfully applied to modeling the
thermodynamic properties of compounds.

The bond incident degree indices and their corresponding matrices (weighted adja-
cency matrices) have their own significance. Some notable points regarding some weighted
adjacency matrices are below:

• The classical graph energy cannot be an odd integer (see [36]).
• The arithmetic–geometric energy can be any positive integer greater than one (see [37]).
• The modified Sombor energy of every regular complete multipartite is constant and

equals
√

2 (see Corollary 1).
• The modified Sombor spectral radius of every regular graph is constant and equals

1√
2

(see Proposition 2).

The remainder of this paper is organized as follows: In Section 2, we establish bounds
on the modified Sombor index, the modified Sombor spectral radius, and the modified
Sombor energy and determine all of the graphs that attain these bounds. In Section 3,
by using computer programs (Mathematica and AutographiX), we find that there exists
only one pair of the modified Sombor equienergetic chemical graphs of an order of at
most seven. The (linear, logarithmic, and quadratic) regression analyses of the modified
Sombor index and the modified Sombor energy together with their classical versions are
also performed in Section 3 for the boiling points of chemical graphs of an order of at
most seven.
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2. Results Concerning the Modified Sombor Matrix

In this section, we give bounds on the modified Sombor index, the modified Sombor
spectral radius, and the modified Sombor energy, and we characterize the graphs that attain
these bounds.

Let σ1, . . . , σn be singular values of a matrix M. The Frobenius norm of M is defined by

‖M‖2
F = σ2

1 + σ2
2 + · · ·+ σ2

n .

Similarly, the Frobenius norm (see [16]) of the modified Sombor matrix AMS(G) is

ρ2
1 + ρ2

2 + · · ·+ ρ2
n = ‖AMS(G)‖2

F = 2B = Tr(A2
MS(G)),

where
B = ∑

vivj∈E(G)

1
d2

vi
+ d2

vj

(2)

and “Tr” denotes the trace of a matrix. We note that the modified Sombor index can be
expressed as a quadratic form of the modified Sombor matrix:

mSO(G) =
1
2

(
JT AMS(G)J

)
,

where J is a matrix of all ones. Moreover, according to the Rayleigh–Ritz theorem [19], for a
non-zero vector X, we have

ρ1(G) = max
X 6=0

XT AMS(G)X
XTX

≥ JT AMS(G)J
JT J

=
2(mSO(G))

n
. (3)

If G is an r-regular graph, then

AMS(G) =
1

r
√

2
A(G),

and it is well known that λ1 ≤ ∆ (see Propositions 1.1.1 and 1.1.2 [19]) with equality if and
only if G is regular. Thus, for regular graphs, we have

ρ1 =
1√
2

and
2(mSO(G))

n
=

2m
r
√

2n
=

1√
2

,

because m = nr/2. From these observations, the next two results follow:

Proposition 1. If G is a connected non-trivial graph of the order n, then

mSO(G) ≤ nρ1

2
,

with equality holding if and only G is regular.

Proposition 2. The modified Sombor spectral radius of every regular non-trivial graph is
1√
2

.

The number of edges adjacent to an edge uv of a graph is called the edge degree of uv.
Following Simić and Stanić [38], we say that a graph is edge-regular (same terminology is
also used for a particular type of regular graph; for example, see [39]) if all its edges have
the same edge degree. The following result gives an upper bound for mSO(G) in terms of
the size m and the Frobenius norm of AMS(G).
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Proposition 3. If G is a connected non-trivial graph of size m, then

mSO(G) ≤
√

m · B,

with equality holding if and only G is edge-regular, where B is defined via (2).

Proof. By using the Cauchy–Schwarz inequality, we have

∑
uv∈E(G)

1√
d2

u + d2
v
≤

√√√√m ∑
uv∈E(G)

1
d2

u + d2
v

,

with equality holding if and only if there exists a constant c such that the equation d2
u + d2

v =
c holds for every edge uv ∈ E(G). If w ∈ V(G) is a vertex of at least two degrees, and
w1, w2 ∈ V(G) are two of its neighbors, then the equation d2

w1
+ d2

w = d2
w2

+ d2
w holds if

and only if dw1 = dw2 . Thus, the equation d2
u + d2

v = c holds for every edge uv ∈ E(G) if
and only if all of the neighbors of every vertex of G have the same degree; that is, G is an
edge-regular graph.

The double star-type graph DS(n, a, b) is a tree obtained from the two-vertex complete
graph K2 by attaching a pendent vertex of each of the a copies of the three-vertex path
graph P3 to one end-vertex of K2 and attaching a pendent vertex of each of the b copies of
P3 to its other end-vertex; see Figure 1 for the graph DS(16, 3, 4). A graph of the order n is
said to be a chain graph CG(n) if it is bipartite and the neighborhoods of the vertices in each
color class form a chain with respect to set inclusion (see Figure 1).

DS(16, 3, 4) CG(10)

Figure 1. Double star-type graph DS(16, 3, 4) on 16 vertices and the chain graph CG(10) on 10 vertices.

Table 1 presents the numerical calculations of the modified Sombor index bounds
obtained in Propositions 1 and 3 and the results obtained by Huang and Liu [16].
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Table 1. Table showing value of modified Sombor index for some graphs, numerical values of the
bounds obtained in Propositions 1 and 3, and the different results of Huang and Liu [16].

Graph G mSO(G) Propositions 1 Propositions 3 Theorem 2.1 Corollary 2.3 Corollary 2.4

P14 4.78351 4.89003 4.80364 4.88908 6.05761 4.94975

CS5,3 2.75387 2.78203 2.76018 2.80299 4.49642 2.82843

DS(16, 3, 4) 4.70027 5.01065 5.06802 5.30254 6.78914 5.65685

S+
5 1.31329 1.66039 1.36239 2.18222 2.12132 2.12132

CG10 2.82008 3.22145 2.84684 3.22319 4.66404 3.53553

Graph G mSO(G) Theorem 2.7 Cor. 2.8 Theorem 2.16 Corollary 2.18 Corollary 2.21

P14 4.78351 9.19239 9.89949 8.13909 9.1115 5.0104

CS5,3 2.75387 3.53553 3.9598 7.38738 3.50586 2.782

DS(16, 3, 4) 4.70027 10.6060 28.28443 9.01171 9.92488 5.14324

S+
5 1.31329 4.24264 10.6066 3.44814 3.566 1.85567

CG10 2.82008 10.6066 17.6777 6.82982 9.96694 3.71687

The following result gives a lower bound and an upper bound for the modified Sombor
spectral radius.

Proposition 4. Let B be the topological index defined via (2). If G is a non-trivial graph of the
order n, then √

2B
n
≤ ρ1 ≤

√
2B(n− 1)

n
, (4)

where the left equality sign holds if and only if |ρ1| = |ρ2| = · · · = |ρn|. If G is connected, then
the right equality in (4) holds if and only if G ∼= Kn.

Proof. The right-handed inequality in (4) has already been derived in Theorem 3.4 [16]
but without identifying the graphs that attain equality. For the sake of completeness, we
first give the proof of this inequality and then characterize the connected graphs that attain
its equality sign. Applying the Cauchy–Schwarz inequality to the vector (ρ2, ρ3, . . . , ρn), we
have

ρ2
1 = 2B−

n

∑
i=2

ρ2
i ≤ 2B− 1

n− 1

(
n

∑
i=2

ρi

)2

= 2B− 1
n− 1

ρ2
1, (5)

which implies that

ρ1 ≤
√

2B(n− 1)
n

. (6)

Suppose equality holds in (6). Then, equality holds in (5), which is possible if and only
if ρ2 = ρ3 = · · · = ρn. That is, G has two distinct modified Sombor eigenvalues ρ1 and ρ2.
According to the proof of Proposition 1.3.3 of [40], the diameter of G must be one, which
implies that G is Kn. Conversely, if G ∼= Kn, then the modified Sombor spectrum of G is 1√

2
,

(
−1

(n− 1)
√

2

)[n−1]
 and B =

n
4(n− 1)

.

Thus,

ρ1 =

√
2B(n− 1)

n
=

√
1
2
· n

n− 1
· n− 1

n
=

1√
2

.
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Recall that ρ2
1 + ρ2

2 + · · ·+ ρ2
n = 2B, so we obtain 2B ≤ ρ2

1 + ρ2
1 + · · ·+ ρ2

1, which gives

ρ1 ≥
√

2B
n

with equality holding if and only if |ρ1| = |ρ2| = · · · = |ρn|.

From the equality case of the right-handed inequality of Proposition 4, Proposition 1.3.3
of [40], and Theorem 2.1 of [41], the next proposition follows:

Proposition 5. Let G be a connected non-trivial graph. The graph G has only two distinct modified
Sombor eigenvalues if and only if G is the complete graph.

The topological index B defined via (2) is repeatedly used in our results. We now
establish some bounds on it and characterize the corresponding extremal graphs.

Proposition 6. Let G be a connected non-trivial graph.

(i) If G has a size m, maximum degree ∆, and minimum degree δ, then

m
2∆2 ≤ B ≤ m

2δ2 ,

where either of the two equalities holds if and only if G is regular.
(ii) If G has the order n and the modified Sombor spectral radius ρ1, then

B ≤
nρ2

1
2(n− 1)

,

with equality holding if and only if G ∼= Kn.
(iii) For t ≥ 1, if G is bipartite with exactly t positive modified Sombor eigenvalues, then

B ≥ tρ2
1,

with equality holding if and only if G is the complete bipartite graph.

Proof. Since δ ≤ dv ≤ ∆ for every vertex v ∈ V(G), Part (i) follows directly from the
definition of B. Moreover, Part (ii) is a direct consequence of Proposition 4. In what follows,
we prove Part (iii). Note that ρ2

1 + ρ2
2 + · · · + ρ2

n = 2B. Since G has exactly t positive
modified Sombor eigenvalues, and its modified Sombor is symmetric toward the origin,
we obtain

2
(

ρ2
1 + ρ2

2 + · · ·+ ρ2
t

)
= 2B,

which implies that B ≥ tρ2
1, with equality if and only if t = 1; by Proposition 7, G is the

complete bipartite graph.

Clearly, it holds that AMS(G) = 1
r
√

2
A(G) for an r-regular graph G. Thus, for regular

graphs, we have

EMS(G) =
1

r
√

2
E(G) =

1
2r2 ESO(G).

Moreover, from the definition of EMS(G), it follows that

EMS(G) =
n

∑
i=1
|ρi| = 2

n

∑
i=1

ρi≥0

ρi ≥ 2ρ1, (7)
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where the right-handed equality sign holds if and only if G has only one positive modified
Sombor eigenvalue. From (7) and any lower bound on ρ1, we obtain another lower bound
on EMS(G). For example, we derive two such lower bounds on EMS(G) in the following:

From Proposition 1, it follows that

ρ1 ≥
2(mSO(G))

n
,

with equality if and only if G is regular. Moreover, according to Proposition 4, we have

ρ1 ≥
√

2B
n

,

with equality if and only if |ρ1| = |ρ2| = · · · = |ρn|. Thus, from these two lower bounds on
ρ1 and from (7), the next two lower bounds on EMS follow

EMS(G) ≥ 4(mSO(G))

n
, (8)

EMS(G) ≥ 2

√
2B
n

. (9)

Equality occurs in (8) if and only if G is regular and has exactly one positive modified
Sombor eigenvalue. Recall that, for regular graphs, we have =AMS(G) = 1

r
√

2
A(G) and that

the adjacency matrix A(G) has only one positive eigenvalue if and only if G is a complete
multipartite graph (see Smith [42]). Thus, equality holds in (8) if and only if G is a regular
complete multipartite graph. Moreover, equality holds in (9) if and only G has only one
positive modified Sombor eigenvalue and |ρ1| = |ρ2| = · · · = |ρn|; which means that G
is n

2 K2 when G is disconnected, and G is K2 when G is connected. We summarize these
observations in the following result.

Theorem 1. Let G be a non-trivial graph of order n.

(i) It holds that

EMS(G) ≥ 4(mSO(G))

n
,

with equality if and only if G is a regular complete multipartite graph.
(ii) It holds that

EMS(G) ≥ 2

√
2B
n

,

with equality if and only if G is n
2 K2 when G is disconnected, and G is K2 when G is connected.

Next, we have an immediate consequence of Theorem 1, which states that the modified
Sombor energy of the regular complete multipartite graphs is constant (which implies that
the equation EMS(G1) = EMS(G2) holds for every pair of nonisomorphic regular complete
multipartite graphs G1 and G2 of the same order).

Corollary 1. If G is a regular complete multipartite graph, then

EMS(G) =
√

2.
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Remark 1. If G is a connected graph, then

2
n

(
mSO(G)

)
=

2
n ∑

uv∈E

1√
d2

u + d2
v

>
2
n ∑

uv∈E

1
d2

u + d2
v
=

2B
n
≥
√

2B
n

.

Thus, for connected graphs, the lower bound on ρ1 given in Proposition 1 is better than the one
given in Proposition 4.

Next, we give the McClelland- and the Koolen–Moulton-type bounds for the modified
Sombor energy.

Theorem 2. (i) If G is a graph of the order n, and B is the topological index defined via (2), then

EMS(G) ≤ 2(mSO(G))

n
+

√√√√(n− 1)

(
2B−

(
2(mSO(G))

n

)2
)

.

If G is connected, then equality holds if and only if G is either Kn or G has three distinct modified
Sombor eigenvalues: ρ1 = 2(mSO(G))

n and two others with equal absolute values

|ρ2| = |ρ3| = · · · = |ρn| =

√
1

(n− 1)

(
2B−

(2(mSO(G))

n

)2)
.

(ii) If G is without any isolated vertex, then

EMS(G) ≤
√

2nB,

with equality holding if and only if G ∼= n
2 K2.

Proof. By applying the Cauchy–Schwartz inequality and then using the fact that
n
∑

i=1
ρ2

i =

2B, we have

EMS(G) = ρ1 +
n

∑
i=2
|ρi|

≤ ρ1 +

√
(n− 1)

n

∑
i=2

ρ2
i = ρ1 +

√
(n− 1)(2B− ρ2

1),

where the inequality sign becomes an equality sign if and only if

|ρ2| = |ρ3| = · · · = |ρn| =

√
2B− ρ2

1
n− 1

.

Clearly, the function F defined by

F(x) = x +
√
(n− 1)(2B− x2) (10)

is decreasing for x in the interval
[√

2B
n ,
√

2B
]

. From Proposition 1, it follows that

ρ1 ≥
2(mSO(G))

n
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with equality if and only if G ∼= Kn. Moreover, according to Remark 1,

2(mSO(G))

n
≥
√

2B
n

.

Thus,

F(ρ1) ≤ F
(

2(mSO(G))

n

)
and hence

EMS(G) ≤ 2(mSO(G))

n
+

√√√√(n− 1)

(
2B−

(
2(mSO(G))

n

)2
)

. (11)

Equality holds in (11) if and only if all above equalities hold, i.e., G is regular with
the modified Sombor spectrum satisfying: ρ1 = 2(mSO(G))

n and |ρ2| = |ρ3| = · · · = |ρn|.
One possibility is that G has two distinct modified Sombor eigenvalues and, according
to Proposition 5, G is the complete graph. Conversely, for G ∼= Kn, we have mSO(Kn) =

m
(n−1)

√
2
= n

2
√

2
, B = n

4(n−1) , and

2(mSO(G))

n
+

√√√√(n− 1)

(
2B−

(
2(mSO(G))

n

)2
)

=
1√
2
+

√
(n− 1)

(
n

2(n− 1)
− 1

2

)
=

2√
2
= 2ρ1(Kn) = EMS(Kn).

Therefore, equality holds if and only if either G ∼= Kn or G has three distinct modified
Sombor eigenvalues: ρ1 = 2(mSO(G))

n and the remaining modified Sombor eigenvalues are
equal in absolute value

|ρ2| = |ρ3| = · · · = |ρn| =

√
1

(n− 1)

(
2B−

(2(mSO(G))

n
)2
)

.

This completes the proof of Part (i). Next, we prove Part (ii). Since G contains no

isolated vertex, according to Proposition 4, we have ρ1 ≥
√

2B
n , which gives F(ρ1) ≤

F
(√

2B
n

)
(where F is defined via (10)), and hence we have

EMS(G) ≤
√

2B
n

+

√√√√√(n− 1)

2B−
(√

2B
n

)2
 =

√
2nB.

Note that the equation EMS(G) =
√

2nB holds if and only if ρ1 =
√

2B
n and |ρ2| =

|ρ3| = · · · = |ρn| =
√

2B
n , which holds if and only if G ∼= n

2 K2.

Our next upper bound on EMS is a consequence of a result credited to Filipovski and
Jajcay [20].
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Theorem 3. If G is a graph of the order n and t is a positive integer such that ρt is positive, then

EMS(G) ≤
√

2Bn− 2n
B

(
ρ2

1 + ρ2
2 + · · ·+ ρ2

t − B
)2

. (12)

Proof. The proof is similar to that of Theorem 5 of [20], and hence it is omitted here.

The following result gives a lower bound on EMS in terms of the topological index B.

Theorem 4. If G is a connected graph of the order n, where n ≥ 3, then

EMS(G) ≥ 2
√

B,

with equality holding if and only if G is a complete bipartite graph.

Proof. Since
n

∑
i=1

ρ2
i = −2 ∑

1≤i<j≤n
ρiρj,

we have

E2
MS(G) =

n

∑
i=1

ρ2
i + 2 ∑

1≤i<j≤n
|ρi||ρj| ≥

n

∑
i=1

ρ2
i + 2

∣∣∣∣∣ ∑
1≤i<j≤n

ρiρj

∣∣∣∣∣
= 2

n

∑
i=1

ρ2
i = 4B,

where the equation E2
MS(G) = 4B holds if and only if

∑
1≤i<j≤n

|ρi||ρj| =
∣∣∣∣∣ ∑
1≤i<j≤n

ρiρj

∣∣∣∣∣,
which is possible if and only if ρ1 = −ρn and ρ2 = ρ3 = · · · = ρn−1 = 0. Thus, G has three
distinct modified Sombor eigenvalues and hence, according to Proposition 1.3.3 of [40], the
diameter of G must be two. Moreover, we note that the modified Sombor spectrum of G is
symmetric toward the origin, so it is verified that G is bipartite (see Lemma 2.12 of [22]).
Consequently, it follows that G is a complete bipartite graph (see Theorem 2.1 of [41] and
Corollary 3.8 of [43]).

The next proposition is an immediate consequence of the equality case of Theorem 4,
Proposition 1.3.3 of [40], and Theorem 2.1 of [41].

Proposition 7. Let G be a connected bipartite graph. The graph G has three distinct modified
Sombor eigenvalues if and only if G is a complete bipartite graph.

Next, we have a consequence of Theorems 3 and 4.

Corollary 2. Let G be a connected graph with exactly one positive modified Sombor eigenvalue.
Then

EMS(G) ≤ 2

√
B + B

√
n− 2

n
, (13)

with equality if and only if G ∼= K2.

Proof. From Theorem 4, it follows that

EMS(G)2 ≥ 4B, (14)
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with equality if and only if G ∼= Ka,n−a. Moreover, since G has exactly one positive modified
Sombor eigenvalue, Theorem 3 yields

EMS(G) ≤
√

2nB− 2n
B
(ρ2

1 − B)2. (15)

According to (14) and (15), we obtain

4B ≤ 2nB− 2n
B
(
ρ2

1 − B
)2,

which implies that

ρ1 ≤

√
B + B

√
n− 2

2
. (16)

Therefore,

EMS(G) = 2ρ1 ≤ 2

√
B + B

√
n− 2

2
,

where the inequality sign becomes an equality sign if and only if G is K2.

Remark 2. By Theorem 2, (
EMS(G)

)2 ≤ 2nB,

with equality if and only if G ∼= n
2 K2. Moreover, Inequality (13) gives

(
EMS(G)

)2 ≤ 4B

(
1 + 1

√
n− 2

n

)
.

The inequality

4B

(
1 + 1

√
n− 2

n

)
≤ 2nB

holds whenever
n2(n− 2) > 4, (17)

which holds for n ≥ 3. Thus, for the graphs that have only one positive modified Sombor eigenvalue,
the bound (13) is better than the second bound given in Theorem 2.

The following result gives a lower bound on EMS in terms of ρn and B.

Theorem 5. If G is a connected non-trivial graph of the order n, then

EMS(G) ≥ |ρn|+
√

4B− 3ρ2
n, (18)

where the equality holds if and only if G is either the complete bipartite or the complete tripartite
graph.

Proof. Since the trace of AMS(G) is zero, we have

ρ2
n =

(
n−1

∑
i=1

ρi

)2

=
n−1

∑
i=1

ρ2
i + 2 ∑

1≤i<j≤n−1
ρiρj,

and (
n−1

∑
i=1
|ρi|
)2

=
n−1

∑
i=1

ρ2
i + 2 ∑

1≤i<j≤n−1
|ρi| · |ρj|.
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Since ρ2
n ≤ 1

2

n−1

∑
i=1

ρ2
i , we have

(
EMS(G)− |ρn|

)2
=

(
n−1

∑
i=1
|ρi|
)2

=
n−1

∑
i=1

ρ2
i + 2 ∑

1≤i<j≤n−1
|ρi| · |ρj|

≥
n−1

∑
i=1

ρ2
i +

∣∣∣∣∣2 ∑
1≤i<j≤n−1

ρi · ρj

∣∣∣∣∣ (19)

=
n−1

∑
i=1

ρ2
i +

∣∣∣∣∣ρ2
n −

n−1

∑
i=1

ρ2
i

∣∣∣∣∣
= 2

n

∑
i=1

ρ2
i − 3ρ2

n = 4B− 3ρ2
n.

Thus, we obtain

EMS(G) ≥ |ρn|+
√

4B− 3ρ2
n.

Equality holds in (19) if and only if

∑
1≤i<j≤n−1

|ρi| · |ρj| =
∣∣∣∣∣ ∑
1≤i<j≤n−1

ρi · ρj

∣∣∣∣∣.
One such possibility is ρ2 = ρ3 = · · · = ρn−1 = 0, and it follows that ρ1 = −ρn,

since Tr(AMS(G)) = 0. This implies that the modified Sombor spectrum of G is symmetric
toward its origin, i.e., G is bipartite, and, according to Proposition 7, G is the complete

bipartite graph. Conversely, EMS(Ka,n−a) = 2ρ1 = |ρn|+
√

ρ2
1. The second possibility is

that the modified Sombor spectrum of G is{
ρ1, 0, 0, . . . , 0, 0︸ ︷︷ ︸

n−3

,−ρn−1,−ρn

}
, (20)

and, in this case,

2ρ1ρn−1 = 2 ∑
1≤i<j≤n−1

|ρi| · |ρj| =
∣∣∣∣∣2 ∑

1≤i<j≤n−1
ρi · ρj

∣∣∣∣∣
= |2ρn(−ρn−1)| = 2ρ1ρn−1.

Next, we show that the spectrum given in (20) is the modified Sombor spectrum of
the complete tripartite graph. Let

{u1, u2, . . . , ua, v1, v2, . . . , vb, w1, w2, . . . , wc}

be the vertex labeling of the tripartite graph G ∼= Ka,b,c, (a + b + c = n). Under this labeling,
du1 = du2 = · · · = dua = b + c = n − a, dv1 = dv2 = · · · = dva = a + c = n − b, and
dw1 = dw2 = · · · = dwa = a + b = n− c, and the modified Sombor matrix of G can be
written as

AMS(G) =


Oa×a

1√
d2

1+d2
2

Ja×b
1√

d2
1+d2

3
Ja×c

1√
d2

1+d2
2

Jb×a Ob×b
1√

d2
2+d2

3
Jb×c

1√
d2

1+d2
2

Jc×a
1√

d2
2+d2

3
Jc×b Oc×c

, (21)

where O is the zero matrix, and J is the matrix of all ones. For i = 2, 3 . . . , a; j = 2, 3, . . . , b;
and k = 2, 3, . . . , c, consider the following vectors:
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Xi−1 =
(
− 1, xi2, xi3, . . . , xia, 0, 0, . . . , 0, 0︸ ︷︷ ︸

n−a

)
where xil =

1 if i = l

0 otherwise,

Yi−1 =
(

0, 0, . . . , 0, 0︸ ︷︷ ︸
a

,−1, yj2, xj3, . . . , xjb, 0, 0, . . . , 0, 0︸ ︷︷ ︸
c

)
where yil =

1 if j = l

0 otherwise,

Zi−1 =
(

0, 0, . . . , 0, 0︸ ︷︷ ︸
n−c

,−1, zk2, zk3, . . . , zkc

)
where zil =

1 if k = l

0 otherwise.

Clearly,

AX1 =
(

0, 0, . . . , 0︸ ︷︷ ︸
a

,
1√

d2
1 + d2

2

− 1√
d2

1 + d2
2

,
1√

d2
1 + d2

2

− 1√
d2

1 + d2
2

, . . . ,
1√

d2
1 + d2

2

− 1√
d2

1 + d2
2︸ ︷︷ ︸

b

,

1√
d2

1 + d2
3

− 1√
d2

1 + d2
3

,
1√

d2
1 + d2

3

− 1√
d2

1 + d2
3

, . . . ,
1√

d2
1 + d2

3

− 1√
d2

1 + d2
3︸ ︷︷ ︸

c

)
= 0X1.

Similarly, X1, X2, . . . , Xa−1, Y1, Y2, . . . , Yb−1, and Z1, Z2, . . . , Zc−1 are the eigenvectors
corresponding to the eigenvalue 0. Thus, 0 is the modified Sombor eigenvalue of G with
the multiplicity a + b + c− 3. The remaining three modified Sombor eigenvalues of G are
the eigenvalues of the following equitable quotient matrix (see Section 2.3 of [40])

AQ =


0 b√

d2
1+d2

2

c√
d2

1+d2
3

a√
d2

1+d2
2

0 c√
d2

2+d2
3

a√
d2

1+d2
2

b√
d2

2+d2
3

0

. (22)

The determinant of above matrix is

2abc√
4a2 + 4ab + 4ac + 4b2 + 4bc + 4c2

,

which is certainly positive. Moreover, since AQ has the positive determinant and Tr(AQ) =
0, the matrix AQ has one positive eigenvalue ρ1 (according to the Perron–Frobenius theorem)
and two negative eigenvalues ρn−1, ρn. Thus, the desired equality holds if and only if G is
the complete tripartite graph.

The graph obtained from Kω and Pl by adding an edge between any vertex of Kω

and an end vertex of Pl is denoted by PKω,l is known as a path complete graph or kite graph.
The pineapple graph P(ω, n−ω) is the graph obtained from Kω by attaching n−ω pendent
vertices to any vertex of Kω.

Tables 2 and 3 give the numerical values of the bounds on the modified Sombor energy
obtained in the present article.

From Table 2, for graphs with one positive modified Sombor eigenvalue, Corollary 2
gives a better upper bound, and, for general graphs, Theorem 2 (i) (the Koolen–Moulton-
type bound) gives a better upper bound. From Table 3 and with computational experiments,
we observe that Theorem 3.6 of Huang and Liu [16] gives a better lower bound for graphs
with a large diameter. Alternatively, for graphs with few positive modified Sombor eigen-
values and a small diameter, along with large independence and clique numbers, other
lower bounds in this article are better than that of Theorem 3.6 in [16].
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Table 2. Modified Sombor energy and the approximate values of the upper bounds obtained in this
article.

G ESO(G) Theorem 2 (i) Theorem 2 (ii) Theorem 3 Corollary 2
P14 6.38433 7.01418 7.04982 7.04982 NA

CS5,3 1.39101 1.66237 2.20814 2.56084 1.50819

K3,4,5 1.40331 2.39582 3.00054 3.14352 1.69421

PK3,9 5.29907 5.81504 5.8599 5.86874 NA

P(4, 3) 1.60161 2.03389 2.098059 2.19134 NA

K12 1.41422 1.41422 2.55841 3.33034 1.44457

Table 3. Modified Sombor energy and the approximate values of the lower bounds obtained in the
present paper and Theorem 3.6 of [16].

G ESO(G) Theorem 1 (i) Theorem 1 (ii) Theorem 4 Theorem 5 Theorem 3.6 [16]
P14 6.38433 1.36672 1.00712 2.66458 3.0726 5.80258

CS5,3 1.39101 1.37694 0.552036 1.10407 1.27336 0.967999

K3,4,5 1.40331 1.39786 0.50009 1.22496 1.40331 1.22496

PK3,9 5.29907 1.36923 0.976651 2.3923 2.76237 4.77683

P(4, 3) 1.60161 0.94144 0.599442 1.12145 1.29488 1.25262

K12 1.41422 1.41421 0.426402 1.04447 1.1028 0.805388

Next, we determine an inequality between EMS, E , and ESO for the case of the path
graph Pn of order n, where n ≥ 4. For this, we need the following result:

Lemma 1 ([44]). If U1 and U2 are square matrices of the order n, then

n

∑
i=1

σi(U1 + U2) ≤
n

∑
i=1

σi(U1) +
n

∑
i=1

σi(U2),

with equality if and only if there exists an orthogonal matrixM, such thatMU1 andMU2 are
both positive semi-definite.

Proposition 8. For n ≥ 4, if Pn is the path graph with n vertices, then

EMS(Pn) ≤ E(Pn) ≤ ESO(Pn)

Proof. The modified Sombor matrix of Pn can be written as

AMS(Pn) =
1

2
√

2
A(Pn) + R

where

R =



0 1√
5
− 1

2
√

2
0 . . . 0 0 0

1√
5
− 1

2
√

2
0 0 . . . 0 0 0

0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 1√

5
− 1

2
√

2
0 0 0 . . . 0 1√

5
− 1

2
√

2
0


.
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We note that 1
20

(
4
√

5− 5
√

2
)

is an eigenvalue of R with corresponding eigenvectors(
0, 0, . . . , 0, 1, 1

)
and

(
1, 1, 0, . . . , 0, 0

)
. Similarly, 1

20

(
5
√

2− 4
√

5
)

is another eigenvalue of R

with corresponding eigenvectors
(
− 1, 1, 0, . . . , 0, 0

)
and

(
0, 0, . . . , 0,−1, 1

)
. Moreover, 0 is

also an eigenvalue of R with the multiplicity n− 4. The absolute sum of the eigenvalues of
the symmetric matrix R equals 1

5
(
4
√

5− 5
√

2
)
, i.e.,

E(R) =
1
5
(
4
√

5− 5
√

2
)
≈ 0.374641.

Therefore, according to Lemma 1, we have

EMS(Pn) ≤
1

2
√

2
E(Pn) + E(R) ≈ 1

2
√

2
E(Pn) + 0.374641. (23)

Similarly, we have

AS(Pn) = 2
√

2A(Pn) + B,

where

B =



0
√

5− 2
√

2 0 . . . 0 0√
5− 2

√
2 0 0 . . . 0 0

0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0

√
5− 2

√
2

0 0 0 . . .
√

5− 2
√

2 0


.

The spectrum of B is
{
(
√

5− 2
√

2)[2], (2
√

2−
√

5)[2], 0[n−4]}. Therefore, according to
Lemma 1, we have

ESO(Pn) ≤ 2
√

2E(Pn) + E(B) ≈ 2
√

2E(Pn) + 2.36944.

Thus, we have

1
2
√

2
E(Pn) + 0.374641

<≈ E(Pn)
<≈ 2
√

2E(Pn) + 2.36944.

Example 1. The modified Sombor energy of P26 up to four decimal places is 11.7798, the energy of
P26 is 32.3969, and the Sombor energy of P28 is 89.6643. Alternatively, according to Proposition 8,
the upper bound for the modified Sombor energy of P19 is 22.9081, the upper bound for the Sombor
energy is 94.0017, and the bounds for the energy are 22.9081 ≤ E(P26) ≤ 94.0017.

3. Modified Sombor Equienergetic Graphs and Chemical Applicability of the
Modified Sombor Index/Energy

Two non-isomorphic graphs G1 and G2 of the order n that have the same energy/Sombor
energy/modified Sombor energy are known as equienergetic graphs/Sombor equiener-
getic graphs/modified Sombor equienergetic graphs, respectively. By using computer
programs (Mathematica and AutographiX), we found that there exists only one pair of
Sombor equienergetic graphs and only one pair of modified Sombor equienergetic graphs
among all chemical graphs of the order of at most seven. However, there are exactly three
pairs of equienergetic graphs among all chemical graphs of the order of at most seven. Two
pairs of equienergetic graphs, namely {C4, K1,3} and {G3, G4} (see Figure 2 and Table 4),
are neither Sombor equienergetic graphs nor modified Sombor equienergetic graphs. This
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gives the insight that Sombor equienergetic graphs and modified Sombor equienergetic
graphs are rare in comparison to equienergetic graphs.

Table 4. Approximate values of the energy, Sombor energy, and modified Sombor energy of the
graphs depicted in Figure 2.

Energy C4 K1,3 G1 G2 G3 G4

E(G) 4 4 9.62721 9.62721 7.72741 7.72741

ESO(G) 11.3137 16.4924 32.3713 32.3713 22.3639 27.5959

EMS(G) 1.41421 0.970143 2.90798 2.90798 2.74436 2.34164

C4 K1,3 G1

G2 G3

G4

Figure 2. Three pairs of equienergetic chemical graphs of the order of at most 7, namely {C4, K1,3},
{G1, G2}, and {G3, G4}. Among these three pairs, {C4, K1,3} and {G3, G4} are neither Sombor
equienergetic graphs nor modified Sombor equienergetic graphs.

Next, we carry the (linear, logarithmic, and quadratic) regression analyses for the
Sombor index, modified Sombor index, Sombor energy, and modified Sombor energy on
the class of all chemical graphs of the order of at most 7 to check their predictive abilities for
the case of boiling points. The data on the boiling points for the aforementioned chemical
graphs are taken from [45], and the other parameters are calculated by AutographiX [46].
Table 5 gives the correlation of the boiling points (Bp) with each of the following topo-
logical indices: the Sombor index, Sombor energy, modified Sombor index, and modified
Sombor energy.

Table 5. Correlation of the boiling points (Bp) with each of the following topological indices for the
case of all chemical graphs of the order of at most 7: Sombor index, Sombor energy, modified Sombor
index, and modified Sombor energy.

Bp vs. SO(G) Bp vs. ESO(G) Bp vs. mSO(G) Bp vs. EMS(G)

0.720862158 0.809447751 0.943525603 0.842522597

Table 5 suggests that the modified Sombor index is better correlated with the boiling
points than all of the other three considered topological indices. Moreover, the modified
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Sombor energy is the second-best predictor for the boiling points among the considered
indices. The scattering of Bp (boiling points) with each of the topological indices mSO
and EMS for the linear, logarithmic, and quadratic regressions along with the regression
equations and R2 (coefficient of determination), are shown in Figure 3.

Figure 3. The scattering of Bp (boiling points) with each of the topological indices mSO and EMS

for the linear, logarithmic, and quadratic regressions along with the regression equations and R2

(coefficient of determination).

Figure 3 and Table 6 indicate that the modified Sombor index mSO has a better coeffi-
cient of determination with the boiling points than that of the Sombor index SO in all three
regressions. Similarly, the coefficient of determination of the modified Sombor energy EMS
with the boiling points is better than that of the Sombor energy ESO in all three regressions.

Table 6. The coefficient of determination of the boiling points with the topological indices SO, ESO,
mSO, and EMS for the linear, logarithmic, and quadratic regressions.

Topological Index Linear Logarithmic Quadratic
SO 0.5196 0.3069 0.7136
ESO 0.6552 0.4624 0.8119
mSO 0.8902 0.8433 0.933
EMS 0.7098 0.6742 0.7746

4. Conclusions

Every weighted adjacency matrix has its own importance. The following facts seem to
be interesting to note about some particular weighted adjacency matrices:

• The energy of a graph cannot be an odd integer (Bapat and Pati [36]).
• The arithmetic–geometric energy of a graph can be any integer greater than one

(Zheng, Tian and Cui [37]).
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• The modified Sombor energy of every regular complete multipartite is
√

2. Thereby,
we obtain a large family of modified Sombor equienergetic graphs (see Corollary 1).

• The modified Sombor spectral radius of every regular graph is 1√
2

(see Proposition 2).

Moreover, we remark that there exists only one pair of Sombor equienergetic graphs
and only one pair of modified Sombor equienergetic graphs among all chemical graphs
of the order of at most seven. This gives the insight that Sombor equienergetic graphs
and modified Sombor equienergetic graphs are rare in comparison to equienergetic graphs
(there exists exactly three pairs of equienergetic graphs among all chemical graphs of
the order of at most seven). Furthermore, we remark that the modified Sombor index
and modified Sombor energy give a better correlation than their corresponding classical
versions with the boiling points of the chemical graphs of the order of at most seven;
this provides motivation to further study the topological indices defined via the modified
Sombor matrix.

The Sombor matrix (modified Sombor) and their corresponding indices are new topics
of research both in mathematics and theoretical chemistry. All of the linear algebraic
properties of these matrices have yet to be investigated, especially their spectral radii,
energies, norms, Estrada indices, eigenvalue distributions, and, most importantly, the
characterization of their extremal graphs. Similarly, the modified Sombor index is new, and
all interesting properties are unknown, specifically in the chemical modeling of alkanes.
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19. Cvetković, D.M.; Rowlison, P.; Simić, S. An Introduction to Theory of Graph Spectra; Cambridge University Press: Cambridge,

UK, 2010.
20. Filipovski, S.; Jajcay, R. Bounds for the energy of graphs. Mathematics 2021, 9, 1687. [CrossRef]
21. Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer: New York, NY, USA, 2012.
22. Lin, Z.; Deng, B.; Miao, L.; Li, H. On the spectral radius, energy and Estrada index of the arithmetic-geometric matrix of a graph.

Discrete Math. Algorithms Appl. 2022, 14, 2150108. [CrossRef]
23. Pirzada, S.; Rather, B.A.; Aouchiche, M. On eigenvalues and energy of geometric-arithmetic matrix of graphs. Medi. J. Math. 2022,

19, 115. [CrossRef]
24. Rather, B.A.; Aouchiche, M.; Imran, M.; Pirzada, S. On AG-eigenvalues of graphs. Main Group Met. Chem. 2022, 45, 111–123.

[CrossRef]
25. Rather, B.A.; Aouchiche, M.; Pirzada, S. On spread of geometric-arithmetic matrix of graphs. AKCE Int. J. Graphs Comb. 2022, 19,

146–153. [CrossRef]
26. Gowtham, K.J.; Swamy, N.N. On Sombor energy of graphs. Nanosyst. Phys. Chem. Math. 2021, 12, 411–417. [CrossRef]
27. Gutman, I. Spectrum and energy of Sombor matrix. Mil. Tech. Cour. 2021, 69, 551–561. [CrossRef]
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