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1 Copies of NMR spectra 

1.1 NMR spectra of novel starting materials 

1-ferrocenylazetidin-2-one (11) 
1H-NMR (500 MHz, d6-DMSO) 

 
13C-NMR (125 MHz, d6-DMSO) 
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1,2-dihydroferroceno[b]pyridin-4(3H)-one (12) 
1H-NMR (500 MHz, CDCl3) 

 

13C-NMR (125 MHz, CDCl3) 
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1H-13C-HMBC (500 MHz, CDCl3) 

 

 

1-benzyl-1,2-dihydroferroceno[b]pyridin-4(3H)-one (13) 
1H-NMR (400 MHz, d6-DMSO) 
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13C-NMR (100 MHz, d6-DMSO) 

 

 

1-(4-fluorobenzyl)-1,2-dihydroferroceno[b]pyridin-4(3H)-one (14) 

1H-NMR (400 MHz, d6-DMSO)  
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13C-NMR (100 MHz, d6-DMSO)  

 

 

1.2 NMR spectra of Tamoxifen analogues 

4,4'-((2,3-dihydro-1H-inden-1-ylidene)methylene)diphenol (23) 
1H-NMR (400 MHz, d6-DMSO) 
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13C-NMR (100 MHz, d6-DMSO) 

 

 

4,4'-((3,4-dihydronaphthalen-1(2H)-ylidene)methylene)diphenol (24) 
1H-NMR (400 MHz, d6-DMSO)  
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13C-NMR (100 MHz, d6-DMSO) 

 

 

4,4'-(chroman-4-ylidenemethylene)diphenol (25) 

1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 

 

 

4,4'-(thiochroman-4-ylidenemethylene)diphenol (26) 
1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 

 

 

4,4'-((1-methyl-1,5,6,7-tetrahydro-4H-indol-4-ylidene)methylene)diphenol (31) 
1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 

 

 

(4-hydroxyphenyl)(4-(4-hydroxyphenyl)-1-methyl-4,5,6,7-tetrahydro-1H-indol-4-yl)methanone (31a) 
1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 

 

 

4,4'-((1-acetyl-1,5,6,7-tetrahydro-4H-indol-4-ylidene)methylene)diphenol (32) 
1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 

 

 

4,4'-((1-methyl-1,5,6,7-tetrahydro-4H-indazol-4-ylidene)methylene)diphenol (33) 
1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 

 

 

4,4'-((3,4-dihydro-2H-ferroceno[a]benzo)methylene)diphenol (38) 

1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 

 

 

4-(bis(4-methoxyphenyl)methylene)-4,5,6,7-tetrahydro-1H-indole (43) 
1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 

 

 

3-(bis(4-methoxyphenyl)methylene)-2,3-dihydrobenzofuran (44) 

1H-NMR (500 MHz, CDCl3) 
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13C-NMR (125 MHz, CDCl3) 

 

 

2-(2-hydroxyphenyl)-3-(4-hydroxyphenyl)-1H-inden-6-ol (46) 
1H-NMR (500 MHz, d6-DMSO) 
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13C-NMR (125 MHz, d6-DMSO) 
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2 Electrochemical characterizations, experimental 

2.1 General information 

All electrochemical measurements were carried out at room temperature (23.0 ± 0.5 °C). The solutions were 

purged with oxygen-free argon (Linde 5.0) before use, and an inert gas blanket was maintained throughout the 

experiments. A Metrohm Autolab PGSTAT 302N potentiostat (controlled by the Autolab Nova Software) was used 

in cyclic voltammetric and impedance measurements. Cyclic voltammetry experiments were performed in a 

standard three-electrode cell arrangement in which a platinum wire (A = 8.1 mm2) in contact with acetonitrile 

solutions containing 0.1 M tetrabutylammonium perchlorate (Bu4NClO4) and 1 mM sample served as working 

electrode, and a platinum wire as counter electrode. An aqueous NaCl-saturated calomel electrode (SSCE) and the 

mid-point (half-wave) potential of the ferrocene/ferrocenium (Fc/Fc+) redox couple (as an internal reference 

system) were used as potential references for the measurement of the electrode potentials. The aqueous electrolyte 

solution in the SSCE and the acetonitrile solution at the working electrode were separated by a glass stopcock 

arrangement which effectively prevented mixing of the solutions. Cyclic voltammetric curves were recorded in the 

potential range of ‒1.80 V to 2.0 V vs. SSCE at v = 1 V/s sweep rate. All potentials in the figures showing the results 

of electrochemical experiments are referenced simultaneously to the ferrocene/ferrocenium redox couple and to 

SSCE. This type of representation was first introduced in [1]. The E1/2,Fc/Fc+ value with respect to SSCE was 

determined in acetonitrile solutions containing 0.1 M Bu4NClO4 supporting electrolyte (see Figure S1). The liquid 

junction potential was not corrected. The observed value (E1/2,Fc/Fc+ = (438 ± 5) mV vs. SSCE, see the caption in Figure 

S1) is in fairly good agreement with earlier results [2-4]. 

2.2 Electrochemical characterization 

As discussed in the experimental section, the E1/2,Fc/Fc+ value with respect to SSCE was determined in 

acetonitrile solutions containing 0.1 M Bu4NClO4 supporting electrolyte (see Figure S1). The liquid junction 

potential was not corrected. The value of E1/2,Fc/Fc+ is (438 ± 5) mV vs. SSCE. 

 

Figure S1. Cyclic voltammograms recorded at a platinum wire (A = 8.1 mm2) in contact with (A) 0.5 mM; (B) 

0.25 mM ferrocene + 0.1 M Bu4NClO4 in MeCN. v = 50 mV/s; E = 0.05 – 0.77 V vs. SSCE.  
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Peak potentials: 

(E vs. SSCE) / V  

0.5 mM (A) p
(A)
+ = 0.472 p

(A)
–  = 0.406 

0.25 mM (B) p
(B)
+  = 0.470 p

(B)
–  = 0.405 

 

It is interesting to note that the molecule 18 also contains a ferrocene moiety (see Fig.S2, insert A). In the 

cyclic voltammogram measured in the solution containing 18 (Fig.2 curve A) a peak pair can be observed around 

0.44 V vs. SSCE. This potential region closely coincides with the potential window where a characteristic redox 

peak pair can be found in solutions containing ferrocene (see Fig.S1 and Fig.S2 curve C). However, in the case of 

Fig.S2, curve A, the peak currents are smaller than expected (especially by taking into account that curve A and C 

in Fig.S2 were recorded at scan rates of v  = 1 V/s and v  = 0.05 V/s, respectively). In addition, the concentration of 

the ferrocene (Fig.S2 curve C) was half of the concentration of 18 (Fig.S2 curve A). On the other hand, in case of 38 

(which also contains a ferrocene like fragment) a peak pair at more negative potentials than 0.44 V vs. SSCE can be 

discovered (Fig.S2 curve B). The reason for the observed behavior might be related to the molecular structures of 18 

and 38. 

 

 

Figure S2. Cyclic voltammograms recorded at Pt (surface area A = 8.1 mm2) in contact with (A) 0.1 M Bu4NClO4 + 

1 mM 18 in MeCN; (B) 0.1 M Bu4NClO4 + 1 mM 38 in MeCN;  (C)  0.1 M Bu4NClO4 + 0.5 mM ferrocene in MeCN. 

Scan rate: (A-B) v = 1 V/s; (C) v = 0.05 V/s. 
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Figure S3. Cyclic voltammograms recorded at Pt (surface area A = 8.1 mm2) in contact with 0.1 M Bu4NClO4 + 1 

mM 1; 23; 24; or 25 in MeCN. Scan rate: v = 1 V/s. 

 

Figure S4. Cyclic voltammograms recorded at Pt (surface area A = 8.1 mm2) in contact with 0.1 M Bu4NClO4 + 1 

mM 26; 28; 31; or 31a in MeCN. Scan rate: v = 1 V/s. 
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Figure S5. Cyclic voltammograms recorded at Pt (surface area A = 8.1 mm2) in contact with 0.1 M Bu4NClO4 + 1 

mM 32; 33; 44; or 46 in MeCN. Scan rate: v = 1 V/s. 
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3 Cell culturing and cytostasis assay 

In vitro cytostatic effect was studied on MCF-7 [5] and MDA-MB-231 [6] human breast adenocarcinoma cells, 

A2058 human melanoma [7] and HT-29 human colorectal carcinoma [8] cell lines. MCF-7 and MDA-MB-231 ells 

were cultured in DMEM medium supplemented with 10% FBS, 2 mM L-glutamine, penicillin-streptomycin 

antibiotics mixture (50 IU/mL and 50 μg/mL, respectively), 1 mM sodium pyruvate and 1% non-essential amino 

acid mixture. A2058 and HT-29 cells were cultured in RPMI-1640 medium supplemented with 10% FBS, 2 mM L-

glutamine, penicillin-streptomycin antibiotics mixture (50 IU/mL and 50 μg/mL, respectively). The cultures were 

maintained at 37°C in a humidified atmosphere with 5% CO2. The cells were grown to confluency and 24 hours 

before the treatment, they were divided into 96-well tissue culture plates with the initial cell number of 5.0×103 

cells/well. The cells were treated with the compounds in 200 μL final volume containing 1.0 v/v% DMSO at 6.4×10-4 

– 50 μM concentration range overnight at 37°C, whereas control cells were treated with serum free medium only or 

with DMSO (c=1.0 v/v %) at the same conditions. After incubation, cells were washed twice with serum free 

medium. Following that, cells were cultured for further 72 hours in 10% serum containing medium at 37°C, then 

MTT-solution (at c=0.37 mg/mL final concentration) was added to each well. The respiratory chain [9] and other 

electron transport systems [10] reduce MTT and thereby form non-water-soluble violet formazan crystals within 

the cell [11]. The amount of these crystals can be determined by spectrophotometry and serves as an estimate for 

the number of mitochondria and hence the number of living cells in the well [12]. After 3 hours of incubation with 

MTT the cells were centrifuged for 5 minutes at 2000 rpm and then the supernatant was removed. The obtained 

formazan crystals were dissolved in DMSO (100 µL) and optical density (OD) of the samples was measured at = 

540 nm and 620 nm, respectively, using ELISA Reader (iEMS Reader, Labsystems, Finland). OD620 values were 

subtracted from OD540 values. The percent of cytostasis was calculated with the following equation: 

Cytostatic effect (%) = [1 ‒(ODtreated/ODcontrol)]×100 

where values ODtreated and ODcontrol correspond to the optical densities of the treated and the control wells, 

respectively. In each case two independent experiments were carried out with 4 parallel measurements. Cytostasis 

was plotted as a function of concentration, and the half maximal inhibitory concentration was calculated based on 

a sigmoid curve fitted on the data points using Microcal™ Origin2018 software. IC50 represents the concentration of 

a compound that is required for 50% inhibition expressed in micromolar units. 
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