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Abstract: Ceramic/polymer composite solid electrolytes integrate the high ionic conductivity of
in ceramics and the flexibility of organic polymers. In practice, ceramic/polymer composite solid
electrolytes are generally made into thin films rather than sintered into bulk due to processing temper-
ature limitations. In this work, Li6.4La3Zr1.4Ta0.6O12 (LLZTO)/polyethylene-oxide (PEO) electrolyte
containing bis(trifluoromethanesulfonyl)imide (LiTFSI) as the lithium salt was successfully fabri-
cated into bulk pellets via the cold sintering process (CSP). Using CSP, above 80% dense composite
electrolyte pellets were obtained, and a high Li-ion conductivity of 2.4 × 10−4 S cm–1 was achieved
at room temperature. This work focuses on the conductivity contributions and microstructural
development within the CSP process of composite solid electrolytes. Cold sintering provides an
approach for bridging the gap in processing temperatures of ceramics and polymers, thereby enabling
high-performance composites for electrochemical systems.

Keywords: cold sintering process; composite solid electrolytes; Li6.4La3Zr1.4Ta0.6O12; polyethylene-
oxide; conductivity

1. Introduction

Lithium-ion batteries have been successfully applied for a wide range of implementa-
tions, from grid-level energy storage to electric vehicles and personal electronic devices,
due to their long cycle life and high charge/discharge rate [1,2]. However, Li-ion batteries
that use combinations of organic liquids and lithium salts as electrolytes are flammable
and easy to decompose at high temperatures or high voltage [3–5]. All-solid-state batter-
ies potentially promise higher energy densities, eliminate safety concerns and provide a
broader operating voltage and temperature range compared to conventional liquid Li-ion
batteries [6–8].

A large number of solid-state electrolytes (SSEs) with high Li-ion conductivity have
been investigated in the past decade. SSEs can usually be divided into two major cate-
gories, inorganic solid electrolytes (ISEs) and solid polymer electrolytes (SPEs). ISEs mainly
include sulfide-based glass/ceramic (Li10GeP2S12 (LGPS) [6]), garnet-type (Li7La3Zr2O12
(LLZO) [9–11]), NASICON-type (Li1.3Al0.3Ti1.7(PO4)3 (LATP) [12,13]), perovskite-type
(Li0.34La0.56TiO3 (LLTO) [14,15]) and LiPON-type (Li3PO4) [16], which usually present
a high ionic conductivity and an excellent chemical and electrochemical stability [17,18].
However, the high interfacial resistance caused by the loose interfacial contact between
these inorganic solid electrolytes and the electrodes is still a big challenge [19]. Re-
cently, a large amount of research has focused on solid polymer electrolytes such as
poly(ethylene oxide) (PEO) [20], poly(vinylidene fluoride-hexafluoropropylene) (PVDF-
HFP) [21], poly(acrylonitrile) (PAN) [22], poly(methyl methacrylate) (PMMA) [23] and
various lithium salts [24,25] (bis(trifluoromethanesulfonyl) imide (LiTFSI) or LiClO4, etc.).
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SPEs generally exhibit good flexibility and high electrode-electrolyte interfacial compat-
ibility; however, they also have serious shortcomings, such as low ionic conductivity
(~10−5 S cm−1 at room temperature) and poor long-term stability, which severely limits
their practical applications. The limitations of these two electrolytes are expected to be
resolved by combining inorganic electrolytes with flexible polymers to fabricate composite
solid electrolytes [26,27].

Garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) materials are receiving increasing atten-
tion due to their high ionic conductivity (10−3 to 10−4 S cm−1), chemical compatibility
with lithium metal, and good mechanical, thermal, and electrochemical stability [28,29].
Poly(ethylene oxide) (PEO) polymer electrolytes were mixed with a lithium salt, such as
LiC2F6NO4S2 (LiTFSI), to create polymer lithium ion transport channels [30,31]. Further-
more, PEO and LiTFSI can combine with LLZTO to fabricate a ceramic/polymer composite
solid electrolyte. However, limited by processing temperature, ceramic/polymer composite
solid electrolyte was generally made into thin films rather than sintered into bulk pellets.
The traditional sintering temperature of the bulk pellets (~1000 ◦C) is much higher than
that the polymer electrolyte can withstand (<300 ◦C) [32]. Moreover, the traditional high-
temperature sintering process shows obvious deficiencies, including Li loss, impurity phase
formation, incompatibility with polymers, and high processing cost [33–35]. Hence, ad-
vanced sintering technologies are highly desired to prepare low-cost ceramic/polymer com-
posite solid electrolytes without compromising electrochemical/chemical performances.

The cold sintering process (CSP) offers a route to densify ceramics below 300 ◦C by
incorporating a transient solvent phase and uniaxial pressure into the sintering process [36–39],
which allows the co-sintering of ceramics with polymers for applications in SSEs [34]. CSP
refers to a multistage non-equilibrium thermodynamic chemo-mechanic process; particle
dissolution, mass transport, evaporation of the transient solvent, and precipitation. It provides
an approach for bridging the gap between ceramics and polymers, enabling the discovery,
design, and fabrication of new ceramic/polymer composite solid electrolytes.

Here, we propose a new route to synthesize ceramic/polymer composite solid electrolytes
using the CSP at 120–270 ◦C. LLZTO-PEOx-LiTFSI composites fabricated at 150 ◦C demonstrate
high relative densities above 80% and conductivities around 10−4 S cm−1 at room temperature,
which is comparable to the LLZTO bulks that were sintered above 1000 ◦C [40].

2. Results and Discussion

In the fabrication of the composite solid electrolytes, the deionized water acts as a liq-
uid phase moistening the interfaces of LLZTO particles, which may induce the dissolution–
precipitation process during the heating process of CSP. In addition, PEO-LiTFSI may
lubricate the interfaces of LLZTO particles to promote their rearrangement under applied
uniaxial pressure, thus creating more connections for mass transport in CSP. The densifi-
cation patterns of the cold-sintered LLZTO-PEOx-LiTFSI composite solid electrolytes are
shown in Figure 1a, and the density decreases from 86.9% to 74.1% with increasing PEO
content of PEO-LiTFSI. Figure 1b shows the relative density of LLZTO-PEO2-LiTFSI cold-
sintered at different temperatures. It is noted that the relative densities of the composite
electrolytes reach more than 80% from 120 ◦C to 270 ◦C. The maximum relative densities
(~89%) can be obtained as the cold sintering temperature increases to 270 ◦C.

The Nyquist plots of LLZTO-PEOx-LiTFSI composite electrolytes for evaluating the
ionic conductivity are shown in Figure 2a,b. (RgrainCPEgrain)(RgbCPEgb)Rel was fitted as
the equivalent circuit for all the Nyquist plots, where R and CPE are resistance and the
constant phase element, and Rgrai, Rgb, and Rel refer to the LLZTO grains, grain boundary,
and the electrode, respectively. In Figure 2b, two separate semicircles can be observed in
impedance spectra for the LLZTO-PEO2-LiTFSI composite electrolytes. The semicircle in
the high frequency could correspond to the ion motion in the ceramic grains (RgrainCPEgrain).
The semicircle in the low frequency could be attributed to the polymeric grain boundary
between the LLZTO ceramic grains (RgbCPEgb). The capacitors in the Huggins model were
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replaced with the constant phase element (CPE) to account for any dispersion in the time
constants [41,42]. The complex impedance response of a single CPE can be given by:

Z(ω) =
1

Q(jω)n (1)

where Z(ω) is the frequency-dependent impedance, ω is the frequency, j is the imaginary
operator, Q is a numerical value related to the capacitance, and n is the ideality coefficient
between 0 and 1. The capacitance values described with the CPE can be obtained from
Equation (2) [43,44]:

C = (Q × R1−n)
1/n

(2)

where C is the capacitance, and R is the resistance. From the individual capacitances of
the respective semicircles, the overall capacitance CTotal can be calculated further using
Equation (3) [43]:

1
CTotal

=
1

Cgrain
+

1
Cgb

(3)

where Cgrain and Cgb represent the capacitances of grains and grain boundary, and the
values of capacitance for the cold-sintered LLZTO composite electrolytes are shown in
Figure 2c, which fits the reported values for the grain (10−11 F) and the grain boundaries
(10−7 F) quite well [45].
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Figure 1. Relative density of (a) cold-sintered LLZTO composite electrolytes with different EO to Li 
molar ratios and (b) cold-sintered LLZTO-PEO2-LiTFSI composite electrolytes at different sintering 
temperatures. 
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Figure 1. Relative density of (a) cold-sintered LLZTO composite electrolytes with different EO
to Li molar ratios and (b) cold-sintered LLZTO-PEO2-LiTFSI composite electrolytes at different
sintering temperatures.

The ionic conductivity (σ) is calculated via Equation (4) [46]:

σ = L/(R·S) (4)

where S and L are the area and thickness of the electrolyte, respectively. R is obtained
by EIS measurement with symmetric cells of the electrolyte sandwiched by two copper
electrodes. In Figure 2d, the results show that the composite electrolyte with an EO/Li
ratio of 2:1 exhibits an optimal ionic conductivity (2.4 × 10−4 S cm–1). However, the ionic
conductivity of electrolytes decreased as more PEO was added to PEO-LiTFSI, and a similar
phenomenon was also presented in previous reports [47,48]. In Figure 2e, the lithium-ion
conductivity activation energy was calculated from the slope of the Arrhenius plot using
Equation (5):

σ = A exp(−Eα/kT) (5)

where σ is the conductivity, A is the pre-exponential parameter, Eα is the activation energy,
T is the absolute temperature, and k is the Boltzmann constant. It is found that activation
energies of the LLZTO composite electrolytes with varied PEO-LiTFSI are between 0.29 eV
and 0.39 eV, which is similar to values of pure or doped LLZTO [49–51]. Clearly, among all
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the samples, LLZTO-PEO2-LiTFSI shows the highest room temperature conductivity of
2.4 × 10−4 S cm−1 with the lowest activation energy of Eα = 0.29 eV, which indicated that
the incorporation of an appropriate PEO2-LiTFSI could improve the Li-ion transport in
cubic phase garnet LLZTO electrolyte.
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Figure 2. The Nyquist plots of (a) cold-sintered LLZTO-PEOx-LiTFSI composite electrolytes and
(b) cold-sintered LLZTO-PEO2-LiTFSI composite electrolyte with different sintering temperatures,
and the inset shows the equivalent circuit. (c) Capacitance versus cold sintering temperatures for
the individual R-CPE elements of LLZTO-PEO2-LiTFSI. (d) The ionic conductivity of cold-sintered
LLZTO-PEOx-LiTFSI composite electrolytes. (e) Arrhenius curves of cold-sintered LLZTO composites
with various EO:Li. (f) Cold-sintered LLZTO-PEO2-LiTFSI composite electrolyte with different
sintering temperatures.

Of special interest is that, although the electrolyte density increases with sintering
temperature, there is no significant improvement in the ionic conductivity, as shown in
Figure 2f. The fabrication of LLZTO-PEO2-LiTFSI in CSP, especially at a temperature
above 150 ◦C, may lead to chemical and physical changes in the polymer chains. Linus
Froboese [52] proposed that the polymer will be melted and degraded due to the high
temperature and excessive mechanical shearing. Additionally, recrystallization of the
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polymer may occur during CSP and result in a reduction in the amorphous polymer
regions, which suppresses the lithium-ion conductivity.

LLZTO-PEOx-LiTFSI samples cold-sintered at 150 ◦C, which present an optimal ionic
conductivity, were chosen for microstructure characterization. Figure 3 shows the X-ray
diffraction (XRD) patterns of the cold-sintered LLZTO-PEOx-LiTFSI (x = 1, 1.5, 2, 5, 8)
composite electrolytes. By comparison with the standard card LLZTO (PDF 45-0109), the
composite electrolytes show the standard cubic phase with garnet-type structure and good
crystallinity, which indicates that the addition of PEO and LiTFSI via CSP cannot change
the crystal structure of the LLZTO ceramic. The lattice parameters are extracted from
the Rietveld refinement results of XRD patterns for LLZTO-PEOx-LiTFSI, as shown in
Figure S1 (Supplementary Materials). The lattice constant is about 12.96 Å, similar to the
reported values [53,54], and it seems that the lattice constants are not affected by the doped
PEOx-LiTFSI during the CSP.
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Figure 3. XRD patterns of different EO to Li molar ratios for cold-sintered LLZTO composite electrolytes.

Two reflection peaks of PEO within 18–25◦ are observable in PEOx-LiTFSI, as shown
in Figure 3, but the two peaks cannot be observed in ceramic-rich LLZTO-PEOx-LiTFSI
composites. In addition to these peaks, a small amount of Li2CO3 was detected in the com-
posite electrolyte because the LLZTO may react with CO2 in the air during the electrode’s
preparation and the EIS test. Figure S2 (Supplementary Materials) presents the Raman
spectra of the air-exposed LLZTO-PEO2-LiTFSI, and characteristic peaks associated with
the vibration of C-O-C, O-C-C, and C-C of PEO and the vibration of TFSI− in LiTFSI can
be checked at 278.1 and 740.7 cm−1, respectively. Li2CO3 was also found in the Raman
spectra; however, after the surface (0.02 mm in thickness) of the sample was polished, only
a very small peak related to Li2CO3 can be observed, indicating that Li2CO3 on the surface
of the sample can be easily removed by polishing.

It is of great importance to optimize the homogeneity of polymers and Li salt in the
ceramic/polymer composite solid electrolytes, which are primordial to accurately elaborate
the microstructure/properties relationship. Backscattered electron (BSE) images of fracture
cross sections of LLZTO-PEOx-LiTFSI composite electrolytes with different EO to Li molar
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ratios are shown in Figure 4a–e. The LLZTO-PEO1-LiTFSI sample is porous with worm-like
grains and rough grain surfaces in Figure 4a. With a slight increase in molar ratios of EO
to Li, the polymer content between the crystals increases, showing a flake-like connection
in LLZTO-PEO1.5-LiTFSI (Figure 4b). In Figure 4c, it can be found that the polymers are
uniformly distributed between grains, forming a conductive bridge that builds a continuous
Li+ transport pathway through the LLZTO grain and ensures sufficient void space to load
the PEO/LiTFSI polymer electrolyte. Seo, J. H. et al. [55] reported that the polymer–salt
bridge acting as an ionic transport could be formed at the interfaces between the grains
in the highly densified electrode and the solid electrolyte. As the molar ratio of EO to Li
continues to increase, excessive PEO content will lead to the segregation of the polymer
(Figure 4d,e), which is unfavorable to the transmission of Li+ between bulk LLZTO particles.
Corresponding to the results of densities, excessive polymer leads to a reduction in the
density of the composite electrolyte, which results in larger pores between the particles.
Furthermore, Figure 4f shows that there is a slight grain growth with small molar ratios
of EO to Li, which can be ascribed to the possible mechanism that Li was preferentially
dissolved in the aqueous solution in an incongruent dissolution process and promoted
grain growth, similar to the case of LLZO [56]. However, when the value of EO:Li further
increases, the high polymer (PEO) content may be aggregated between LLZTO grains,
which will block the mass transport and suppress the grain growth [55]. Therefore, a
suitable grain size is usually required to ensure stronger grain–grain contacts for improved
electrical conductivity.
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Figure 5 shows EDS mapping of cold-sintered LLZTO-PEO2-LiTFSI composite elec-
trolytes cold-sintered at 150 ◦C, reflecting the distribution of the elements. The F element
from the LiTFSI salt and the C element from the PEO are evenly distributed, as shown
in Figure 5b,c, suggesting that the LiTFSI salt is dissolved well in the PEO matrix. It can
likewise be seen that the La, Zr, and Ta elements in the LLZTO ceramic are uniformly em-
bedded in the PEO network, and this structure is favorable to aiding lithium-ion transport.
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A possible ionic transport mechanism in the cold-sintered LLZTO composite elec-
trolytes is proposed and illustrated in Figure 6. Two possible lithium-ion transport path-
ways may be available in the composite electrolyte as follows: (1) the lithium-ion transport
channel through the inorganic LLZTO electrolyte and (2) the ion conduction along the amor-
phous polymer grain boundaries between LLZTO grains. The LLZTO bulk can transfer Li
ions, while the dissolution of LiTFSI in the PEO aids the lithium ions’ transport through
the amorphous area between LLZTO grains. Some other studies pointed out that the amor-
phous area between ceramic grains plays a major role in improving ion conductivity [57,58].
Lewis proposed that the acid–base interaction between ceramic and anion promotes the
dissociation of lithium salt, thus increasing the concentration of mobile lithium ions in the
amorphous-rich area to enable fast Li+ transport. However, some experimental evidence
proves that Li+ prefers to move through the garnet phase in PEO-based composite elec-
trolytes [59,60]. Although it is still controversial which pathway is the dominant one for
Li+ transport, the enhancement of ionic conductivity in LLZTO composite electrolyte can
be attributed to the synergy of the two pathways.
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3. Materials and Methods
3.1. Materials Preparation

PEO (Mw = 5,000,000) and Acetonitrile were purchased from Sigma-Aldrich (Shanghai)
Trading Co., Ltd. (Shanghai, China) and dried under a vacuum oven at 50 ◦C for 24 h.
LiTFSI was purchased from Sigma-Aldrich, dried at 100 ◦C for 12 h, and kept in a glove box
filled with Ar atmosphere. The garnet LLZTO was purchased from Hefei Kejing Material
Technology Co., Ltd. (Hefei, China). PEO and LiTFSI were dissolved in Acetonitrile at
different molar ratios of EO:Li, and the Acetonitrile was stirred using a magnetic stir bar
at 75 ◦C, as shown in Figure 7. The stirring rate was set to 400 r·min−1, and the stirring
time was 2 h. Afterward, the LLZTO powder was added to the uniformly mixed PEO-
LiTFSI solution. The EO to Li molar ratios were set around 1, 1.5, 2, 5, and 8, and the
content of LLZTO powders was 90 wt%. Then, the mixture was stirred at 75 ◦C for 8 h
with a rate of 300 r·min−1. Finally, the mixture was dried at 100 ◦C for 12 h to obtain the
precursor powder.
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3.2. Cold Sintering Process

The precursor powder was wetted and ground with deionized water using a mortar and
pestle for ten minutes and then transferred into a stainless-steel die (inner diameter of 12.7 mm)
with polypropylene (PP) separators between the powder and the punch. The die was then
heated using a loop heater, stuck together with a thermocouple, and loaded into a hydraulic
press. The mixture powder in the die was cold-sintered at 120–270 ◦C with a heating rate of
10 ◦C per minute for 1 h under an assisted uniaxial pressure of 300 MPa via CSP.

3.3. Sample Characterization

The density of the sintered pellet was measured by weight and volume, and the
Archimedes method in ethanol and the relative density can be calculated with the
following equation:

dr = ρm/ρt (6)

where dr is the relative density of LLZTO-PEOx-LiTFSI composite solid electrolytes, and ρm
and ρt are the measured density and the theoretical density of the electrolytes, respectively.
Structures of the samples were characterized by X-ray diffraction with Cu Kα radiation
(Rigaku Ultima IV). The scanning of 2θ angles ranged from 7◦ to 70◦ with a step of 0.026◦.
Morphology and elementary mapping were obtained using a ZEISS Sigma 300 scanning
electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and a
backscattered electron (BSE) detector.

The samples were polished with sandpaper, and Au was sputtered on both sides
of the sample as electrodes for electrical measurements. The electrochemical impedance
spectroscopy (EIS, Concept 80 Novocontrol) from 25 ◦C to 300 ◦C was measured in the
frequency range of 0.1 Hz–10 MHz. EIS fitting was conducted using ZView software
(Scribner Associates, Southern Pines, NC, USA).
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4. Conclusions

In summary, LLZTO-PEOx-LiTFSI (x = 1, 1.5, 2, 5, and 8) solid electrolytes with
different EO to Li molar ratio doping were prepared by CSP at 120–270 ◦C using deionized
water as the auxiliary liquid phase. The effects of different EO to Li molar ratios on the
physical phase, microstructure, and electrochemical properties of LLZTO solid electrolytes
were investigated. The experimental results show that the relative density of cold-sintered
LLZTO-PEOx-LiTFSI composite electrolytes can reach about 90%, and the doped PEO and
LiTFSI exist in LLZTO as a network structure. The highest ionic electrolyte conductivity
above 10−4 S cm−1 was achieved for LLZTO-PEO2-LiTFSI cold-sintered at 150 ◦C. The
incorporated PEO-LiTFSI increases the ionic conductivity and enhances the electrochemical
properties of LLZTO. This facile and low-cost CSP method provides a novel route for the
fabrication of ceramic/polymer composite electrolytes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196756/s1, Figure S1: (a) Rietveld refinement results
of XRD patterns for LLZTO-PEOx-LiTFSI, (b) Lattice constants of the cold-sintered LLZTO composite
electrolytes; Figure S2: (a) Typical Raman spectra of the air-exposed LLZTO-PEO2-LiTFSI sample
before and after being polished, Raman mapping images of the (b) air-exposed LLZTO-PEO2-LiTFSI
before being polished and (c) after being polished.
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