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Abstract: In this study, a series of coumarin derivatives, either alone or as hybrids with cinnamic
acid, were synthesized and evaluated for their cytotoxicity against a panel of cancer cells using the
MTT assay. Then, the most active compounds were inspected for their mechanism of cytotoxicity by
cell-cycle analysis, RT-PCR, DNA fragmentation, and Western blotting techniques. Cytotoxic results
showed that compound (4) had a significant cytotoxic effect against HL60 cells (IC50 = 8.09 µM),
while compound (8b) had a noticeable activity against HepG2 cells (IC50 = 13.14 µM). Compounds (4)
and (8b) mediated their cytotoxicity via PI3K/AKT pathway inhibition. These results were assured
by molecular docking studies. These results support further exploratory research focusing on the
therapeutic activity of coumarin derivatives as cytotoxic agents.

Keywords: coumarin derivatives; MTT assay; apoptosis; PI3K/AKT; docking; drug discovery;
industrial development

1. Introduction

Cancer is the world’s most important cause of premature death from non-communicable
diseases [1]. Cancer is marked as an uncontrolled growth of abnormal cells due to dysfunc-
tion in apoptotic machinery [2–4]. Acute myeloid leukemia (AML) is the most common
acute leukemia in adults and the second most popular type of leukemia in children. AML is
distinguished by its poor prognosis and overall long-term survival for patients, despite cur-
rent advances in cancer treatment [5]. The limited success of AML treatments, particularly
in elderly patients, originates from the high toxicity of chemotherapeutic agents, as well as
the heterogeneity of the disease [6]. On the other hand, Hepatocellular carcinoma (HCC) is
an aggressive tumor that is the predominant primary liver malignancy. HCC is the second
leading cause of cancer-related mortality and is characterized by its poor prognosis and
high resistance to conventional chemotherapies [7]. According to WHO, liver cancer is the
most common malignancy among Egyptians, with incidence and mortality rates of 19.7%
and 29.4%, respectively [8].
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Most chemotherapeutic drugs stimulated apoptotic cell death via the regulation of
Bcl-2 family proteins. These proteins play an essential role in activating caspases and, hence,
apoptosis induction [9,10]. Protein kinases play an important role in oncogenesis and are
recognized as promising targets as antineoplastic agents. Numerous kinase inhibitors have
been approved for clinical practice [11]. The PI3K/AKT signaling pathway is of vital impor-
tance in cell survival and growth [12]. PI3K/AKT pathway can regulate the activity of Bcl-2
family members and, consequently, is linked to the regulation of intrinsic apoptosis [13].
Furthermore, PI3K/AKT pathway inhibition can lead to cell-cycle arrest [14]. Therefore,
PI3K/AKT pathway inhibition is a luminous target for treating human cancer [15].

Natural products are an imminent rich source of drug leads with diverse bioactivities,
including anti-cancer agents [16]. For example, TIR-199, an immunoproteasome inhibitor
of the syrbactin-class obtained from the bacterium Pseudomonas syringae pv syringae ex-
hibited potant cytotoxicity in multiple myeloma, triple-negative breast cancer, (TNBC)
and non-small cell lung cancer lines. Moreover, in a mouse xenograft model, small doses
of TIR-199 displayed in vivo antitumor activity by attenuating myeloma-mediated bone
degeneration [17].

Natural and synthetic coumarins have attracted intense interest in research as inno-
vative and selective anti-cancer agents [18]. The 2H-chromen-2-one (coumarin) was first
isolated in 1820 by Vogel from Tonka beans [19]. Coumarins are present in considerable
amounts in cinnamon and several edible plants [20,21] and widely distributed in two plant
families: Umbelliferae (Apiaceae) and Rutaceae [22]. Coumarins exhibit a diverse range of
pharmacological activities such as anti-HIV [23], antitumor [24], antihyperlipidemic [25],
and antihypertensive [26]. Their diverse pharmacological activities brought this class of
natural products to the forefront. The design of coumarin skeleton substitutions has a major
influence on their therapeutic applications [27].

Coumarins exert their anti-cancer activity through different mechanisms, either by
telomerase and protein kinase inhibition [28,29], oncogene expression down-regulation [29],
or by apoptosis-induction via activating caspase 9 levels. Researchers have also shown
that coumarins can suppress the proliferation of cancer cells by arresting cell cycles at
G0/G1 [28] and G2/M phases [30] and through P-gp inhibitors in cancer cells [31]. Hydrox-
ycoumarins have also been reported to perform their anti-cancer activities by generating
free radical species in cancer cells that generate oxidative stress and trigger a pro-apoptotic
effect [32]. The δ-lactone coumarin ring has been demonstrated to be of fundamental
importance for both the production and stabilization of these species and for the pro-
apoptotic action of hydroxycoumarins [32]. Furthermore, 7-hydroxycoumarin derivative
antiproliferative activity could be due to its effect on cancer cells with mitochondrial thiol
compounds [31].

7-Hydroxy-4-methylcoumarin (4-methylumbelliferone, 4-MU) is a naturally occur-
ring antitumor coumarin obtained from several Apiaceae plants [33] and reported in
Cassia cinnamon [34]. 4-MU is known to inhibit the synthesis of hyaluronic acid, which
promotes tumor growth and progression [35]. Therefore, 4-MU acts as an effective chemo-
preventive and therapeutic agent for pancreas, renal cell, prostate, ovarian, and breast
cancers [20,36]. Thus, the O-substituted derivatives of 7-hydrox-4-methylcoumarins have
attracted great attention in recent years. For example, the Prateeptongkum team has synthe-
sized a series of combined 7-hydroxy-4-methylcoumarin II with different aryl hydrazide–
hydrazones and screened them for their anti-cancer activity. Based on their results, com-
pounds III and IV showed potent cytotoxic activity against HepG2 with IC50 values of
2.84 ± 0.48 µg/mL and 4.67 ± 0.78 µg/mL, respectively, compared to the standard dox-
orubicin (IC50 = 2.11 ± 0.13 µg/mL) [37]. The Viola group reported the synthesis of some
modified analogs of geiparvarin (natural coumarin) and their biological assay against
several human tumor cell lines. The new derivative V strongly induced apoptotic cell death
in a promyelocytic leukemia cell line (HL60) with a GI50 value of 0.5 ± 0.02 µM [38]. In
another study, Trykowska Konc et al. synthesized and evaluated 4-methyl coumarin deriva-
tives as anti-cancer agents. Compound VI was found to be the most potent and inhibited
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the growth of leukemia CCRF-CEM (GI = 62.71 × 10−5 M), non-small-cell lung cancer
HOP-92 (GI = 23.78 × 10−5 M), and colon cancer HCC-2998 (GI = 34.14 × 10−5 M) [39]
(Figure 1).
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Cinnamomum (cinnamon) is a genus belonging to the family Lauraceae. There are
two main varieties of cinnamon: Cinnamon zeylanicum (Ceylon cinnamon) and Cassia
cinnamom (Chinese cinnamon) [40,41]. Cinnamon was reported to possess numerous
pharmacological activities such as antidiabetic, anti-Alzheimer, and antibacterial [40].
In addition, several biological investigations have proved the antiproliferative activity
of the cinnamon extract against different malignant cells, including breast, lung, and
ovarian carcinomas and leukemia [42,43]. These biological effects may have originated from
cinnamon phytochemicals, mainly the volatile oil. The essential oil of Cassia cinnamon bark
contains about 80–90% of cinnamaldehyde and a very little amount of eugenol, while that
of Cinnamomum zeylanicum bark contains a lower amount of cinnamaldehyde (60–80%) and
a considerable amount of eugenol [40]. It is noteworthy to mention that cinnamaldehyde
exhibited an apoptotic effect on HepG2 with an IC50 value of 9.76 ± 0.67 µM and the HL60
cancer cell line [41,43].

Cinnamic acid is another component of cinnamon bark used as a fragrance and
medicine. Cinnamic acid and its derivatives, either isolated from plant sources or syn-
thesized, have received increasing attention due to its antioxidant, antiproliferative, and
antiangiogenic activities [44]. The presence of a ubiquitous α- and β-unsaturated acid
moiety characterized by its potential therapeutic effects as an anti-cancer agent enabled
cinnamic acid derivatives acting on cancerous cells by various mechanisms of action. There-
fore, these compounds are critical scaffolds in discovering novel anti-cancer agents [45].

The most efficient approaches to find lead compounds with remarkable biological
activity is either the structural modification of biologically active natural products [38] or
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molecular hybridization to obtain a hybrid with better pharmacological activity. Based on
these two approaches, several effective compounds have been developed to date wherein
the final compounds had multiple pharmacophores with various binding affinities in
different receptors [46,47].

Based on the aforementioned benefits, our aim was to synthesize coumarin derivatives
and coumarin–cinnamic acid hybrids relying on the fundamental anti-cancer potentials of
two bioactive scaffolds: 7-hydroxy-4-methylycoumarin and cinnamic acid (Figure 2), and to
explore the cytotoxic activity of the synthesized derivatives on a panel of cancer cells. With
an emphasis on HL60 and liver HepG2 cancer cell lines, the most active compounds were
investigated for their inhibition of the PI3K/AKT pathway by gene and protein expression
levels to prove and finally by the in-silico studies to confirm the mechanism of action.
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2. Results and Discussion
2.1. Chemistry

The synthetic steps of the target compounds are explained in Scheme 1. Full IR, 1H
NMR, 13C NMR, and mass spectroscopic analyses were used to confirm the structures and
purity of all synthesized compounds. First, the synthetic procedures started with the cyclo-
condensation of resorcinol (1) and ethyl acetoacetate (2) in the presence of concentrated
sulfuric acid as a catalyst to give 7-hydroxy-4-methylcoumarin (3) [48]. After that, the
halogenation of compound (3) with bromine in glacial acetic acid led to a substitution
reaction at positions 3, 6, and 8 to give 7-hydroxyl-3,6,8-tribromo-4-methylcoumarin (4),
which was confirmed by comparing its NMR data with the literature values [49].

Cinnamic acid (6) is present in cinnamom bark (Cassia cinnamon) but in smaller
amounts compared to cinnamaldehyde (5), which constitutes about 80–90% of Cassia
cinnamon essential oil; hence, cinnamaldehyde could be easily isolated in considerably large
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amounts sufficient for chemical reactions. The essential oil of the bark was obtained by the
hydro-distillation of cinnamon bark [50]. Cinnamadehyde was separated in the form of a
sodium bisulfite additive product, then recovered by treatment with diluted HCl, followed
by extraction with methylene chloride [51]. The aldehydic group was checked by testing
with Schiff’s reagent. The structure of compound (5) was confirmed by co-chromatography
with a standard sample of cinnamadehyde on precoated silica gel TLC plates developed
by toluene: ethyl acetate (93:7 v/v) [52] and comparing its NMR values with the literature
data [53]. Cinnamic acid (6) was obtained via the oxidation of its subsequent cinnamalde-
hyde (5) using the method adopted by Chakraborty and coworkers [54]. The structure of
compound (6) was identified by comparing its NMR data with that reported for cinnamic
acid [55]. Finally, (2E)-4-methyl-2-oxo-2H-chromen-7-yl cinnamate (8a) and (2E)-3,6,8-
tribromo-4-methyl-2-oxo-2H-chromen-7-yl cinnamate (8b) were synthesized in good yields
by two steps. The first step involved the reaction of cinnamic acid with thionyl chloride,
followed by the reaction of the resulting cinnamoyl chloride (7), with compounds (3) and
(4), respectively, in an aqueous solution of sodium hydroxide [56]. This was confirmed
by the appearance of stretching bands of C-H olefinic of compounds (8a) and (8b) in the
IR spectra and by the disappearance of phenolic hydroxyl stretching of compounds (3)
and (4). The 1H NMR of compound (8a) exhibited two singlet signals; one of them was
for the methyl group at δ (ppm) 2.35, and the other was for the proton at position 3 in the
coumarin ring at δ (ppm) 6.11. In addition, the 1H NMR of compound (8a) showed signals
of the protons of the phenyl moiety, coumarin ring and olefinic moiety as multiplets in the
expected region of δ (ppm) 6.50–7.68.

The 13C NMR spectrum of compound (8a) showed the presence of two new carbon
signals at δ (ppm) 168.24 and 161.43, due to the carbons of C=O and C-O groups, verifying
the formation of compound (8a). The carbon signals of the coumarin, phenyl, and olefinic
groups were observed through the expected chemical shift region at δ (ppm) 161.00–102.00.
Carbon of the methyl group demonstrated a signal at δ (ppm) 18.52.

Concerning compound (8b), the 1H NMR spectrum showed the presence of two
characteristic singlet signals at δ (ppm) 2.58 and 8.04 related to the protons of methyl
group at position 4 and H-5 of the coumarin ring, respectively. The signals of aromatic
and olefinic protons were observed through the expected chemical shifts in the region at
δ (ppm) 6.49–7.67 and exhibited the expected integral values. The 13C NMR spectrum
exhibited the occurrence of characteristic carbon signals at δ (ppm) 167.91 and 156.09
corresponding to C=O and C-O moieties, respectively. The carbon signals of coumarin and
phenyl rings resonate at their usual positions (see experimental section). Moreover, the 13C
NMR spectrum showed signals in the region at δ (ppm) 99.88 and 19.99 ppm, assigned to
an olefinic carbon and a methyl group.

The halogenation of (2E)-4-methyl-2-oxo-2H-chromen-7-yl cinnamate (8a) with bromine
in glacial acetic acid led to the formation of (2E)-3-bromo-4-methyl-2-oxo-2H-chromen-7-yl
cinnamate (8c). The 1H NMR spectrum of compound (8c) showed the absence of the
singlet signal at δ (ppm) 6.12 corresponding to H-3 of the coumarin ring, which appeared
in compound (8a) clearly confirming the formation of compound (8c). In the 1H NMR
spectrum of compound (8c), methyl protons resonated as singlet signals at δ (ppm) 2.55.
The remaining proton signals were observed in the expected regions.

The 13C NMR spectrum of compound (8c) showed the presence of the characteristic
carbon signal of the methyl group at δ (ppm) 19.77, which appeared in compound (8a) at
δ (ppm) 18.52.
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2.2. In Vitro Biological Evaluation
2.2.1. Cytotoxic Screening against a Panel of Cancer Cell Lines

Cytotoxic activities of the synthesized derivatives were screened against leukemia
(HL60), liver (HepG2), breast (MCF-7), and lung (A549) cancer cell lines and non-cancerous
THLE2 and WISH cells at different concentrations [0.01–100 µM] for 48 h using the MTT
assay (Table 1). Among the tested compounds, compound (4) exhibited cytotoxic effect
against HL60, MCF-7, and A549 cancer cells, with IC50 values of 8.09, 3.26, and 9.34 µM,
compared to staurosporine (IC50 = 7.48, 3.06, and 3.7 µM), respectively. While compound
(8b), demonstrated cytotoxicity on HepG2, MCF-7, and A549 cancer cell lines with IC50
values of 13.14, 7.35, and 4.63µM, respectively, in comparison to staurosporine (IC50 = 10.24,
3.06, and 3.7 µM). Since compounds (4) and (8b) displayed the lowest IC50 values on the
tested cancer cell lines and since our study was concerned with leukemia and liver cancer,
these compounds (4) and (8b) were chosen for additional studies to investigate their mode
of cytotoxicity on HL60 and HepG2 cancer cells, respectively.

Table 1. Summary of the IC50 (µM) values of the tested derivatives against a panel of cancer cells.

Compound No.
IC50 (µM) ± SEM *#

Leukemia
Cancer HL60

Liver Cancer
HepG2

Breast Cancer
MCF-7

Lung Cancer
A549

Normal Liver
THLE2

Normal WISH
Cells

3 42.55 ± 0.22 95.65 ± 1.13 29.3 ± 1.02 16.5 ± 1.98 - -

4 8.09 ± 0.13 71.3 ± 1.52 3.26 ± 0.12 9.34 ± 0.34 116.6 ± 3.34 89.6 ± 2.34

6 88.21 ± 0.51 36.58 ± 0.19 28.6 ± 0.91 27.6 ± 1.95 - -
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Table 1. Cont.

Compound No.
IC50 (µM) ± SEM *#

Leukemia
Cancer HL60

Liver Cancer
HepG2

Breast Cancer
MCF-7

Lung Cancer
A549

Normal Liver
THLE2

Normal WISH
Cells

8a 34.8 ± 0.64 75.2 ± 1.39 39.3 ± 1.69 19.6 ± 0.89 - -

8b 68.95 ± 2.14 13.14 ± 0.22 7.35 ± 0.67 4.63 ± 0.16 86.5 ± 2.16 96.8 ± 3.21

8c 48.1 ± 0.88 17.4 ± 0.19 67.3 ± 2.03 24.3 ± 0.37 124 ± 2.12 -

Staurosporine 7.48 ± 0.11 10.24 ± 0.16 3.06 ± 0.42 3.7 ± 0.09 73.2 ± 2.8 69.7 ± 2.4

* Values are mean ± SEM of three independent replicates. # “IC50 values are calculated through EXCEL using a
non-linear regression curve fit of sigmoidal dose–response inhibition”.

2.2.2. Investigation of Apoptotic Pathway
Flow Cytometric Analyses

FITC/Annexin-V-FITC/PI differential apoptosis/necrosis and DNA content-flow
cytometry-aided cell-cycle analyses.

The apoptosis-inducing activity of compounds (4) (IC50 = 8.09 M, 48 h) and (8b)
(IC50 = 13.14 M, 48 h) was investigated in HL60 and HepG2 cancer cells using cell-cycle
analysis with cell populations at various stages of the cycle. After treatment with cytotoxic
substances, the percentage of cells in each growth phase can be determined by investigating
the cell cycle.

Figure 3A shows that compound (4) significantly increased the death of leukemia
cancer cells through apoptosis 9.2-fold (16.47% compared to 1.79% for the control). It
also slightly induced necrosis-mediated cell death by 2.43-fold (2.31%, compared to 0.95%
for the control). In addition, DNA flow cytometry was used to examine the cell-cycle
kinetics of HL60 cancer cells treated with compound (4) to determine the compound’s
phase interference with the cell cycle. It increased the G2/M cell (36.7%, compared to 14.5%
for control) and pre-G1 (16.47%, compared to 1.79% for the control) population, and it
decreased the cell population in the G0/G1 (37.89% compared to 55.62% for control).

Figure 3B shows that compound (8b) had a 6.88-fold effect on apoptotic liver cancer
cell death (12.59%, compared to 1.83% for the control). Furthermore, it slightly induced
necrosis-mediated cell death by 1.66-fold (1.59%, compared to 0.96% for the control). DNA
flow cytometry was used to examine the phase-interface kinetics of the compound (8b)
with the cell cycle after treatment with HepG2 cancer cells. It increased the G2/M cell
(26.05%, compared to 12.34% for control) and pre-G1 (12.56%, compared to 1.71% for the
control) population, and it decreased the cell population in the G0/G1 (42.53% compared
to 53.6% for control).

Due to the cell-cycle arrest at G2/M, both compounds (4) and (8b) were able to inhibit
the progression of HL60 and HepG2 cancer cells, which may be due to the induction of
apoptosis by cell-cycle arrest at G2/M that degrades the genetic material.
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ent cell-cycle phases. 
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triggered and subsequently generated. The effector caspase activity has been evaluated 
to determine the apoptotic pathway initiated by the tested compounds using the “Cell 
Event™ Caspase 3/7 Green Detection kit”. As seen in Figure 4, compound (4) induced a 
higher percentage of HL60 cancer cell death via apoptosis, with a percentage of 11.02% 
than the untreated cells, 1.47%. Similarly, compound (8b) induced a higher percentage of 
apoptosis cells in HepG2 cells, with a percentage of 6.09%, than the untreated cells at 
1.32%. Compounds (4) and (8b) showed that the apoptosis of cells was triggered by the 
activation of effectors 3 and 7 caspases. 

Figure 3. Cytogram showing annexin-V/propidium-iodide-stained “Quadrant charts show Q2-1
(necrotic cells, AV−/PI+), Q2-2 (late apoptotic cells, AV+/PI+), Q2-3 (normal cells, AV−/PI−), Q2-4
(early apoptotic cells, AV+/PI−)” and the cell-cycle distribution of both untreated and treated HL60
treated with compound 4 (IC50 = 8.09 µM, 48 h, A) and HepG2 cells treated with compound 8b
(IC50 = 13.14 µM, 48 h, B), with a bar chart representation of cell-population percentages in different
cell-cycle phases. ***: p < 0.001.

Determination of Caspases 3/7 Activity

Apoptosis is a form of cell death programmed by the family of cysteine protease.
In response to the various cell death stimuli, a large irreversible proteolytic cascade is
triggered and subsequently generated. The effector caspase activity has been evaluated
to determine the apoptotic pathway initiated by the tested compounds using the “Cell
Event™ Caspase 3/7 Green Detection kit”. As seen in Figure 4, compound (4) induced
a higher percentage of HL60 cancer cell death via apoptosis, with a percentage of 11.02%
than the untreated cells, 1.47%. Similarly, compound (8b) induced a higher percentage of
apoptosis cells in HepG2 cells, with a percentage of 6.09%, than the untreated cells at 1.32%.
Compounds (4) and (8b) showed that the apoptosis of cells was triggered by the activation
of effectors 3 and 7 caspases.
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Figure 4. (A) Caspase inhibitory activity in cancer HL60 and HepG2 cells was treated with com-
pounds (4) and (8b), respectively, for 48 h, using the “CellEvent® Caspase 3/7 Green Flow Cytometry
kit”, where “L, viable cells; A, apoptotic cells; N, necrotic cells; and D, dead cells”. (B) Graphical pre-
sentation of a comparison of apoptotic cancer cells due to active caspases 3/7 of the tested compounds.
The data are expressed as the mean ± SEM of three independent experiments in triplicate.

Gene Expression Analysis for the Apoptosis-Related Genes

Both intrinsic and extrinsic genes (P53, Bax, Caspase 3, Caspase 7, PI3k, AKT, and
Bcl-2) controlling apoptosis were screened for their relative mRNA expression using RT-
PCR analysis to investigate the apoptosis-inducing pathway of the cytotoxic compound (4)
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(IC50 = 8.09 µM, 48 h) and compound (8b) (IC50 = 13.14 µM, 48 h), respectively, against
HL60 and HepG2 cancer cells.

The results in Figure 5A showed that compound (4)-treated HL60 cells induced the
expression of pro-apoptotic genes: P53 as tumor suppressor gene by 3.8-fold, Bax by
1.63-fold, caspase 3 by 3.54-fold, caspase 7 by 2.88-fold relative to the mRNA expression of
β-actin as housekeeping gene, while it inhibited the mRNA expression of the anti-apoptotic
gene of Bcl-2 by 0.87-fold, PI3K by 0.88-fold, and AKT by 0.89-fold.

The results in Figure 5B demonstrated that compound (8b)-treated HepG2 cells
strongly induced the expression of pro-apoptotic genes: P53 as tumor suppressor gene by
3.89-fold, Bax by 1.51-fold, caspase 3 by 4.63-fold, caspase 7 by 3.63-fold relative to the
mRNA expression of β-actin as housekeeping gene, while it inhibited the mRNA expression
of the anti-apoptotic gene of Bcl-2 by 0.75-fold, PI3K by 0.75-fold, and AKT by 0.72-fold.

Therefore, RT-PCR results confirmed the apoptosis-inducing activity of both com-
pounds (4) and (8b) against HL60 and HepG2 cells, respectively, by their ability to increase
the mRNA relative expression of pro-apoptotic genes and inhibit the mRNA for the anti-
apoptotic genes.
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Figure 5. RT-PCR for the relative mRNA expression of treated HL60 treated with compound (4)
(IC50 = 8.09 µM, 48 h, A) and HepG2 cells treated with compound (8b) (IC50 = 13.14 µM, 48 h, B)
versus β-actin as a housekeeping gene (fold change of the untreated control = 1). The data are
expressed as the mean ± SEM of three independent experiments.

Western Blotting and DNA Fragmentation

The apoptosis-inducing activity of compounds (4) and (8b) against HL60 and HepG2
cells through the inhibition of the PI3K/AKT signaling pathway was further confirmed
by investigating Western blotting analysis and the DNA fragmentation of the expressed
proteins. As shown in Figure 6A, following compound (4) and (8b) exposure, the levels
of p-PI3K and p-Akt in HepG2 and HL60 cells were effectively suppressed with respect
to control untreated cells. Loss of intact DNA fragments after exposure to compounds (4)
and (8b) can be seen in agarose gel electrophoresis (Figure 6B). These results follow the
relative gene expression of both PI3K/AKT genes and the apoptosis-inducing activity as a
proposed mechanism.
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Figure 6. (A) Scanning densitometry Western blotting for p-PI3K and p-AKT proteins and (B) agarose
gel electrophoresis DNA fragmentation for untreated and treated HL60 and HepG2 cells showing the
loss of intact DNA fragments after exposure to compounds (4) and (8b) (M refers to the DNA ladder).
Results are duplicate.

Our results for the cytotoxic activity of both compounds (4) and (8b) against HL60
and HepG2 cancer cell lines, through apoptosis-inducing activity and the activation of the
cell-cycle arrest at G2/M through flow cytometric analyses; gene and protein expression
levels of PI3K/AKT proved the dual inhibitory action of the synthesized compounds. The
inhibition of the PI3K/AKT pathways resulted in a caspase cascade, eventually leading to
apoptosis [57–59].

2.3. In Silico Studies
2.3.1. Computational Analysis

The SwissTargetPrediction website tool was used to predict the most suitable target
for the proposed compounds. It was found, as seen in Figure 7, that the anticipated
derivatives may have a kinase receptor inhibitory action, with a probability of 60%. Other
receptors were oxidoreductases, transferases, phosphodiesterases, family A G-protein
coupled receptors, lyases, and nuclear receptors, each with a probability of 6.7%.
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PI3K (phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma iso-
form, Class I PI3K, Uniprot: P48736, Homo sapiens) is the protein that phosphorylates
PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol
3,4,5-trisphosphate (PIP3). PIP3 plays a key role by engaging PH domain-containing pro-
teins in the membrane, including AKT1, resulting in the activation of signaling cascades
involved in cell growth and proliferation [60]. PI3K (Mass (Da)126,454) consists of 1102
amino acids that are arranged into five main domains (Figure 8A,B).
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Figure 8. PI3K protein domains, (A) the arrangement of the Pfam domains, (B) the FASTA format
of PI3K showing amino acid residues of 1. PIK3 catalytic subunit gamma adaptor-binding domain
(green), 2. Ras-binding domain (red), 3. C2 domain (blue), 4. phosphoinositide 3-kinase family
accessory domain (yellow), and 5. phosphoinositide 3/4-kinase domain (purple).

The PIK3 catalytic subunit gamma adaptor-binding domain (amino acid residues
1-192, PIK3CG_ABD) is the N-terminal domain that encompasses the adaptor-binding
domain (ABD). The Ras-binding domain (amino acid residues 203-312, PI3K_rbd) is located
in the N-termini. The C2 domain (amino acid residues 377-519, PI3K_C2) is about 116 amino
acid residues and is located between the two copies of the C1 domain in protein kinase C
and the protein kinase catalytic domain. The C2 domain is involved in calcium-dependent
phospholipid binding. The Phosphoinositide 3-kinase family accessory domain (amino
acid residues 543-733, PI3Ka domain) is a conserved domain in all PI3 and PI4-kinases.
Phosphoinositide 3-kinase domain (amino acid residues 827-1044, PI3_PI4_kinase) can
phosphorylate the 3â€™ position hydroxyl group of the inositol ring of phosphatidylinositol
(PtdIns) [61] (Figure 9).
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AKT1 (RAC-alpha serine/threonine-protein kinase, Uniprot: P31749, Homo sapiens) 
is a member of the serine/threonine-protein kinases (AKT1, AKT2, and AKT3), called 
AKT kinases, which are all closely related. The phosphorylation of MAP3K5 (apopto-
sis-signal-related kinase) by AKT regulates cell viability. Downregulation by RNA in-
terference results in the induction of caspase-dependent apoptosis. AKT1 consists of 480 
amino acids, arranged with three main domains [62] (Figure 10A,B); Pleckstrin homolo-
gy domain (amino acid residues 6-108, PH domain), protein kinase domain (amino acid 
residues 150-408, PKinase domain), and protein kinase C terminal domain (amino acid 
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Figure 9. 3D structure of the PI3K protein wherein there is a PIK3 catalytic subunit gamma adaptor-
binding domain (green), 2. Ras-binding domain (red), 3. C2 domain (blue), 4. phosphoinositide
3-kinase family accessory domain (yellow), and 5. phosphoinositide 3/4-kinase domain (purple).
Staurosporine is a PI3K inhibitor embedded in the phosphoinositide 3-kinase domain.

AKT1 (RAC-alpha serine/threonine-protein kinase, Uniprot: P31749, Homo sapiens)
is a member of the serine/threonine-protein kinases (AKT1, AKT2, and AKT3), called
AKT kinases, which are all closely related. The phosphorylation of MAP3K5 (apoptosis-
signal-related kinase) by AKT regulates cell viability. Downregulation by RNA interference
results in the induction of caspase-dependent apoptosis. AKT1 consists of 480 amino acids,
arranged with three main domains [62] (Figure 10A,B); Pleckstrin homology domain (amino
acid residues 6-108, PH domain), protein kinase domain (amino acid residues 150-408,
PKinase domain), and protein kinase C terminal domain (amino acid residues 429-474,
Pkinase_C domain) [63] (Figure 11).
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The Pleckstrin homology domain is highly conserved in the different AKT isoforms
(sequence homology between 76 and 84%) for its essential role in the interaction with
membrane phospholipids, such as PIP3 produced by PI3K [63].
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Figure 11. 3D structure of the AKT1 protein wherein there is a Pleckstrin homology domain (green),
protein kinase domain (red), and protein kinase C terminal domain (blue). AKT1 activity can be
inhibited by two modes: inhibitors of the active site and allosteric inhibitors.

From the literature survey, both coumarin and cinnamic acid scaffolds have potential
PI3K/AKT1 signaling pathway inhibitory action [64–67], and either coumarin derivati-
zation or combination with cinnamic acid proposed the final compounds that possess
the main pharmacophoric features as the bound ligands in the active site of both PI3K
and AKT1. Generally, PI3K and AKT1 inhibitors have a common “hydrophobic-aromatic
ring-hydrophobic-HB_A” feature as previously reported [68,69]. Additionally, we found
that the optimum length between the hydrophobic moiety and the aromatic ring should
be in the range of 3.5–4.0 Å, while the optimum length between the other hydrophobic
moiety and the HB_A group should be in the range of 3.0–3.5 Å. By superimposing the
proposed compounds (4, 8a, 8b, 8c), we found that all of the compounds fulfilled the re-
quired pharmacophoric features to act as PI3K/AKT1 inhibitors. Furthermore, compounds
that had bromo-substitutions at positions 3,6,8 of the coumarin ring can form additional
weak H-bonds or halogen bonds depending on the bond distances and angles with the
adjacent amino acid residues as previously described [70,71]. This results in the stronger
embedment of bromo-compounds in the kinase domains of the studied proteins (Figure 12).
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(B) spirochromane inhibitor (yellow) of AKT1, and (C) superimposed structures of the proposed
final compounds; hydrophobic features are represented as green contour spheres; aromatic features
are represented as orange contour spheres, and HB_A features are represented as turquoise con-
tour spheres. Additional HB_A features in the proposed compounds are represented as turquoise
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To prove that the recommended candidates act as modulators or inhibitors of PI3K
and AKT1, molecular docking was performed. From the PDB database, crystal structures
with outliers and limited portions of the protein were excluded. The most suitable PDB
codes were 1E8Z [72] and 3QKK [73] for PI3K and AKT1, respectively.

Ligand–receptor interactions in the PI3K binding site for the synthesized compounds
compared with the co-crystallized ligand staurosporine are summarized in Table S1. Com-
pounds (3), (4), (6), (8a), (8b), and (8c) had H-bond interactions with Val882, which is
the key amino acid in the PI3K receptor pocket [57]. Compounds (4) and (8b) were the
best-docked compounds based on their low binding energy; H-bond interactions; and other
hydrophobic interactions with Trp812, Met953, Met804, Phe961, Pro810, Ser806, Lys807,
Ile963, Ile831, Ile879, Glu880, and Ala885 in the PI3 kinase domain (Figure 13a–c).

To prove the best binding mode for the synthesized compounds in AKT1, the com-
pounds were docked in both the binding site and the allosteric site, and ligand–receptor
interactions were compared with the co-crystallized ligands spirochromane derivative [73]
and benzo[d]imidazole-2(3H)-one derivative [74], respectively. Binding interactions in the
active site were stronger than in the allosteric site, where compounds (3), (4), (6), (8a), (8b),
and (8c) had H-bond interactions with either Ala230 or Glu228, which are the key amino
acids in the pocket of the AKT1 receptor (Table S1). Compounds (4) and (8b) were the
best-docked compounds based on their low binding energy; H-bond interactions; and other
hydrophobic interactions with Lys179, Thr291, Met227, Leu156, Phe438, Met281, Thr211,
Glu234, Gly157, Met281 and Ala177 in the kinase domain (Figure 13d–f).
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Figure 13. 3D presentation of docked compounds (cyan-highlighted) inside the binding site of tested
proteins; (A) compound 4 bound to PI3K key amino acid residues in the active site, (B) compound
(8b) bound to PI3K key amino acid residues in the active site, (C) staurosporine (control) bound to
PI3K key amino acid residues in the active site, (D) compound (4) bound to AKT key amino acid
residues in the active site, (E) compound 8b bound to AKT key amino acid residues in the active site,
(F) spirochromane derivative (control) bound to AKT key amino acid residues in the active site.

2.3.2. In Silico ADME and Bioactivity Prediction

Drug-likeness is a complex balance of various molecular properties and structural
features. These properties influence the behavior of a molecule in a living organism,
including bioavailability, transport properties, affinity to proteins, reactivity, and many
others. To identify the substructure features (which, in turn, determine physicochemical
properties), the chemical structures of compounds (4) and (8b) were incorporated into the
online SwissADME web tool. Physicochemical parameters such as number of heavy atoms;
number of rotatable bonds; number of H-bond acceptors; number of H-bond donors; the
fraction of carbon bond saturation (Csp3), i.e., the number of sp3 hybridized carbons/total
carbon count; solubility (S) parameter LogS (Silicos-IT); lipophilicity parameter LogP
predicted using the additive XLogP3 method; and molar refractivity for each compound
were calculated versus both positive and negative controls (Table 2).
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Table 2. Predicted physicochemical descriptors of the synthesized compound (4) and compound (8b).

Compound (4) (8b)
Staurosporine

(Positive
PI3K Control)

Spirochromane
Derivative (Positive

AKT1 Control)

Coumarin
(Negative Control)

Heavy atoms 16 26 35 38 11
Rotatable bonds 0 4 2 10 0
H-bond donors 1 0 2 2 0

H-bond acceptors 3 4 4 9 2
Fraction Csp3 0.10 0.05 0.32 0.61 0.00

Silicos-IT −5.89 −8.62 −7.59 −5.08 −3.59
XLogP3 3.75 5.94 3.24 1.66 1.39

Molar refractivity 72.57 111.66 139.39 150.15 42.48

The gastrointestinal absorption (high or low) and brain penetration (yes or no) of
compound (4), compound (8b), and positive and negative controls were predicted and
concluded via the BOILED-Egg model [75] (Figure 14). This model is based on two
parameters: (1) the lipophilicity of the compounds under investigation, evaluated as
a partition-coefficient (P) according to the Wildman–Crippen method [76] (WLogP), and
(2) the compounds’ polarity, calculated as a topological polar surface area (tPSA) value. In
this model, points located in the BOILED-Egg’s yolk are molecules predicted to passively
permeate through the BBB, while points located in the BOILED-Egg’s white are molecules
predicted to be passively absorbed by the GI tract.
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The developed compounds were evaluated according to Veber’s rule-based method [77]
to determine the drug-likeness for both of them, wherein a high probability of good
bioavailability is more likely when there are 10 or fewer rotatable bonds and when the
polar surface area is equal to or less than 140 Å2. From the data provided in Table 2, both
compounds (4) and (8b) showed zero violations and, accordingly, can be considered good
drug candidates for bioactivity studies.
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From pkCSM—pharmacokinetics [78], compound (4) and compound (8b) showed
different predicted activities as P-glycoprotein substrates; compound (4) was predicted to
act as a substrate for P-glycoprotein, while compound (8b) was not (Figure 15).
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Figure 15. Compounds (4) and (8b) predicted P-glycoprotein substrates using the pkCSM web-
site tool.

The different selectivities of compounds (4) and (8b) in different cell lines, both HL60
or HepG2, may be explained due to the difference in predicted solubility and predicted
P-glycoprotein binding, as P-glycoprotein expression differs between different cell types.
P-glycoprotein shows medium-to-low expression in different liver (HepG2) cells but not
expressed in leukocytes (HL60) (Figure 16) [79]. This may explain the lower activity of
compound (4) (IC50 = 71.3 µM) than that of compound (8b) (IC50 = 13.14 µM) in HepG2
cell lines.
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Figure 16. P-glycoprotein expression in different tissues.

3. Materials and Methods
3.1. Chemistry

Reaction chemicals were purchased from Sigma Aldrich Chemical Co. (St. Louis, MO,
USA) Pre-coated silica gel 60 F-254 plates (Merck, Darmstadt, Germany) were used for
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TLC. Spots were monitored by UV-light and p-anisaldehyde/sulfuric acid. Melting points
were recorded on a Thomas Hoover Capillary melting point apparatus (Philadelphia,
PA, USA) with a digital thermometer. IR spectra were obtained on a FT-IR Shimadzu
8300 spectrometer (Shimadzu, Tokyo, Japan). 1H NMR (400 MHz) and 13C NMR data
were obtained on a Bruker NMR spectrometer in DMSO-d6, and chemical shifts were
recorded in terms of parts per million (ppm) downfield from tetramethylsilane. Electron
impact mass spectra (EI-MS) were recorded on a Shimadzu GCMS-QP 5050 A (Shimadzu,
Tokyo, Japan) gas chromatograph–mass spectrometer (70 eV). Elemental analysis was done
with an Elmentar, vario EL Germany Instrument at the Regional Centre for Mycology and
Biotechnology, Faculty of Science, Al-Azhar University Perkin–Elmer 2400 (Waltham, MA,
USA), and the results were within 0.4% of the calculated value.

3.1.1. Synthesis of 7-Hydroxy-4-methylcoumarin (3)

Resorcinol (1) (10 mmol) and ethyl acetoacetate (2) (10 mmol) were refluxed in a water
bath in the presence of concentrated sulfuric acid (2 mL) for 2 h. The reaction mixture was
cooled and poured into water with continuous stirring. The resulting solid was filtered off,
washed with water, dried (Na2SO4), and recrystallized from ethanol to give compound (3),
a pale-yellow crystalline solid, with a yield of 87%. The NMR spectral data were in line
with the literature [48] (Figures S1 and S2).

3.1.2. Synthesis of 7-Hydroxy-3,6,8-tribromo-4-methylcoumarin (4)

To a solution of 7-hydroxy-4-methyl coumarin (3) (10 mmol) in 20 mL of glacial acetic
acid was added 10 mL of bromine (30 mmol) in glacial acetic acid dropwise with stirring at
60 ◦C. After 5–10 min, the bromine color disappeared, and a yellow solution remained. At
this point, 0.5–1 mL of the bromine–AcOH solution was added with continuous stirring
at room temperature for 30–45 min. The reaction mixture was poured into water with
continuous stirring, and the resulting product was filtered, washed with water, and dried
(Na2SO4). Finally, the resulting product was purified by recrystallization from ethanol to
give compound (4) as pale orange crystals, with a yield of 76%. The NMR spectral data
were in line with the literature [49] (Figures S3 and S4).

3.1.3. Isolation of cinnamaldehyde (5)

Cassia cinnamon bark was purchased from an Egyptian market and authenticated
by the Faculty of Science, Suez Canal University, Ismailia, Egypt. A voucher specimen
under registration no. (Cc-2019) was deposited in Pharmacognosy Department herbarium,
Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.

Cinnamon oil was prepared by the hydro-distillation of C. cinnamon bark (500 g) in a
Clevenger-type apparatus for 10 h. The distillate was transferred into a separating funnel.
Then CH2Cl2 was added to extract the essential oil by solvent partitioning. The CH2Cl2
layer was transferred to a clean beaker. The extraction process was repeated, and all of the
fractions were collected. The combined CH2Cl2 layers were washed with distilled water.
The organic layer was dried (MgSO4). The CH2Cl2 extract was concentered under reduced
pressure to yield 13.5 g of cinnamon oil.

To isolate cinnamaldehyde, a saturated aqueous solution of sodium bisulfite was
added to cinnamon oil with vigorous shaking, and the resulted cinnamaldehyde-sodium
bisulphite additive was filtered. The precipitate was washed with ethanol, then diethyl
ether, followed by 5% HCl (250 mL) and refluxed at 60 ◦C for 30 min. After cooling, the
reaction mixture was extracted with methylene chloride, then dried (MgSO4) to obtain
cinnamaldehyde (6) as a yellow oily substance with a yield of 70%. Compound (6) was
authenticated by co-chromatography with a standard cinnamaldehyde sample on silica
gel TLC and visualized by UV and p-anisaldehyde/sulphuric acid spray reagent (Rf 0.613,
93:7 v/v toluene-ethyl acetate, congruent to that of standard cinnamaldehyde). 1H NMR
(CDCl3): δ 6.74 (dd, 1H, J = 15.6 and 7.7 Hz, H-2), 7.40–7.50 (m, 4H, 2× meta-Ar-H, para-Ar-
H and H-3 olefinic), 7.53–7.59 (m, 2H, ortho-Ar-H), 9.70 (d, 1H, J = 7.7 Hz, H-1, aldehyde).
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13C NMR (CDCl3): δ 128.57 (2C, meta-Ar-CH), 128.49 (C-2), 129.14 (2C, ortho-Ar-CH), 131.40
(para-Ar-CH), 134.04 (ipso-ArC), 152.9 (C-3), 194.07 (C-1) (Figures S5 and S6).

3.1.4. Preparation of cinnamic acid (6)

To a stirred solution of 10 mol% of AgNO3 and cinnamaldehyde (6) (1 mmol) in
acetonitrile (2 mL) was added 2 equivalents of 30% H2O2. The reaction mixture was heated
slowly at 50 ◦C. The reaction was quenched with a cold aqueous solution of 10% Na2S2O3
and then extracted with CH2Cl2. The organic layer was separated and evaporated under
reduced pressure. The residue obtained was alkalinized with an aqueous solution of
NaHCO3 and extracted with CH2Cl2. The aqueous layer was acidified by 2N HCl, then
extracted with CH2Cl2. The organic layer was concentrated under vacuum. The crude
product was purified by silica gel column chromatography to obtain colorless crystals of
cinnamic acid (7), with a yield of 85%, m.p. 133 ◦C, 1H NMR (DMSO d6): δ 6.55 (d, 1H,
J = 15.6, H-2), 7.42–7.43 (m, 3H, 2×meta-Ar-H and para-Ar-H), 7.61 (d, 1H, J = 15.6, H-3)
7.69–7.70 (m, 2H, ortho-Ar-H), and 12.44 (s, 1H). 13C NMR (DMSO d6): δ 119.31 (C-2), 128.68
(2C, meta-Ar-CH), 129.56 (2C, ortho-Ar-CH), 131.00 (para-Ar-CH), 134.40 (ipso-ArC), 144.01
(C-3), 168.08 (C-1) (Figures S7 and S8).

3.1.5. General procedure for the synthesis of compounds (8a, 8b)

A mixture of cinnamic acid (6) (0.83 mmol) and thionyl chloride (3.5 mmol) was
refluxed for 4 h (monitored by TLC). The product (cinnamoyl chloride (7)) was used
immediately for the next step without any further purification.

To a chilled solution of cinnamoyl chloride (7) (1 mmol) in dichloromethane (1 mL) was
added dropwise over a period of 30 min with stirring an aq. solution of sodium hydroxide
(2 mmol) and coumarin (2 mmol). The mixture was stirred for 1.5 h at room temperature.
The product was obtained by filtration, washed with cooled water, and recrystallized from
aqueous ethanol.

(2E)-4-Methyl-2-oxo-2H-chromen-7-yl Cinnamate (8a)

Compound (8a) was obtained as yellow crystals, yield 81%, m.p. 96 ◦C, IR (KBr) νmax
1725–1705 (C=O), 1627, 1605, 1595 (C=C), 1377 (CH3) 1175, 1068 and 1025 (C-O) cm−1. 1H
NMR (DMSO d6): δ 2.35 (s, 3H, CH3), 6.11 (s, 1H, C3-H), 6.53 (d, 1H, J = 16 Hz, C=CH-CO),
6.72 (d, 1H, J = 4 Hz, C8-H), 6.81 (dd, 1H, J = 4, 8 Hz, C6-H), 7.40–7.42 (m, 3H, Ar-H), 7.56 (d,
1H, J = 8 Hz, C5-H), 7.59 (d, 1H, J = 8 Hz, Ph-CH=C) 7.65–7.68 (m, 2H, Ar-H). 13C NMR
(DMSO-d6): δ 168.24, 161.43, 155.18 (2), 154.18, 144.33, 134.58, 130.69, 129.38 (2), 128.56 (2),
127.31, 119.69 (2), 113.32, 112.14, 110.62, 18.52. MS (m/z) = 306 (M+). Anal. Calcd. for
C19H14O4 (306): C, 74.50; H, 4.61. Found: C, 74.66; H, 4.39 (Figures S9–S14).

(2E)-3,6,8-Tribromo-4-methyl-2-oxo-2H-chromen-7-yl Cinnamate (8b)

Compound (8b) was obtained as pale-yellow crystals, yield 82%, m.p. 210 ◦C, IR
(KBr) νmax 1731–1700 (C=O), 1627, 1589 (C=C), 1377 (CH3), 1088 and 1026 (C-O) cm−1.
1H NMR (DMSO-d6): δ 2.58 (s, 3H, CH3), 6.51 (d, 1H, J = 16 Hz, C=CH-CO (olefinic-
H), 7.41–7.42 (m, 3H, Ar-H), 7.59 (d, 1H, J = 16 Hz, Ph-CH=C), 7.66–7.67 (m, 2H, Ar-H),
8.04 (s, 1H, C5-H). 13C NMR (DMSO-d6): δ 167.91, 156.09, 154.80, 151.37, 149.50, 144.30,
134.73, 130.61, 129.33 (2), 128.69, 128.59 (2), 119.74, 114.74, 110.12, 108.28, 99. 88, 19.99. MS
(m/z) = 540 (M+). Anal. Calcd. for C19H11Br3O4 (540): C, 42.03; H, 2.04. Found: C, 42.33;
H, 1.92 (Figures S15 and S16).

3.1.6. Synthesis of (2E)-3-bromo-4-methyl-2-oxo-2H-chromen-7-yl cinnamate (8c)

Ten mL of bromine (10 mmol) in glacial acetic acid was added dropwise with con-
tinuous stirring to a solution of 3-(4-methyl coumarin-7-yloxy)-3-phenyl acrylic acid (8a)
(10 mmol) in 15 mL of glacial acetic acid at 60 ◦C. After 5–10 min, the bromine color dis-
appeared, and a yellow solution remained. At this point, 0.5–1 mL of a bromine–AcOH
solution was added with stirring at room temperature for 30–45 min. The reaction mix-
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ture was poured into water with stirring, and the solid formed was filtered, washed with
water, and dried (Na2SO4). Finally, the product was recrystallized from methanol to give
compound (8c) as pale-yellow crystals, with a yield of 61%, m.p. 170 ◦C. IR (KBr) νmax
1725–1700 (br. C=O), 1617, 1583(C=C), 1378 (CH3), 1095 and 1078 (C-O) cm−1. 1H NMR
(DMSO-d6): δ 2.55 (s, 3H, CH3), 6.53 (d, 1H, J = 16 Hz, C=CH-CO), 6.70 (d, 1H, J = 4 Hz,
C8-H), 6.79 (dd, 1H, J = 4, 8 Hz, C6-H), 7.37–7.40 (m, 3H, Ar-H), 7.54 (d, 1H, J = 8 Hz, C5-H),
7.57 (d, 1H, J = 8 Hz, Ph-CH=C) 7.63–7.66 (m, 2H, Ar-H). 13C NMR (DMSO-d6): δ 161.88,
158.78, 157.90, 153.58, 152.49, 152.30, 150.43, 130.69, 129.36, 128.66, 127.79, 126.27, 114.35,
112.22, 109.08, 108.63, 102.52, 97.24, 19.77. MS (m/z) = 384 (M+, unstable). Anal. Calcd. for
C19H13BrO4 (384) C, 59.24; H, 3.40. Found: C, 59.11; H, 3.08 (Figures S17 and S18).

3.2. In Vitro Biological Assays
3.2.1. Cell culture

Human promyelocytic leukemia ”HL-60”, human hepatocellular carcinoma “HepG2”,
human breast cancer “MCF-7”, human lung cancer “A549” cell lines, and two normal cell
lines, THLE-2 as normal adult liver epithelial cells and WISH as normal epithelial cells,
were obtained from American Type Culture Collection “Rockville, MD, USA”. All cell
lines were cultured in an RPMI medium from “Invitrogen/Life Technologies” at 37 ◦C in a
humid atmosphere with 5% CO2 according to standard tissue culture protocols [80].

3.2.2. Cytotoxic Activity Using MTT Assay

The cytotoxic activity of the tested compounds (3, 4, 6, 8a, 8b, and 8c) was determined
by the MTT assay [81,82]. According to the manufacturer’s protocol, the cells were seeded in
96-well plates at a concentration of 5 × 104 cells per well (200 µL). Different concentrations
of the tested compounds were used to test the cytotoxicity. There were three replicates of
each concentration, and the standard control was staurosporine, with vehicle DMSO used
as the blank. After 48 h of incubation at 37 ◦C, 10 L of the MTT stock solution was added
to each well and incubated again for 4 h. Finally, the optical absorbances at 570 nm were
measured, and cell survival was calculated using the following equation: “percentage of
cell viability = Asapmple

Acontrol × 100”. A non-linear regression of curve fit was used to calculate
the IC50.

3.2.3. Investigation of the Apoptotic Pathway
Flow Cytometric Analysis

HL60 and HepG2 cancer cells were treated with compound (4) (IC50 = 8.09 µM,
48 h) and compound (8b) (IC50 = 13.14 µM, 48 h), respectively, compared to control,
then the apoptotic mechanistic mode of action was investigated through flow cytometric
analyses (ACEA Biosciences Inc., San Diego, CA, USA), as previously described [83]. (See
supplementary information for the detailed methodology of flow cytometric analyses,
including “FITC/Annexin-V-FITC/PI differential apoptosis/necrosis”, “DNA content-flow
cytometry aided cell cycle”, and “Caspase 3/7 green flow cytometry”).

Gene Expression Using RT-PCR Analysis

After 48 h of treatment with compound (4) and compound (8b) (IC50 = 8.09 M and
13.14 µM, respectively), total RNA was extracted from both treated and untreated cancer
cells using Qiagen RNA extraction (GmbH, Hilden, Germany). The synthesis of cDNA was
then performed, followed by the qPCR test in one tube. The primer sequence pairs (Table 3)
were selected for the tested genes “P53, BAX, CASP-3, -9, PI3K, AKT, BCL2” and β-actin
as housekeeping gene. Cycle thresholds (Ct) and Ct were used to calculate the relative
quantities of each gene tested, as previously described [83].
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Table 3. Forward and reverse primers used in gene expression analysis.

Gene Forward Reverse

P53 5′-CCCCTCCTGGCCCCTGTCATCTTC-3′ 5′-GCAGCGCCTCACAACCTCCGTCAT-3′

BAX 5′-GTTTCATCCAGGATCGAGCAG-3′ 5′-CATCTTCTTCCAGATGGTGA-3′

CASP3 5′-TGGCCCTGAAATACGAAGTC-3′ 5′-GGCAGTAGTCGACTCTGAAG-3′

CASP9 5′-CGAACTAACAGGCAAGCAGC-3′ 5′-ACCTCACCAAATCCTCCAGAAC-3′

PI3K 5′-CTCTCCTGTGCTGGCTACTGT-3′ 5′-GCTCTCGGTTGATTCCAAACT-3′

AKT 5′-GGACAAGGACGGGCACATTA-3′ 5′-CGACCGCACATCATCTCGTA-3′

BCL2 5′-CCTGTGGATGACTGAGTACC-3′ 5′-GAGACAGCCAGGAGAAATCA-3′

β-actin 5′-GTGACATCCACACCCAGAGG-3′ 5′-ACAGGATGTCAAAACTGCCC-3′

Western Blottting

Western blotting analysis was conducted using untreated and treated HepG2 and
HL60 cells. Cells were washed in PBS and lysed in a boiling sample buffer (62.5 mM
Tris-HCl pH 6.8, 1% SDS, 10% glycerol, and 5% β-mercaptoethanol) for sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The lysates were boiled for 5 min
with a lamellae buffer, and the proteins were separated by SDS-PAGE and transferred
to an Immobilon membrane (Millipore, Burlington, MA, USA). After incubation in 5%
non-fat dry milk, Tris-HCL, 0.1% Tween 20 for 1 h, p-PI3K, and p-AKT, primary antibodies
were added to one of the membranes containing specimen samples and incubated at 4 ◦C
overnight. Appropriate secondary antibodies were incubated for 2 hr at room temperature.
After being washed twice n 1× TBS-T, densitometric analysis of the immunoblots was
performed to quantify the amounts of p-PI3K and p-AKT against the control sample by
total protein normalization using Image analysis software on the ChemiDoc MP imaging
system (version 3) produced by Bio-Rad (Hercules, CA, USA) [64].

3.3. In Silico Studies

Target prediction was done using the SwissTargetPrediction web tool [83].

3.3.1. Molecular Docking

Two PDB codes for the molecular targets in the proposed cytotoxic mechanism were
selected. Both 1E8Z and 3QKK were chosen as crystal structures for PI3K and AKT
receptors, respectively. The docking program involved in our evaluation was AutoDock
Vina [84,85], following a multiple ligands docking protocol [86].

The grid box size was prepared based on the active residues of the kinase domains’
ATP binding sites. After docking simulation, poses with the highest negative binding
free energy (kcal/mol) were selected as the best pose for the corresponding ligand bind-
ing. The visualization of the 3D receptor binding site, the disposition of the original
(co-crystallized) ligand, and the main ligand receptor interaction in terms of hydrogen
bonding and lipophilic interaction with the key amino acid residues were done using
Chimera software [87].

3.3.2. In Silico Physicochemical Descriptors, Pharmacokinetic Properties, and
Bioactivity Prediction

The estimation of physicochemical properties, pharmacokinetics, and drug-likeness in
silico was performed using SwissADME and PKCSM web tools [78,88].

4. Conclusions

In conclusion, we have synthesized new derivatives of (2E)-4-methyl-2-oxo-2H-chromen-
7-yl cinnamate (8a), (8b), and (8c) in addition to the known compound: 7-hydroxy-3,6,8-
tribromo-4-methylcoumarin (4). The chemical structures of the synthesized compounds
were proven by IR, NMR, and MS spectral analyses. Using the MTT assay, the cytotoxicity
of all of the synthesized compounds, as well as their precursors, was evaluated on a
panel of cancerous cells, among which compounds (4) and (8b) were the most active
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ones on the tested cancer cell lines. Compound (4) had a cytotoxic effect against HL60
cells, with an IC50 value of 8.09 µM, while compound (8b) had an activity against HepG2
cells, with IC50 value of 13.14 µM. Since our resaerch was directed towards leukemia and
liver cancer due their high resistance to chemotherapy and increased incidence rate, the
proposed mechanism of the cytotoxicity of compounds (4) and (8b) on HL60 and HepG2,
respectively, was inspected using cell-cycle analysis, real-time PCR, DNA fragmentation,
and Western blotting analyses. Our results revealed that both compounds (4) and (8b)
displayed cytotoxic activity through the PI3K/AKT signaling pathway, which was further
confirmed by molecular docking studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27196709/s1, Table S1: Docked interaction analysis of synthesized ligands screened
with the two proteins (PI3K and AKT1); Figure S1: 1H NMR of compound (3); Figure S2: 13C NMR of
compound (3); Figure S3: 1H NMR of compound (4); Figure S4: 13C NMR of compound (4); Figure S5:
1H NMR of Cinnamaldehyde (5); Figure S6: 13C NMR of Cinnamaldehyde (5); Figure S7: 1H NMR
of Cinnamic Acid (6); Figure S8: 13C NMR of Cinnamic Acid (6); Figure S9: 1H NMR of compound
(8a); Figure S10: 13C NMR of compound (8a); Figure S11: NOSY of compound (8a); Figure S12:
COSY of compound (8a); Figure S13: HMBC of compound (8a); Figure S14: HSQC of compound (8a);
Figure S15: 1H NMR of compound (8b); Figure S16: 13C NMR of compound (8b); Figure S17: 1H
NMR of compound (8c); Figure S18: 13C NMR of compound (8c).
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