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Abstract: Blends with different proportions of protein or starch show different rheological behaviors,
which may be related to the fibrous structure formation of extruded textured plant proteins. The
consistency factor K and the viscosity exponent n of Soybean-Protein-Isolate (SPI)/Wheat-Gluten
(WG)/Corn-Starch (CS) blends were investigated through capillary rheometry. All blends exhibited
shear-thinning behavior at 80 ◦C and 50% moisture. The CS content in SPI/CS blends or WG content
in SPI/WG blends showed a positive relation to the viscosity exponent n and a negative relation to
the consistency factor K. However, there was no correlation between the CS content in WG/CS blends
and n or K. The coefficient of determination of the linear relationship between K and mass fraction in
SPI/CS, SPI/WG/CS, SPI/WG and WG/CS decreased from 0.872 to 0.073. SPI was more likely to
form a non-interactive structure, while wheat-gluten was more likely to form a highly interactive
structure. It turned out that the materials with globular morphology, such as soybean-protein-isolate
and corn-starch, are likely to form a non-interactive structure.

Keywords: soybean-protein-isolate; corn-starch; wheat-gluten; consistency factor; viscosity exponent;
capillary rheometry

1. Introduction

Plant protein, induced by extruded mechanical energy and thermal energy, can form
meat-like products with a macroscopically fiber-like structure, which is considered to be an
important quality characteristic of plant-based meat analogs [1]. The laminar flow state
of the material at the die forms a velocity gradient similar to the Hagen–Poiseuille flow,
which is fast in the middle and slow on both sides, resulting in the formation of a fiber-like
structure with a certain orientation macroscopically [2]. Therefore, the fibrous structure is
affected by the material’s flow behavior. The flow behavior of materials can be modeled
by the power law function of shear rate and shear stress,

.
γ = φ · τm, where the m value is

the flow exponent,
.
γ is the shear rate, τ is the shear stress and φ is the fluidity. It is found

that the m value affects the velocity gradient at the die head, and with an increase in the m
value, that is, the pseudo-plasticity, the velocity distribution presents a compressed flow
profile, and with a decrease in the m value, the velocity distribution shows an extensional
flow profile [3]. Additionally, according to the power law model of shear viscosity and
shear rate, η = K

.
γ

n−1, where η is shear viscosity, K is the consistency factor,
.
γ is the shear

rate, n is the viscosity exponent and n = 1/m. Stretching natural polymer proteins need to
overcome entropy elasticity; that is, the product (S × τ) of the stretching velocity gradient
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(S) and the relaxation time (τ) of the molecular chain contraction should be large enough
so that the protein could be stretched. The relaxation time τ is proportional to the square of
the system viscosity [4]. The K value is the consistency factor and is correlated with the
relaxation time. K expresses the viscosity at the shear rate

.
γ ~ 0. The higher the K value,

the higher the viscosity.
The viscosity exponent n and consistency factor K of protein or starch are not only

affected by moisture and temperature [5,6] but also the type of materials. When pea
protein isolate accounted for 90% and the remaining 10% was composed of amylose and
amylopectin, with the increase in amylopectin from 0 to 10% and the decrease in amylose
from 10% to 0, the proportion of amylopectin is negatively correlated with the K value
(R2 = 0.9931), and is quadratically correlated with the n value (R2 = 0.9934) [7].

The mixed materials in the phase separation or compatible state have different flow
behaviors. The flow behavior of whey protein isolate and cross-linked waxy Corn-Starch
blends exhibit that, with the increase in the mass fraction of cross-linked waxy Corn-Starch
from 0 to 1, the G’ of blends indicate the range of phase compatible states. When the mass
fraction of cross-linked waxy Corn-Starch is between 0.4 and 0.8, the G’ is relatively low,
indicating the system may be composed of two continuous phases in a compatible state;
when the mass fraction of cross-linked waxy corn-starch is less than 0.4 or higher than
0.8, the G’ is relatively low, indicating the system is filled by dispersed cross-linked waxy
corn-starch particles in the continuous whey protein network, or the aggregated protein
particles fill the space between the gelatinized starch particle matrix, and the system is in a
state of phase separation [8].

In the plant protein extrusion process, protein and starch are the main components,
and each of those may form the continuous phase [8]. With the change in the proportion of
components, there will be different phase separations, compatibility behaviors and K and n
values, which may be related to the fibrous structure formation of extruded, textured plant
proteins. In this study, Soybean-Protein-Isolate, Wheat-Gluten and Corn-Starch, which are
commonly used in plant protein extrusion, were used as experimental materials to study
the consistency factor K and the viscosity exponent n of the protein–starch blends with
different mass fraction components. The degree to which the relationship between flow
behavior and mass fractions deviated from the non-interactive model was evaluated. This
helps in understanding and controlling the rheological behavior of protein–starch blends
and may further control the formation of the fibrous structure.

2. Results
2.1. DSC of Soybean-Protein-Isolate, Corn-Starch, and Wheat-Gluten

The DSC results of Soybean-Protein-Isolate (SPI), Corn-Starch (CS) and wheat-gluten
(WG) are shown in Figure 1 and Table 1. The peak temperature of phase transition (Tp)
for SPI and CS (both with 50% moisture) was 106 ◦C and 68 ◦C, respectively, while there
was no distinct thermal transition peak for WG. This indicates that 80 ◦C is not enough to
totally denature the SPI; the CS probably was in a partially gelatinized state, and the WG
has been completely denatured.

Table 1. Thermal transition properties of SPI, CS, and WG.

Materials To/◦C Tp/◦C ∆H/J g−1

SPI 103.11 ± 0.92 108.25 ± 0.86 4.45 ± 0.37

CS 63.54 ± 0.61 68.56 ± 0.40 3.62 ± 0.61

WG – – –
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Viscosity as a function of shear rate for different soybean–protein–isolate (SPI)/ 

corn–starch (CS) blends with 50% moisture content at 80 °C barrel temperature is shown 
in Figure 2A. Measured viscosity values of all blends were observed to decrease with the 
shear rate increasing from 10 to 1000 s−1 and with CS content increasing from 0 to 100% in 
the blends. 
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Figure 1. DSC curves of Soybean-Protein-Isolate, Corn-Starch, and Wheat-Gluten. The moisture was
50%, and the heating rate was 10 ◦C min−1.

2.2. Rheological Characterization of Soybean-Protein-Isolate/Corn-Starch Blends

Viscosity as a function of shear rate for different Soybean-Protein-Isolate (SPI)/ Corn-
Starch (CS) blends with 50% moisture content at 80 ◦C barrel temperature is shown in
Figure 2A. Measured viscosity values of all blends were observed to decrease with the
shear rate increasing from 10 to 1000 s−1 and with CS content increasing from 0 to 100% in
the blends.
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Figure 2. Rheological properties of soybean–protein–isolate (SPI)/corn-starch (CS) blends. 
Temperature was 80 °C and water content at 50% w/w. (A) Apparent shear viscosity; (B) 
consistency factor versus CS content in SPI/CS blends; (C) viscosity exponent versus CS content in 
SPI/CS blends. 

Power law parameters as a function of CS content in the SPI/CS blends are shown in 
Figure 2B,C. The viscosity exponent n values increased from 0.297 to 0.464, indicating a 
marked shear-thinning behavior in the blends, and appeared positively correlated with 
CS content (R2 = 0.843). The consistency factor K values decreased from 119,492 to 3004 
Pa·s. The K value of blends decreased with the increase in CS content from 0 to 100% and 
was negatively correlated with the CS content (R2 = 0.872). 

Figure 2. Rheological properties of Soybean-Protein-Isolate (SPI)/corn-starch (CS) blends. Tempera-
ture was 80 ◦C and water content at 50% w/w. (A) Apparent shear viscosity; (B) consistency factor
versus CS content in SPI/CS blends; (C) viscosity exponent versus CS content in SPI/CS blends.

Power law parameters as a function of CS content in the SPI/CS blends are shown in
Figure 2B,C. The viscosity exponent n values increased from 0.297 to 0.464, indicating a
marked shear-thinning behavior in the blends, and appeared positively correlated with CS
content (R2 = 0.843). The consistency factor K values decreased from 119,492 to 3004 Pa·s.
The K value of blends decreased with the increase in CS content from 0 to 100% and was
negatively correlated with the CS content (R2 = 0.872).
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2.3. Rheological Characterization of Soybean-Protein-Isolate/Wheat-Gluten Blends

Viscosity as functions of shear rate for different Soybean-Protein-Isolate (SPI)/wheat-
gluten (WG) blends with 50% moisture at 80 ◦C is shown in Figure 3A. Similar trends as
those seen in SPI/CS blends were observed. The viscosity of all blends decreased as the
shear rate increased from 10 to 1000 s−1 and as WG content increased from 0 to 100%.
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Figure 3. Rheological properties of Soybean-Protein-Isolate (SPI)/Wheat-Gluten (WG) blends. Temper-
ature was 80 ◦C and water content at 50% w/w. (A) Apparent shear viscosity; (B) consistency factor
versus WG content in SPI/WG blends; (C) viscosity exponent versus WG content in SPI/WG blends.

The relation between power law parameters of different SPI/WG blends and WG
content is shown in Figure 3B,C. The n value increased from 0.297 to 0.419, not only showing
a shear-thinning behavior but also suggesting the formation of some network [9], as WG
content increased from 0 to 100% in blends and was positively correlated with the WG
content (R2 = 0.837). The consistency factor K decreased from 119,492 to 3,939 Pa·s with
WG content increasing from 0 to 100%, and in a negative relationship with WG content
(R2 = 0.575).

2.4. Rheological Characterization of WG/CS Blends

Viscosity as a function of shear rate for different WG/CS blends is shown in Figure 4A.
The viscosity decreased when the shear rate increased. The viscosity of WG/CS blends
was higher than WG or CS viscosity alone, totally different from the blends of SPI/CS and
SPI/WG, where the blend viscosity was between SPI and CS or SPI and WG, respectively.

The power law parameters of different WG/CS blends are shown in Figure 4B,C. There
was no correlation between the power law parameters and the ratio of the components in
the WG/CS blend, unlike that of SPI/CS or SPI/WG blends, indicating some interaction
occurred between WG and CS.

2.5. Rheological Characterization of the Blends of SPI/WG/CS

The viscosity of different SPI/WG/CS blends obtained at 50% moisture and 80 ◦C
is shown in Figure 5. Figure 5A–C demonstrate the results obtained when the ratio of
WG/CS was 1/3, 1, and 3, respectively. The viscosity of blends gradually increased with
SPI content increasing from 0, 60, 80 to 100% when the ratio of WG/CS was 1 or with SPI
content increasing from 0 to 60% when WG/CS was 3. However, there was hardly any
difference in blends’ viscosity with SPI content ranging from 0 to 60% when WG/CS was
1/3, which may indicate a special structure in the WG/CS system.
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Figure 5. Rheological properties of Soybean-Protein-Isolate (SPI)/Wheat-Gluten (WG)/Corn-Starch
(CS) blends. Temperature was 80 ◦C and moisture was 50%. (A). Apparent shear viscosity of
WG:CS = 1:3 in blends; (B) apparent shear viscosity of WG:CS = 1:1 in blends; (C) apparent shear
viscosity of WG:CS = 3:1 in blends; (D) consistency factor versus SPI content in SPI/WG/CS blends;
(E) viscosity exponent versus SPI content in SPI/WG/CS blends.

The power law parameters of the different SPI/WG/CS blends are shown in
Figure 5D,E. When the ratio of WG/CS was 1, the viscosity exponent n decreased from 0.404
to 0.246, and the consistency factor K increased from 6,087 to 119,492 Pa·s with increasing
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SPI content. The same trend was observed at 3/1 and 1/3 ratios for the consistency factor
K, which increased from 10,837 to 119,492 Pa·s and from 4,101 to 119,492 Pa·s, respectively.

2.6. Fitted Equations between Mass Fraction and nno-inter or Kno-inter of a Non-Interactive Model

The ηno-inter, nno-inter or Kno-inter of each blend were calculated according to the non-
interactive model. The fitted equations between the mass fraction of components and
nno-inter or Kno-inter are shown in Tables 2 and 3. The linear, exponential, power function,
and logarithmic equations were used to fit the relations between mass fraction and nno-inter,
in which the first two equations made sense. The decisive factors R2 of the linear fitted
equation between the mass fractions of components and the nno-inter were 0.625, 0.631,
0.997, 0.881, 0.862 and 0.866, respectively, and the R2 values of the exponential fitted
equations were 0.652, 0.652, 0.999, 0.885, 0.867 and 0.870, respectively, indicating that the
relationship between the mass fraction of components and nno-inter was unstable under
linear or exponential equations. This suggested that the viscosity exponent n of the blends
was complicated. There was no simple model which could demonstrate the relationship
between the mass fraction and the viscosity exponent n, even with the nno-inter of none
interaction model.

Table 2. The fitted equation of the viscosity exponent nno-inter of a non-interactive model for blends of
Soybean-Protein-Isolate (SPI)/wheat-gluten (WG)/corn-starch (CS).

Samples X Linear
Fitting Equation R2 Exponential

Fitting Equation R2

Power
Function
Fitting

Equation

Logarithm
Fitting

Equation

SPI/CS CS% n = 0.1424x + 0.2666 0.625 n = 0.2744e0.2852x 0.652 \ \

SPI/WG WG% n = 0.1044x + 0.2748 0.631 n = 0.2793e0.2974x 0.652 \ \

WG/CS CS% n = 0.0464x + 0.4184 0.997 n = 0.4187e0.105x 0.999 \ \

SPI-WG/CS = 1/3 SPI% n = −0.1625x + 0.437 0.862 n = 0.4344e−0.440x 0.867 \ \

SPI-WG/CS = 1/1 SPI% n = −0.1536x + 0.4271 0.881 n = 0.4249e−0.421x 0.885 \ \

SPI-WG/CS = 3/1 SPI% n = −0.1393x + 0.4173 0.866 n = 0.4154e−0.387x 0.870 \ \

Table 3. The fitted equation of the consistency factor Kno-inter of a non-interactive model for blends of
Soybean-Protein-Isolate (SPI)/Wheat-Gluten (WG)/Corn-Starch (CS).

Samples X Linear
Fitting Equation R2 Exponential

Fitting Equation R2

Power
Function
Fitting

Equation

Logarithm
Fitting

Equation

SPI/CS CS% K = −116720x + 119148 0.9999 K = 194371e−3.371x 0.813 \ \

SPI/WG WG% K = −115708x + 119287 1.0000 K = 184951e−3.143x 0.828 \ \

WG/CS CS% K = −934.88x + 3928.5 0.9993 K = 3945e−0.271x 1.000 \ \

SPI-WG/CS = 1/1 SPI% K = 115934x + 3309.6 1.0000 K = 4419.1e3.7195x 0.931 \ \

SPI-WG/CS = 1/3 SPI% K = 116226x + 3132.7 1.0000 K = 4133.8e3.7382x 0.923 \ \

SPI-WG/CS = 3/1 SPI% K = 115736x + 3556.7 1.000 K = 4667.1e3.5954x 0.926 \ \

As for the consistency factor Kno-inter, the decisive factors R2 of the linear fitted equation
were 0.9999, 1.0000, 0.9993, 1.0000, 1.0000, and 1.0000, respectively, while the R2 of the
exponential fitted equation was 0.813, 0.828, 1.000, 0.931, 0.923, and 0.926 for each blend,
indicating that linear equation was suitable for describing the relationship between mass
fraction and Kno-inter, for the R2 was stable and was almost 1.0000, which suggested the
R2 of linear equations between mass fraction and measured K values may serve as the
index presenting the interaction degree of components in the blend. In the linear equation
between mass fraction and K, a further R2 from 1 indicates a higher degree of interaction.
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3. Discussion

Protein and starch are the main components in plant protein extrusion, and each of
them may form a continuous phase [8]. Blends with different proportions of protein and
starch exhibit different phase separation behavior and rheological behavior with different
K and n values, which might be related to the fibrous structure formation of extruded
textured plant proteins.

To study a protein/starch blend’s rheological behavior, the consistency factor K
and the viscosity exponent n of soybean-protein-isolate/wheat-gluten/corn-starch blends
were investigated.

Reference [10] illustrates that n increases and K decreases as Corn-Starch (CS) content
increases in soybean-protein-isolate (SPI)/CS blends, presenting similar trends to our
results. Reference [11] found increasing n and decreasing K in SPI/Wheat-Gluten (WG)
blends when WG increases, also presenting similar trends to our results. The authors
of [12] studied the flow behavior of wheat–starch/WG blends under certain conditions
(35% moisture content, 140 ◦C) and found that the viscosity exponent n increased and
consistency factor K decreased with the increase in wheat–starch content, which is different
from our results, and we believe this is because the wheat–starch had totally gelatinized at
140 ◦C and replaced gluten to become the dominant continuous phase in the blends [12,13].

Two different polymers will interact with each other when mixed, either by combin-
ing them together or by separating them [14,15]. To test the interaction degree, an ideal
model with no interaction was constructed and used as a standard to compare with the
measured values. The larger the difference between the non-interactive model values and
the measured values, the higher degree of binary interaction in the blend. The relationship
between the mass fraction of components and consistency factor Kno-inter or viscosity ex-
ponent nno-inter of a non-interactive model was evaluated with linear, exponential, power
function and logarithmic equations. Only the linear relationship between mass fraction
and Kno-inter was stable, and all the R2s of the equations were almost 1.000. Thus, the R2 of
the linear equations between mass fraction and measured K values may act as the index
presenting the interaction degree of components in the blend, where a further R2 from 1
indicates a higher degree of interaction. After the linear relationship between measured
consistency factor K and the mass fraction of components was calculated and the deviation
from R2 = 1 was evaluated, we found that the R2 of the relationship between measured K
and mass fraction in SPI/CS, SPI/WG/CS (WG/CS = 3/1), SPI/WG/CS (WG/CS = 1/3),
SPI/WG/CS (WG/CS = 1/1), SPI/WG, and WG/CS were 0.872, 0.785, 0.697, 0.597, 0.574,
and 0.073, respectively, and the deviation from R2 = 1 was 0.128, 0.215, 0.303, 0.403, 0.426,
and 0.927, respectively. Those may indicate that it is also the sequence of the increasing
degree of the binary interaction.

Different from a low concentrated system, the degree of binary interaction in a highly
concentrated system is related to the molecular morphology. SPI is mainly composed of
globulins corresponding to storage proteins of soybeans, including 7S and 11S, whose
thermal transforming temperature ranges between 89.97 ◦C(7S) and 108.79 °C(11S) with
50% moisture [16,17]. The Tp of the SPI sample in the experiment with 50% moisture
was 106 ◦C, which indicates that SPI retains a partially globular morphology under 50%
moisture at 80 ◦C. The microstructure of gluten networks has revealed that the interacting
and interpenetrating proteins could form a continuous network [18,19]. The glutenin
fraction comprises aggregated proteins linked by inter-chain disulfide bonds [20]. Imaging
techniques show strong evidence that gliadins interact at a molecular level with each other
via physical forces, including hydrogen and ionic interaction [21]. The WG/CS blends with
50% moisture, similar to wheat flour dough, even to sourdough with low pH or waxy flour
dough, where the starch is observed to be embedded in the continuous protein matrix and
form a stable structure [22,23]. As for WG/SPI blends, the soy globular protein bodies
are immersed in the gluten fibrils, interfering in the continuous gluten network [11]. It is
possible that both binaries with globular morphology are not interactive. However, there is
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an equal possibility (which requires further investigation) that the introduced component
with network morphology is likely to form a high degree of interactive structure.

4. Materials and Methods
4.1. Materials

Soybean-protein-isolate (SPI) was supplied by DuPont (Zhengzhou, China), with
protein and water content of 89.43% (dry basis) and 5.79%, respectively. Corn-starch (CS)
was supplied by Ingredien (Shanghai, China), with corn and water content of 99.38% (dry
basis) and 11.85%, respectively. Wheat-Gluten (WG) was supplied by Lianhua Group
Ltd. (Zhoukou, China), with protein and water content of 77.30% (dry basis) and 7.49%,
respectively.

4.2. Differential Scanning Calorimetry

The DSC curves were obtained using thermal analysis systems (Q-200, TA Instruments,
New Castle, DE, USA). Samples were conditioned in hermetic aluminum TA pans with
50% moisture, weighed (8–10 mg) using a precision balance (±0.01 mg, Analytical Plus,
Mettler Toledo), and heated at a rate of 10 ◦C min−1 between 20 and 130 ◦C under an inert
atmosphere (50 mL min−1 of dry N2). The reference was a void aluminum TA pan. The
onset temperature (To), peak temperature (Tp), and enthalpy (∆H) were computed from
the curves by the Universal Analysis Program, Version 1.9 D (TA Instruments).

4.3. Samples Preparation

The blends of SPI, CS and WG were made at the ratios listed in Table 4. According
to the barrel, the moisture content was in the range of 40–60% during high moisture
extrusion of plant-based protein, so the moisture content of 50% was chosen in all tests.
Water was added to each protein–starch blend (as part of the total sample mass at a dry
base) and mixed in a food cooker HR7633/10 (Philips, Holland). The water content of the
protein and starch was determined and included in the total amount of water added to
the dry blend. The moisture content of the blends was checked using the AACC method
(1995). The conditioned samples were packed in plastic bags and kept at 4 ◦C overnight for
equilibration.

Table 4. Blends of Soybean-Protein-Isolate (SPI)/Wheat-Gluten (WG)/Corn-Starch (CS) at different
mass fractions.

Samples SPI(%) WG(%) CS(%)

1 100 0 0

2 0 100 0

3 0 0 100

4 75 25 0

5 50 50 0

6 25 75 0

7 75 0 25

8 50 0 50

9 25 0 75

10 0 75 25

11 0 50 50

12 0 25 75

13 60 10 30

14 60 20 20

15 60 30 10

16 80 10 10
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4.4. Rheology Measurements

A capillary rheometry (Göttfert, RHEOGRAPH 25; Buchen, Germany) of a dual barrel
system was used to measure the shear viscosity of the samples. Round hole capillaries
with an inside diameter (1 mm) and length (10 mm) were used. The length/diameter
(L/D) value of the selected capillary was 10. The capillary was fixed at the bottom of
the barrel. Generally, during high moisture extrusion of plant-based proteins, the barrel
temperature is higher than 100 ◦C, which will cause rapid moisture dissipation and bake
the samples during rheology measurements. Thus, the temperature of 80 ◦C was selected,
which was close to 100 ◦C and caused slow dissipation. The temperature was set at 80 ◦C
along the barrel during the experiment. The barrel was filled with a similar quantity of each
sample, and it took about 6 min to complete a filling. The piston was allowed to contact
the sample in the barrel; the piston moved down and stopped at the first appearance of
dough at the bottom of the capillary. Then, the sample was allowed to equilibrate for 5 min
before starting the test. The experiments were performed at increasing apparent shear
rates (10–1000 s−1) corresponding to increasing piston speeds. The pressure needed to
extrude the sample through the capillary was recorded. The tolerance of the measuring
pressure was set as 2%, and the pressure was recorded upon reaching a steady state within
this tolerance.

The power law model, Equation (1), was used to fit the viscosity results of blends [24].

η =
τ
.
γ
= K

.
γ

n−1 (1)

where η is the shear viscosity, τ is the shear stress,
.
γ is the shear rate, K is the consistency

factor, and n is the viscosity exponent.
There are Newton regions and non-Newton regions for all samples, with shear rates

increasing from 0 to 1000 s−1. Using the more accurate models to fit the two flow behaviors
will make the study complex; the universal power law equation was used to describe the
rheology characterization. The power law equation and parameters (n, K) of samples were
obtained via Origin 2022, and all the coefficients of determination (R2) of fitting models are
no less than 0.9860. In detail, fit the shear rate and its corresponding viscosity data with
the power law function and obtain K and n values using the nonlinear curve fit function
of Origin 2022. With the power law model of each component, the viscosity data of each
component at a certain shear rate can be calculated. To assess the repeatability of the
capillary rheometry measurement, the measurements with 100% SPI, 100% WG, or 100%
CS were repeated in separate runs. The power law equation and parameters (n, K) of
three samples were repeatable, with variances less than 1%. Thus, for all other blends, one
capillary rheometry measurement was carried out.

4.5. A Non-Interactive Model

The blend viscosity was supposed to be related to the proportion and the viscosity of
each component when there was no interaction [25]. A non-interactive model, where the
rheological properties were linearly correlated with the mass fraction of each component,
was presumed. The value of blend viscosity from this non-interactive model was calculated
in Equation (2)

ηno−inter =
W1η1 + W2η2 · · ·+ Wnηn

W1 + W2 · · ·+ Wn
(2)

where ηno-inter is the calculated blend viscosity, Wn is the mass fraction of each component,
and ηn is the viscosity of each component at a certain shear rate, which is calculated with
the power law model of each component.

Then, Kno-inter and nno-inter were fitted from the power law model with ηno-inter and the
corresponding shear rate. These Kno-inter and nno-inter of the non-interactive model were
merely used as a standard to compare with the measured K and n values of all samples. The
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larger the difference between the measured values and the values from the non-interactive
model, the higher the degree of interaction within the components of the blends.

4.6. Statistical Analysis

All the statistics in this study were calculated by PASW Statistics 18.0 software, and the
equation fitting was achieved by origin 2022 (Origin Lab, Northampton, USA). The content
scatter diagrams and the relationship between K or n and mass fraction of SPI/WG/CS were
drawn and fitted by EXCEL. The relationship between the mass fraction of components
and K or n included linear equations, exponential equations, power function equations,
and logarithmic equations.

5. Conclusions

The rheological properties of different blends with different Soybean-Protein-Isolate
(SPI)/Wheat-Gluten (WG)/Corn-Starch (CS) ratios were investigated through capillary
rheometry. The blends exhibited shear thinning behavior at 50% moisture and 80 ◦C, with
the viscosity exponent n ranging from 0.245 to 0.466. CS content in SPI/CS blends and WG
content in SPI/WG blends showed a positive correlation with the viscosity exponent n and
a negative correlation with the consistency factor K. However, there was no correlation
between the WG content and n or K in WG/CS blends. The coefficient of determination of
the linear relationship between K and mass fraction in SPI/CS, SPI/WG/CS, SPI/WG and
WG/CS decreased from 0.872 to 0.073. SPI is more likely to form a non-interactive structure,
while Wheat-Gluten is more likely to form a highly interactive structure. It turned out that
both binary and globular morphology, such as Soybean-Protein-Isolate and Corn-Starch,
are likely to form a non-interactive structure.
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