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Abstract: The COVID-19 pandemic is caused by SARS-CoV-2; the spike protein is a key structural
protein that mediates infection of the host by SARS-CoV-2. In this study, we aimed to evaluate the
effects of signal peptide on the secretion and release of SARS-CoV-2 spike protein. Therefore, we
constructed a signal peptide deletion mutant and three signal peptide site-directed mutants. The (H)
region and (C) region in the signal peptide of L5F-513I mutant have changed significantly, compared
with wild type, L5F and S131. We demonstrated the effects of signal peptide on the secretion and
synthesis of RBD protein, finding that mutation of S13 to I13 on the signal peptide is more conducive
to the secretion of RBD protein, which was mainly due to the shift of the signal peptide cleavage site
in the mutant S131. Here, we not only investigated the structure of the N-terminal signal peptide
of the SARS-CoV-2 spike protein but also considered possible secretory pathways. We suggest that
the development of drugs that target the signal peptide of the SARS-CoV-2 spike protein may have
potential to treat COVID-19 in the future.
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1. Introduction

At the beginning of 2020, a serious outbreak of pneumonia was attributed to a novel
coronavirus [1,2]. Six human coronaviruses (HCoVs), HCoV-229E, HCoV-OC43, HCoV-
NL63, HCoV-HKU1, SARS-CoV and MERS-CoV, were known to infect humans [3]. The
first four viruses usually cause relatively mild cold-like symptoms in those with a healthy
immune system, whereas the latter two viruses are zoonotic viruses and can cause serious
respiratory disease and death. The beta-coronavirus SARS-CoV-2 has now become the
seventh discrete coronavirus species that is capable of causing human disease [4]. SARS-
CoV-2 is easily transmitted and highly pathogenic [5] and COVID-19 was declared a
pandemic by the WHO (https://www.who.int/, accessed on 27 July 2022).

The total ssRNA genome of a SARS-CoV-2 strain, isolated from a patient with novel
coronavirus pneumonia, was found to contain 29,903 base pairs (GenBank: MN908947.3).
Coronavirus spike proteins are involved in binding and fusion of the virus with the host cell
membrane, and initial studies showed that the spike protein of SARS-CoV-2 is very similar
to that of SARS-CoV. This suggested that angiotensin converting enzyme 2 (ACE2), which
was known to be a receptor for SARS-CoV spike protein, may also be an important receptor
for the SARS-CoV-2 spike protein [6,7]. Further studies showed that the SARS-CoV-2 spike
protein has a higher binding affinity than SARS-CoV spike protein for ACE2, indicating
that SARS-CoV-2 may be more invasive than SARS-CoV [8]. The SARS-CoV-2 spike protein
has two main domains, 51, which is responsible for binding to the receptor, and S2, which
is responsible for fusion with the host cell membrane [9].

Molecules 2022, 27, 6688. https:/ /doi.org/10.3390/molecules27196688

https://www.mdpi.com/journal /molecules


https://doi.org/10.3390/molecules27196688
https://doi.org/10.3390/molecules27196688
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://www.who.int/
https://doi.org/10.3390/molecules27196688
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196688?type=check_update&version=1

Molecules 2022, 27, 6688

2 0f 10

A trend towards variation has been observed in SARS-CoV-2. Multiple SARS-CoV-2
variants have been reported, such as the RBD mutation that appears in lineages B.1.1.7
(Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.617.1 (Kappa), B.1.351 (Beta),
P2 (Zeta), B.1.526 (Iota), B.1.617.2 (Delta) and B.1.1.529 (Omicron) [10-13]. These studies
indicate that genetic variations in the virus lead to changes in the interactions between virus
and host and will affect the selection of drugs and treatment regimens in clinical practice.

Many studies have shown that the spike protein is key to viral infection and could
potentially be a therapeutic target. Research on the SARS-CoV-2 spike protein, mainly
focused on receptor identification [14,15], structural analysis [16], regulation of spike protein
binding to its receptor [17,18] and natural products as inhibitors to affect the function of
SARS-CoV-2 spike protein [19]. In particular, the receptor binding site of the spike protein
had become an important target for the development of SARS-CoV-2 therapeutic antibodies
and vaccine design [14,20]. However, there are few reports describing regulation of spike
protein expression or processing modifications and release of the protein. In eukaryotic cells,
translated proteins must undergo a series of processing modifications and be secreted to
become functional proteins with biological activity, and these steps are typically governed
by an N-terminal signal peptide [21]. In this study, we investigated the potential effects of
signal peptides on the expression and secretion of SARS-CoV-2 spike protein to find novel
drug targets for the treatment of COVID-19.

2. Results
2.1. Bioinformatics Analysis Signal Peptide of SARS-CoV-2 Spike(S) Protein

Sequences analysis of the signal peptide of SARS-CoV-2 spike protein was shown
(Figure 1A). SignalP (Department of Health Technology, Technical University of Denmark,
Kgs Lyngby, Denmark) is a freely available web-based tool that uses a deep neural network-
based approach to predict the presence and cleavage sites of signal peptides in amino
acid sequences from different organisms [22]. The signal peptide structure of SARS-CoV-2
spike protein was analysis using bioinformatics online analysis tools SignalP version 3.0
(http:/ /www.cbs.dtu.dk/services/SignalP-3.0/, accessed on 18 May 2022). The signal
peptide of SARS-CoV-2 spike protein can be divided into three regions, an N-terminal
(N) region, a central hydrophobic (H) region and a C-terminal (C) region (Figure 1B). The
positive charge on the N region of the signal peptide has been shown to contribute to
efficient post-translational translocation of small prerequisite proteins [23]. The H region of
the signal peptide sequence is mainly responsible for recognition and binding by the signal
recognition particle [24]. Comparing with the structures of wild type signal peptide, we
found no significant change in the single-point mutant L5F, but significant changes in the
(C) region of single point mutant S13I (Figure 1B). It is interesting that the (H) region and
(C) region of L5F-5131 mutant have changed significantly, compared with wild type, L5F
and S13I (Figure 1B). In addition, after the mutation of S13 to 113, the cleavage position at
Q14 and V16 of the region (C) of mutants S131 and L5F-513I also shifted compared with
wild-type and mutant L5F, respectively (Figure 1B) The results indicated that the mutation
of signal peptide may affect the expression, secretion and modification of SARS-CoV-2
spike protein.
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Figure 1. Signal peptide comparison of SARS-CoV-2 spike protein. (A) Signal peptide sequences of
SARS-CoV-2 spike protein. (B) Signal peptide structural analysis by SignalP 3.0. WT means wild-type
signal peptide of S protein; The mutants L5F and S13I were present in Iota (B.1.526) and Epsilon
(B.1.429) variants; L5F-5131 was a newly constructed double mutant.

2.2. Signal Peptide Targets SARS-CoV-2 RBD Protein to the Endoplasmic Reticulum

In order to determine the effect of signal peptides on the expression of the RBD
protein and the localization of the endoplasmic reticulum, recombinant plasmids pEGFP-
ARBD, pEGFP-RBD, pEGFP-RBD-L5F, pEGFP-RBD-5131 and pEGFP-RBD-L5F-S131 were
transiently transfected into HEK293T cells, respectively, and then cell fixation, DAPI, red
fluorescent probe staining of endoplasmic reticulum and fluorescence microscopy were
performed. As shown in Figure 2, EGFP protein and all fusion proteins could be expressed
normally, indicating that the signal peptide had no significant effect on the expression of
RBD protein. However, after the deletion of signal peptides, EGFP protein and ARBD-
EGFP fusion protein were mainly distributed in the nucleus, and only a small amount
is distributed in the cytoplasm. The RBD-EGFP protein and mutant RBD-EGFP fusion
protein containing signal peptides are mainly distributed in the cytoplasm, and a small
amount is distributed in the nucleus (Figure 2). In addition, there are many more proteins
in the cytoplasm of mutations S13I and L5F-513I, compared to wild type and mutant L5F,
which may be mainly due to the mutation at the 513 site in the signal peptide. These results
suggest that the (C) region amino acid sites in signal peptide have an important influence
on the localization of the endoplasmic reticulum of the SARS-CoV-2 spike protein, which
means that the (C) region sites may become important candidate targets for drug design.
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Figure 2. Signal peptides mediate the localization of SARS-CoV-2 RBD protein. WT means wild-type
signal peptide of S protein; The mutants L5F and S13I were present in Iota (B.1.526) and Epsilon
(B.1.429) variants; L5F-S13I was a newly constructed double mutant. The fluorescence for EGFP
(green), DAPI (blue), ER-Tracker-Red (red) and the merge of the three channels are displayed.

2.3. Signal Peptide Promotes the Secretion Levels of SARS-CoV-2 RBD Protein

To further evaluate the effects of signal peptide on the secretion and release of SARS-
CoV-2 spike protein, the green fluorescence intensity in cell culture supernatants were
detected to determine the secretion of the fusion protein. After the HEK293T, EGFP,
Asp-RBD, WTsp-RBD, L5F, 5131 and L5F-5S13I cell lines were normally cultured for 48 h,
the culture supernatant was collected by low speed centrifugation, and then the green
fluorescence intensity in the supernatant was detected by a multifunctional microplate
reader. The results showed that the relative fluorescence intensity in the supernatant of
EGFP and Asp-RBD cells were lower, which was significantly different from that in the
supernatant of mutant L5F, S13I and L5F-513I cells (Figure 3). This implies that EGFP and
Asp-RBD proteins could not be secreted to the extracellular without the signal peptide,
while WTsp-RBD, L5F, S13I and L5F-513I proteins could be secreted extracellular after
modification mediated by signal peptide. The relative fluorescence value of mutant S13l and
L5F-513I was significantly, compared to the mutant Asp-RBD, which was also suggested
that mutation of S13 to 113 on the signal peptide is more conducive to the secretion of
RBD protein.
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Figure 3. Analysis of RBD protein release regulated by signal peptide. WT means wild-type signal
peptide of S protein; the mutants L5F and S13I were present in Iota (B.1.526) and Epsilon (B.1.429)
variants; L5F-S13I was a newly constructed double mutant. Statistical significance was defined as
p <0.05,and * p < 0.05.

3. Discussion

Recent progress in biology and medicine has enabled the development of many new
drugs for the treatment and prevention of diseases. It is interesting that many membrane-
bound and secretory proteins in the conventional secretory pathway have been identified
as potential targets for drug design [25]. In the conventional secretory pathway, signal
peptides located at the N-terminus of precursor proteins guide these proteins into the ER
to complete post-translational processing and modification [21,26]. Some research groups
have, therefore, chosen to focus on identifying small molecules that can specifically bind to
the signal peptide, and thus inhibit the normal expression of the target protein [25,27,28].
Such studies have clearly demonstrated that signal peptides can be used to design drugs
for specific target proteins.

It has been shown that increasing the hydrophobicity of the (H) region of a signal
peptide can enhance the production of full length monoclonal antibodies [29]. The effects
of a variety of different signal peptides on antibody yield were evaluated in an attempt
to increase production of VRCO01, a broadly neutralizing antibody against HIV [30]. As
another example, the insertion of a cleavable leucine-rich signal peptide into olfactory
receptors has been shown to increase expression of the receptors on the surface of HEK293T
cells [31]. In our research, the mutants L5F and 5131 were present in SARS-CoV-2 of lota
(B.1.526) and Epsilon (B.1.429) variants. However, although the mutant of L5F and L5F-5131
on the signal peptide of RBD protein, the expression of proteins could not significantly
increase (Figures 2 and 3). Studies had shown that the positive charge on the (IN) region
of the signal peptide has been shown to contribute to binding by the signal recognition
particle and efficient post-translational translocation of small prerequisite proteins [32,33].
It was suggested the (N) region of the signal peptide plays a key role in protein expression.
Because the mutant L5F was in the (N) region of the signal peptide, we hypothesized that
the L5 sites of the signal peptide may not have significant effects on the expression of
SARS-CoV-2 spike protein.

Protein glycosylation is one of the most important forms of post-translational modifica-
tion and 50-70% of cellular proteins may be glycosylated [34]. Glycosylation plays a role in
regulating the localization, function and activity of proteins in tissues and cells [35-37]. In
eukaryotes, glycosylation of most cellular proteins takes place along the secretory pathway,
which begins in the ER and is completed in the Golgi apparatus [38]. The N-terminus of
the SARS-CoV-2 spike protein contains a signal peptide (Figure 1), which indicates that
synthesis, processing and release of the spike protein in the ER are mediated by the signal
peptide. So far, 22 N-linked glycosylation sites and 17 O-linked glycosylation sites have
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been identified in the SARS-CoV-2 spike protein [39]. In addition, Veesler et al. though mass
spectrometry and structural studies, revealing that the S13I mutation resulted in total loss
of neutralization for 10 of 10 NTD-specific mAbs because the NTD antigenic supersite was
remodeled by a shift of the signal peptide cleavage site and the formation of a new disulfide
bond [40]. Therefore, signal peptide plays an important role in the expression, secretion and
modification of SARS-CoV-2 spike protein. In our study, mutants L5F and S13I occur on the
signal peptide, and S13], in particular, could significantly increase the secretory capacity of
the RBD protein, which suggests that S13 was a key site on the signal peptide. In addition,
the glycosylation of viral structural proteins is closely associated with viral replication,
infectivity and the host immune response [41-43]. The shielding of receptor binding sites
by glycosylation is a common feature of viral glycoproteins and can be observed with
SARS-CoV spike protein, HIV-1 envelope protein, influenza virus hemagglutinin and Lassa
virus glycoprotein precursor [44]. HIV-1 envelope glycoprotein gp160 is directed to the ER
by its signal peptide and the premature cleavage of the mutated gp160, compared with
wild-type gp160, results in a virus with significantly reduced adaptability [45].

Based on the above analyses, we are convinced that the synthesis and secretion
of SARS-CoV-2 spike proteins take place through the conventional secretion pathway
(Figure 4). We speculate, therefore, that the signal peptides may play an important role
in the synthesis, processing modification and secretion of SARS-CoV-2 spike protein, and
thus represent a new target for drug design. Drugs that interfere with the co-translational
translocation of new polypeptide chains have the potential to reduce the expression of many
cell surface receptors and secretory proteins that are important therapeutic targets [46,47].
For example, the small molecule cyclotriazadisulfonamide (CADA) selectively downreg-
ulates the expression of CD4, the primary receptor for human immunodeficiency virus
(HIV) and simian immunodeficiency virus, and thus inhibits viral replication and reduces
pathogenicity [27,48]. Another small molecule, CAM741, which is an analog of the cyclo-
heptadepsipeptide fungal metabolite HUN-7293, is a signal peptide-selective inhibitor of
protein co-translation translocation [28].

5

Figure 4. Proposed secretion pathway of SARS-CoV-2 spike protein. (D New polypeptide-SRP-
ribosomal complex binding to SR on ER membrane. 2) SRP separates from its receptors and promotes
the tight binding of ribosomes and ER membranes to protein translocon channel. (3) The extended
polypeptide passes through the membrane structure into the ER cavity as translation continues.
(@ The signal peptidase inside the ER membrane cavity cleaves the signal peptide after recognizing
the signal peptide cleavage site of the polypeptide, and the remaining polypeptides continue to
undergo co-translational translocation through the ER membrane. SP: signal peptide. SRP: signal
recognition particle. SR: signal receptor. TC: translocon channel. ER: endoplasmic reticulum. SPC:
signal peptidase cleavage.
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4. Materials and Methods
4.1. Bacterial, Plasmids Construct and Cells Culture Conditions

The E. coli DH5« was used to cloning host strain. All bacterial strains in our experiment
were cultured in LB medium at 37 °C and kanamycin was added as needed. HEK293T cells
were cultured in DMEM (Gibco, Waltham, MA, USA) broth containing 6% fetal bovine
serum (FBS) and 1% at 5% CO; and 37 °C. SARS-CoV-2 RBD gene fragment was derived
from our previous experiment. The plasmid fragment of pEGFP-N1 was obtained by PCR
to construct recombinant expression vector. The signal peptide mutants of SARS-CoV-2
spike protein were constructed by reverse PCR. The primers were listed in Table 1.

Table 1. Primers used in this study.

Primers Name

Sequence (5'-3')

pEGFP-F
pEGFP-R
ARBD-F
ARBD-R
RBD-F
RBD-R
L5F-F
L5F-R
S13I-F
S13I-R

CATCATCACCATCACCATGGATCCACCGGTCGCCACCATGGTG
GGTGGCGAATTCGAAGCTTGAGCTC
GAGCTCAAGCTTCGAATTCGCCACCATGAATATTACAAACTTGTGCCCTTTITG
TGGATCCATGGTGATGGTGATGATGCTCAAGTGTCTGTGGATCACGGAC
CTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATATTACAAACTTGTGCCCTTTTG
CTAGAGACTAGTGGCAATAAAACAAGAAAAACAAACATGGTGGCGAATTCGAAGCTTGAGCTC

TTGTTTTTTTTGTTTTATTGCCACTAGTCTCTAGTC
CAATAAAACAAAAAAAACAAACATGGTGGCGAATTCG
CTAGTCTCTATTCAGTGTGTTAATATTACAAACTTGT
ACACACTGAATAGAGACTAGTGGCAATAAAACAAGA

4.2. RBD Proteins Expressed and Intracellular Fluorescence Assay in HEK293T Cell

The SARS-CoV-2 RBD proteins were expressed by transiently transfecting HEK293T
cells with recombinant plasmid pEGFP-ARBD (None signal peptide), pPEGFP-RBD, pEGFP-
RBD-L5E, pEGFP-RBD-513I and pEGFP-RBD-L5F-5131. HEK293T cells were placed in a
35 mm confocal dish with 1 x 10* per plate in advance and cultured in 5% CO, cell incu-
bator at 37 °C for 24 h. After the cells grew well, recombinant plasmids were transfected
according to the method of PEI transfection reagent. Cell culture medium was discarded
after 6 h and a new serum-free medium was used for further culture. After 24 h of culture,
the medium were removed and cells were rinsed with PBS buffer twice. Next, the cells
were fixed with 4% paraformaldehyde at room temperature for 15 min. Paraformaldehyde
was removed and cells were rinsed with PBS 3 times, DAPI dye (Cat. No.: C1005, Beyotime,
Shanghai, China) or endoplasmic reticulum red fluorescent probe (Cat. No.: C1041, Bey-
otime, Shanghai, China) diluted 1000 times were added, and the cells were incubated at
room temperature without light for 5 min or 20 min. The cells were rinsed with PBS 3 times,
and 1-2 drops of anti-fluorescence quenching agent were added. Photos were taken under
the fluorescence microscope after the slides were covered.

4.3. RBD Protein Secretion Detection

Recombinant plasmids were transiently transfected HEK293T cells; SMM 293-T1
medium (Sino Biological, Beijing, China) was used to replace DMEM medium before
transfection. After 48 h culture, cell fragments were removed and supernatant was collected
by centrifugation at 12,000 x g for 3 min at room. The 200 puL supernatant sample was
added to a 96-well black plate, and the fluorescence absorption value was read by the
microplate instrument. The detection conditional excitation wavelength was 485 mm, and
the transmission wavelength was 515 mm. The relative fluorescence value is expressed by

the following Equation (1):
S—N o
Rffip_leoo/o 1)

Rf: the relative fluorescence value;
N: fluorescence value of negative control (HEK293T);
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P: fluorescence value of positive control (pEGFP-RBD);
S: fluorescence value of target sample.

4.4. Statistical Analysis

For all experiments, unless stated otherwise, three independent were performed.
Statistical analysis were drawn using GraphPad Prism software (version 5.0, GraphPad
Software, San Diego, CA, USA). Significant differences were determined by one-way analy-
sis of variance followed by the Tukey’s multiple comparison test. Statistical significance
was defined as p < 0.05.

5. Conclusions

Signal peptides have huge potential as drug design targets and are also very important
in vaccine production. This is the first study to report about the signal peptide of SARS-CoV-
2 spike proteins. We analyzed the signal peptide structure of SARS-CoV-2 spike protein
and found that the mutants L5F and S13I could change regions. In particular, the mutant
513I could shift the signal peptide cleavage site in the (C) region on the signal peptide.
Compared with wild type and mutant L5F, the mutants S13I and L5F-513I can promote the
secretion of SARS-CoV-2 RBD protein. In order to further clarify the role of L5F and S13I
mutations on signal peptides, it was found that S13 is a key site on signal peptides that
may play an important role in the expression, modification and secretion of SARS-CoV-2
spike protein. Moreover, we propose that signal peptides may be effective targets for the
design of drugs to treat SARS-CoV-2 infections.
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