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Abstract: Computational and experimental approaches were adopted to utilize a chromophore digly-
colic functionalized fluorescein derivative as a Ca2+ receptor. Fluorescein diglycolic acid (Fl-DGA, 1)
was synthesized and used in multivariate determination of Ca2+ and K+. Full-structure computation
shows that the complexes of 1 and Ca2+ have comparable energies regardless of additional interaction
with lactone moiety. The initial formation of diglycolic-Ca2+ complex followed by macrocyclization is
thermodynamically disfavored. A U-shaped pre-organized 1 allows Ca2+ to interact simultaneously
with diglycolic and lactone motifs. Both motifs actively participate in Ca2+ recognition and the eleven
methylene units in the undecyl arm provides excellent flexibility for reorganization and optimum
interaction. Principal component analysis (PCA) of computational molecular properties reveals a
simple method in evaluating motifs for cation recognition. Fragment models support full-structure
results that negative charge causes significant structural changes, but do not reproduce the full
extent of C-O bond breaking observed in the latter. Experimental optical responses show that 1 is
selective towards Ca2+ and discriminates against K+ and Mg2+. PCA of emission intensities affords
distinct clusters of 0.01, 0.1 and 1 mM Ca2+ and K+, and suggests applicability of this technique for
simultaneous determination of cationic plant macronutrients in precision agriculture and a wide
variety of other applications.

Keywords: fluorescein diglycolic acid; calcium; multivariate; DFT; principal component analysis

1. Introduction

Fluorescein derivatives are one of the most widely used chromophores in the labelling
of biomolecules. The hydrophilic nature of fluorescent dyes greatly contributes to its com-
patibility with biological systems such as in enzyme detection and cell tracking. Fluorescent
sensors have successfully been utilized in imaging cell structures and for analyzing bio-
physical processes: for example, in the detection of Alzheimer’s disease and the activity of
certain enzymes, as well as pH and the concentration of certain metal ions [1–4]. Due to its
versatility and widespread utility as a fluorescent probe, numerous synthetic routes have
been reported on xanthene dyes and fluorescein derivatives [5,6]. The xanthene core has
also received considerable interest from the computational community, helping to highlight
the importance of its numerous forms [7].

The development of optical sensors for metal cations has attracted much attention
due to their wide applications, which provide reliable and highly sensitive detection of
bioanalytes and chemical species [8,9]. Calcium and magnesium are of significant interest in
biological analysis due to their role as essential nutrients in human body for bone formation
and as intercellular messengers [10]. In precision agriculture, the two alkaline earth metals,
in addition to potassium, are macronutrients and thus consumed in large quantities by
plants. Potassium is required for fruit formation and carbohydrate metabolism. Calcium
participates in cell division, respiration, and nitrogen metabolism, whereas magnesium
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plays a critical role in chlorophyll production and the activation of plant enzymes [11,12]. To
avoid excessive fertilization, which gives rise to a greater extent of fertilizer run-off that can
severely contaminate sources of fresh water and cause economic loss, such macronutrients
need to be monitored [13,14]. For the divalent cations- Ca2+ and Mg2+, the conventional
sensing method often leads to discrepancies between calibration equations and actual
sensor characteristics attributed to erroneous or inaccurate sensor measurement [15,16].
This is the main cause of sensor signal drift error. Another common cause of sensor signal
error is false signal due to interfering ions that compete with the target analyte. Thus,
algorithms that compensate for the signal error due to these reasons are required.

The principal component analysis (PCA) method has been successfully implemented
to determine chemical concentrations, standard formulations, industrial quality control
and detection of food adulteration [17,18]. In this approach, variations in the variables are
transformed into a few important components with the highest eigenvalues [19]. The score
plot of the first two or three components typically afford distinct clusters that represent
the populations of chemicals or standard formulations. We aim to simplify the complexity
in the discrimination of these divalent cations by transforming the high-dimensional data
into fewer dimensions, while retaining trends and patterns which will act as summaries of
quantification features.

We earlier demonstrated a rational design of cation receptors using the DFT method [20–22].
Chemical selectivity could be described by understanding the nature of interaction between
cations and commonly employed functionalities or motifs that include heteroatoms and
various forms of carbonyls [23]. Breaking the carbon-heteroatom bond in lactone or lactam
core presumably contributes to fluorescence enhancement in fluorescein derivatives. This
is supported by the increase in fluorescence activity in alkaline solutions [24,25]. The onset
of the bond-breaking event could be estimated from computational activation energy [26].
The dramatic reduction in the activation barrier has been rationalized in terms of the
weakening of the C-O bond due to anionic substituent (especially alkoxy), the lack of
ion-pair formation due to the chelation of the cation counter ion, formation of a stable
intermediate complex and the absence of solvation [27–29].

In this study, our main interest is the facile functionalization of fluorescein with a
Ca2+ receptor, which, when attached to an extended undecyl arm, provides free movement
for binding with a cation and interacting with the chromophore core and its fragments
(Scheme 1). We describe a rational design of a fluorescent Ca2+ receptor by employing
density functional theory (DFT) computation to examine chromophore and receptor models.
In the proposed fluorophore, the chromophore model comprises phenol with ene-lactone
ring at the α-carbon and the receptor model is a diglycolic acid moiety.

Structural characteristics and energetics of the models and its complexes with cations
are examined to elucidate cation recognition. In particular, the lactone C-O bond distance
and the cation-oxygen bond distances are closely monitored. We are motivated to deter-
mine the roles of the fluorescein core and the diglycolic receptor in Ca2+ recognition. We
explore the potential of utilizing computational molecular properties in the multivariate
determination of cations. Electronic properties such as magnetic shielding coefficients,
atomic valence, total overlap population (TOP) [30,31], atomic charge and bonding orbital
characters are analyzed to extract useful trends that indicate preferential binding to cations
and utilized as variables in multivariate analysis. We hope to gain insights into the effect
of anion on the structure of fluorescein derivatives and its influence on lactone motif and
cation selectivity. Next, a suitable functionalized fluorophore, fluorescein diglycolic acid
derivative 1, subsequently abbreviated as Fl-DGA, is synthesized and its fluorescence emis-
sion responses with Ca2+, Mg2+ and K+ are studied. The emission intensities at wavelengths
in the neighborhood of the maximum emission are taken as variables in PCA. Earlier, we
attempted to use fragments to represent motifs in recognition molecules. Now that we
have experimental and full-structure computational data, we can focus on the question
of whether fragmented models represent reality. We seek the answer to this question in
this report.
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2. Results and Discussion
2.1. Full-Structure Computations

Optimized geometries of full fluorophore-cation complexes provide the most complete
three-dimensional pictures to account for contribution from various motifs in cation recog-
nition. The effect of cation on the structure of fluorophore could be visually inspected, and
vice versa, the influence of motifs in the fluorophore to cation stabilization can be examined.
The optimized geometry of 1 in methanol is obtained by removing Ca2+ from the interacting
complex (Figure 1c). Ca2+ is bound to 1 through the diglycolic arm, which does not interact
with the lactone core, as in Figure 1a, by 18.1 kcal mol−1. However, Ca2+ is bound in
Figure 1c by only 17.7 kcal mol−1. This means the macrocyclization process that transforms
the non-interacting complex in Figure 1a to the interacting one in Figure 1c is disfavored
thermodynamically by 0.4 kcal mol−1. Considering the uncertainties in the employed level
of theory and IEF-PCM model, it is reasonable to assume that the non-interacting and
interacting complexes have similar energies.
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Figure 1. Complexes of 1 and 1a with Ca2+ in methanol; (a) Non-interacting 1-Ca2+, (b) strongly
interacting 1a-Ca2+, and (c) interacting 1-Ca2+.

In the absence of interaction between cation and the chromophore core, the lactone
C7-O22 bond distance in methanol is 1.52 Å (Figure 1a). The C-C bonds in the xanthene
ring system has approximately identical bond distances, i.e., 1.39 Å in C1-C2 and 1.40 Å in
C2-C3.



Molecules 2022, 27, 6248 4 of 21

The spirolactone ring on C7 is perpendicular to the planar xanthene framework. The
undecyl arm moves above the plane with the following turning points and dihedral angles
that position the diglycolic moiety on the right side above the lactone ring; C27 (80◦), C32
(66◦) and C36 (0◦). The diglycolic group is planar and characterized by having three oxygens
interact favorably with Ca2+ with the following bond distances: 2.47, 2.58 and 2.52 Å. The
bond angle involving Ca2+ and two carbonyl oxygens is 124.2◦. The Ca-O bond distance is
indicative of cation binding strength and exhibits the following trend: ester carbonyl (O43)
> acid carbonyl (O44) > ether linkage (O40).

Deprotonations of phenol and diglycolic moieties gives rise to dianion 1a in Figure 1b
which is characterized by having both the chromophore and receptor strongly interacting
with Ca2+. The C-C bonds in the xanthene framework show distinct single and double
bond characteristics: the C1-C2 bond distance shrinks to 1.36 Å while the C2-C3 bond
elongates to 1.44 Å. More importantly, the lactone C7-O22 bond with a bond distance of
2.75 Å is fully broken. The structural evidence suggests that at alkaline pH the phenoxy
core has quinoid character and transforms the lactone ring to an electron rich carboxylate
functionality that in turn binds strongly to Ca2+. The undecyl arm makes dihedral turns at
C27 (80◦) and C32 (72◦) that position the diglycolic group exactly on top of the chromophore,
sandwiching Ca2+ in the middle. Ca2+ makes strong interactions with five oxygens; two in
the chromophore and three in the receptor, having the following bond distances; 2.47, 2.52,
2.39, 2.50 and 2.52 Å, respectively. The anion-bearing oxygen atom (O45) in the receptor has
a shorter bond (2.39 Å) with Ca2+ compared with the ester carbonyl (O43, 2.50 Å) and ether
linkage (O40, 2.54 Å).

Another case of interest is when 1 interacts with Ca2+ at pH neutral. The complex in
Figure 1c shows similar characteristics in the xanthene framework as described earlier in
Figure 1a. The lactone C7-O22 bond appears to be intact with a bond distance of 1.55 Å. Ca2+

interacts with only the lactone carbonyl (O25) in the chromophore with a bond distance
of 2.41 Å. The carboxylic (O45) and ester (O43) carbonyl oxygens give bond distances of
2.52 Å and 2.45 Å, respectively. The ether linkage (O40) interacts weakly with Ca2+ with a
bond distance of 2.61 Å. Ca2+ forms a bond angle of 122.4◦ with the diglycolic carbonyls.
Due to restriction in the undecyl arm, the receptor does not make a perfect perpendicular
alignment to the lactone ring.

A comparison of key properties in Ca2+ complexes with 1 and 1a is provided in Table 1.
In the fully broken C7-O22 bond in 1a, the atomic valences decrease to 3.56 and 1.70 for
C7 and O22, respectively, suggesting the formation of ionic centers. Likewise, 1a is more
capable of reducing the charge of Ca2+ by more than 5% to 1.79, compared to 1.89 with 1.
The Ca-O25 bond in the complex with 1 exhibit greater atomic valence in Ca2+ and higher
total overlap population. The results suggest more efficient and ionic character in the
interaction between Ca2+ and 1a at alkaline pH.

Table 1. Comparison of molecular properties in the interacting complexes of 1 and 1a with Ca2+.

Parameter a 1-Ca2+ b 1a-Ca2+

Ca Valence 0.43 0.41
Ca Charge 1.89 1.79

C6 p-Character 68.6 64.0
Ca-O25 TOP 0.092 0.090
C7-O22 BD 1.55 2.75
C7 Valence 4.90 3.56
O22 Valence 1.95 1.70

a The optimized geometry in Figure 1c. b The optimized geometry in Figure 1b.

Full structure of fluorescein (Fl) and its deprotonated form in methanol provide
insights into the structural effects of fluorescein derivatives such as 1 on its fluorescence
activity. The uncharged form exhibits strong aromatic character with a similar C-C bond
distance of 1.39 Å in the xanthene core. The C6-C7 ring linkage and C7-O22 lactone bond
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distances are 1.51 and 1.52 Å, respectively (Figure 2b). Deprotonation of phenolic hydrogen
(Figure 2c) causes disruption to the xanthene aromaticity; the C3-C4 elongates to 1.43 Å,
indicating a quinoid structure. The formation of the planar 1,4-cyclohexadiene ring system
is accompanied by shortening of the C6-C7 bond to 1.49 Å due to π-overlap within this
bond and with its C1, C5 and C15 neighbors.
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The optimized geometry of 1 in methanol is obtained by removing Ca2+ from the inter-
acting complex (Figure 1c). During optimization, the diglycolic arm rapidly moved away
from the chromophore and in the final structure the undecyl arm makes a 45◦ dihedral
angle from the xanthene plane (Figure 2a). The lactone ring is perfectly perpendicular to
the xanthene ring system. The uncomplexed 1 exhibits a U-shaped conformation, simi-
lar to the non-interacting complex 1-Ca2+ in Figure 1a. The diglycolic receptor is planar
and the undecyl arm makes two critical turning points that decisively dictate the final
geometry: at C32 and O37 with 67 and 66◦ dihedral angles, respectively. Ca2+ is bound to 1
through the diglycolic arm that does not interact with the lactone core, as in Figure 1a, by
18.1 kcal mol−1. However, Ca2+ is bound in Figure 1c by only 17.7 kcal mol−1. This means
the macrocyclization process that transforms the non-interacting complex in Figure 1a to
the interacting one in Figure 1c is disfavored thermodynamically by 0.4 kcal mol−1. Consid-
ering the uncertainties in the employed level of theory and IEF-PCM model, it is reasonable
to assume that the non-interacting and interacting complexes have similar energies.

Significant fluorescence enhancement observed on 1 in the presence of Ca2+ could
still be rationalized in terms of the formation of the interacting complex in Figure 1c. 1
Could have been pre-organized in a U-shaped conformation seen in Figure 2a. Ca2+ could
approach 1 via the area between the lactone core and diglycolic receptor. Ca2+ is then sand-
wiched between the two motifs and this process is thermodynamically feasible. The initial
formation of the diglycolic-Ca2+ complex not in close proximity with the chromophore, but
later approaches the lactone moiety is unlikely. Full-structure results reveal key information
on cation recognition with 1 and help identify key contributors that could be modeled and
studied later in more detail. Eleven methylene units in the undecyl arm gives excellent
flexibility for reorganization and optimum interaction with cation and chromophore core.
Results from full-structure fluorescein and 1 confirm that anionic substituent breaks the
aromaticity of the xanthene core, and two motifs actively participate in Ca2+ recognition:
diglycolic and lactone.

2.2. Chromophore Models and Computational PCA

Chromophore models address key questions regarding the role of fluorescein core
in cation recognition: (i) the effect of pH or the role of phenoxy anion on xanthene core,
(ii) the versatility of the lactone functionality, (iii) the barrier to the lactone ring open-
ing, (iv) the contribution of the chromophore to chemical selectivity, and (v) the charge
transfer to the core and the effect on its structure. Diene lactones 2 and 3 serve as simple
models to examine the interaction of chromophore in 1 with cations. Computations with
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B3LYP/6-311+G(2df,2p) [32] in methanol reveal that cations interact with diene lactone 2
through the carbonyl oxygen (Figure S1b–d).

Using enolate as a model for phenolate, the results in Figure 3a show that at alkaline
pH, the lactone C-O bond in 3a readily breaks and Ca2+ interacts with both oxygens in
the resulting carboxylate (Figure 3c). Deprotonation of enol hydrogen in 3 lengthens the
C3-O7 bond by 4% and shortens the C2-C3 bond by more than 1%, by virtue of the negative
charge in 3a. The charge-to-radius ratio of the cation plays a decisive role in the C3-O7
bond breaking.
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exists in acyclic form.

Figure 4a shows that the de-shielding of the carbonyl carbon (C6) is directly correlated
to this ratio. Another key observation is the increase in the C3 p-character that accompanies
the C3-O7 bond breaking. It indicates the formation of a double bond and π-network
(Figure 4b). Cation transfers its charge mainly to the carbonyl carbon (C6), as can be
observed in the de-shielding of this nucleus. Chromophore-cation binding strength can be
rationalized in terms of stabilization of the HOMO of the chromophore (Figure S2a) [33].
The cation-catalyzed ring opening of the lactone functionality occurs readily and gives
rise to the participation of the chromophore (as carboxylate motif) in cation recognition, as
described later in Section 2.7.

The structural and electronic properties of chromophore models, including those
in the supplementary information, are utilized as variables in multivariate analyses of
these systems. Over fifty variables including bond distance, bond angle, dihedral angle,
NBO charge [34], AOMix [35] atomic valence, AOMix total overlap population, NMR
GIAO shielding coefficient [36] and bond dissociation energy are used as variables in PCA.
Variables from two chromophore systems, enol 3 and enolate 3a were the main sources
due to economic reasons. Data from the gas phase are compared with those in methanol
medium (depicted in Figure 4c as (s)). Determination of two cationic plant macronutrient,
Ca2+ and K+, is the main focus of this study (Figure 4c).

The scree plot in Figure 4d shows the successful transformation of the variance in
the data to three important principal components, PC1, PC2 and PC3, having eigenvalues
of 35.5, 11.2 and 5.0, respectively [37]. Figure 4c displays a score plot of PC2 versus PC1,
showing three pairs of chromophore-cation models [38]. There are six points or three
Ca2+-versus-K+ pairs of interest on the score plot. The scores preferably are far away from
the origin and separated into four distinct quadrons, hereinafter referred to using the
following convention: top-left (Q1), top-right (Q2), bottom-right (Q3) and bottom-left (Q4).
The first case involves the separation of 3a-Ca2+ from 3a-K+ in a vacuum. The two points
(red squares) are very well separated vertically on the right into Q3 and Q2 quadrons,
respectively.

The second scenario is more important to the practical application since it involves
the separation of this pair in the actually used solvent (i.e., methanol denoted by (s)). The
two points (green circles) are even better separated into Q2 and Q1 quadrons, respectively.
The pair with enol 3 chromophore (blue triangles), 3-Ca2+ and 3-K+, is also well separated
vertically on the left into Q4 and Q1 quadrons, in that order. The results suggest that the
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chromophore-cation systems afford distinct clusters and variations in the computational
molecular properties give rise to good cluster separation. Score plots of PC3 versus PC1 and
PC3 versus PC2 have also been analyzed and confirmed most of the extracted information
above, albeit with less separations in certain pairs.
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A scree plot from actual experimental data, employing 1 and fluorescein as fluo-
rophores and with Ca2+ and K+ macronutrients, is provided in Figure 4e for comparison.
The PCA utilized 22 emission intensities from 500 to 600 nm as variables. Diene lactones
have successfully been employed as models in elucidating the nature of interaction between
cations and the xanthene core and the effect of anionic substituent on lactone structure, as
well as in providing molecular properties as variables in PCA. Our results show that ene-
and diene lactones are responsive towards cation, and computational data can be employed
in PCA to evaluate potential motifs for cation recognition. Facile ring opening at alkaline
pH transforms the lactone moiety to carboxylate functionality that enhances selectivity
towards Ca2+.
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2.3. Diglycolic Ca2+ Receptor Models

Computation on diglycolic models seeks to understand the following: (i) the origin of
Ca2+ selectivity with this receptor, (ii) the participation of various types of oxygen atoms,
and (iii) the effect of negative charge. This work focuses on two forms of diglycolic moiety
as receptor for Ca2+; diglycolic acid 4 and diglycolate anion 4a (Figure 5). In the absence
of cation, both 4 and 4a have been optimized as planar structures. In 4 the carboxylic
hydrogen on O8 is in cisoid conformation with O7. For simplicity and economic reasons
hydrogen is used as a substitute for the undecyl arm in 1. The two carbonyl C-O bond
distances in 4 are similar, with a baseline length of 1.22 Å at the aldehyde terminal. The
carboxylic C5-O8 bond is 1.35 Å, whereas, when deprotonated in 4a, the carboxylate C-O
bonds have a common bond distance of 1.26 Å due to resonance. The distances between
the two carbonyl oxygens in 4 and 4a are 4.78 and 4.33 Å, respectively.
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The distance between the carbonyl oxygen (O6) at the aldehyde terminal and the ether
linkage (O3) is 2.74 Å. Cation recognition by 4 or 4a most probably involves three oxygens
in the diglycolic receptor. Ca2+, Mg2+ and K+ having Shannon ionic diameter [39] of 2.28,
1.72 and 3.04 Å, respectively, position itself in the middle, and make distinct cation-O bond
distances and O-cation-O bond angles. The size of the cation and its charge-to-radius ratio
are deciding factors that influence how best the cation fits into the cavity between the three
oxygens. The 4a-Ca2+ complex in Figure 5c has bond distances of 2.50, 2.41 and 2.25 Å,
each between Ca2+ and O6, O3 and O7, respectively. The carboxylate anion exhibits a short
Ca-O8 bond of 2.25 Å. Ca2+ makes a 131.4◦ bond angle with the two carbonyls. In Figure 5d,
O6 is not available for interaction and Ca2+ binds with O3 and O7 to give 2.52 and 2.23 Å
bond distances, respectively, making a narrow O3-Ca-O7 angle of 67.4◦.

Bonding with only two instead of three oxygens makes the 4a-Ca2+ complex less stable
by 9.1 kcal mol−1. In contrast to the deprotonated form, the 4-Ca2+ complex in Figure 5e
forms noticeably longer bond distances of 2.54 and 2.50 Å with O6 and O7, respectively.
The O3-Ca-O7 angle was significantly reduced to 123.5◦. The Ca-O3 bond distance of 4.78 Å
indicates negligible interaction between Ca2+ and the ether linkage (O3) in the protonated
receptor. Likewise, the long Ca-O bond distances of 2.86 and 2.66 Å with O6 and O7 in
4a-K+ indicate even weaker interaction with alkaline metals (Figure 5f).

Diglycolic dialdehyde 4b is a further simplified model for the Ca2+ receptor. This
model is useful in examining the uncharged receptor, having identical carbonyl motifs.
Binding energies in Table 2 indicate that Ca2+ is bound to dialdehyde 4b in methanol by
11.6 kcal mol−1. The 4b-Ca2+ complex is capable of further binding with diene-lactone 2
with additional 5.6 kcal mol−1 of binding strength. In striking contrast to the full-structure
results, in separate fragment models, initial formation of the diglycolic-cation complex
followed by the additional interaction of this complex with the chromophore lactone is
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thermodynamically feasible and is exothermic by more than 5 kcal mol−1. Difficulty in
macrocyclization in Fl-DGA-Ca2+ complex involving initial formation of diglycolic-Ca2+

complex could be explained using the entropy argument [40].

Table 2. Bond dissociation energies of complexes in methanol.

Dissociation Reaction BDE (kcal mol−1)
a 2a-Mg2+ → 2a + Mg2+ 18.2
a 2a-Ca2+ → 2a + Ca2+ 9.1
a 2a-Na+ → 2a + Na+ 4.3

a 2a-K+ → 2a + K+ 3.5
b 4-Mg2+ → 4 + Mg2+ 29.5
b 4-Ca2+ → 4 + Ca2+ 11.8

b 4-K+ → 4 + K+ 7.2
b 4a-Mg2+ → 4a + Mg2+ 53.7
b 4a-Ca2+ → 4a + Ca2+ 27.2

b 4a-K+ → 4a + K+ 12.6
b 2-Ca2+ → 2 + Ca2+ 6.5

b 4b-Ca2+ → 4b + Ca2+ 11.6
b 2–4b-Ca2+ → 2 + 4b-Ca2+ 5.6

c 3a-Ca2+ → 3a + Ca2+ 22.1
a with 6-311+g(2df,2p) basis set and b with 6-31+g(d,p) basis set. c 3a-Ca2+ in acyclic form.

The interacting and non-interacting 1-Ca2+ complexes have similar energies and thus
additional interaction with the lactone group does not result in further stabilization. The
undecyl arm could not have interacted with Ca2+ in an initial step. Likewise, initial binding
between Ca2+ and the lactone motif in 1 is also unlikely, although the fragmented models
suggest that the complex is bound by 6.5 kcal mol−1. In the carboxylate models (4a), Ca2+

binds to the anionic form by additional 15.4 kcal mol−1 compared with the binding energy
with the uncharged form (4). A similar trend is true with K+ but the alkaline metal is only
bound by 7.2 kcal mol−1 in methanol.

With ene-lactone 2a, alkaline earth and alkaline metal cations exhibit the following
trend in binding energies: Mg2+ > Ca2+ > K+~Na+, and, likewise, with diglycolate 4a the
three cations of interest afford the following order: Mg2+ > Ca2+ > K+. Binding strengths
alone do not account for Ca2+ selectivity. The results, nonetheless, highlight the advantage
of involving three oxygens instead of just two, and the importance of ionization with the
diglycolic motif. The computational results show that all diglycolic-cation complexes are
planar and attempts in locating complexes involving four oxygens have been unsuccessful.
In the hypothetical four-oxygen interaction, the complex would have been bent. Frag-
mented models confirm that in a stepwise mechanism involving the initial formation of
receptor-cation complex, the subsequent interaction with lactone motif is exothermic by
5 kcal mol−1. A long distance between the two carbonyl oxygens in diglycolic receptor,
fortuitously in a 1, 5 position, and the ionizable nature of carboxylic functionality, tend to
favor large and polarizable divalent cation such as Ca2+.

2.4. Interaction of Receptor and Chromophore Fragments with Cation

In Section 2.2, vinyl, enol and enolate were utilized as simple models for the phenol
and phenoxy core. Chromophore 5 and 5a utilize full phenol and phenolate structures and
thus serve as better models to examine the interactions of key contributors in 1, referred to
as fragments, with cations. This section seeks to understand the structure of chromophore-
receptor-cation complexes, utilizing fully functional models, albeit not bonded together via
an extended arm. In methanol medium, 5 interacts with Ca2+, resulting in the elongation of
the lactone C7-O11 and carbonyl C10-O13 bonds to 1.48 and 1.23 Å, respectively (Figure 6a).
The aromatic C-C and the ring-linkage C4-C7 bonds remain practically unchanged.

Deprotonation of phenolic hydrogen causes the C-C bonds in the aromatic ring to be
dissimilar, wherein the C1-C2 bond significantly lengthens to 1.44 Å. The lactone C7-O11
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bond lengthens further to 1.51 Å, and the ring-linkage (C4-C7) and Ca-O13 bonds shrink
to 1.49 and 2.43 Å, respectively. These results suggest that as the C7-O11 bond breaks, a
quinoid π-network that extends to the lactone ring forms and is characterized by C4-C7,
having a double bond character. The interaction of 1 or its deprotonated form 1a and Ca2+

presumably involves a pre-organized structure that allows the diglycolic moiety and the
lactone group, perpendicular to the xanthene plane, to simultaneously interact with the
incoming cation. Therefore, cation-catalyzed lactone ring openings of 1 and 1a do not
involve the initial formation of the chromophore-Ca2+ complexes modeled in Figure 6a,b.
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The result in Figure 6c suggests that the interaction of the receptor-Ca2+ complex with
the chromophore core affords a stable larger complex. However, in striking contrast to
1a-Ca2+, this does not lead to a greater extent of lactone C7-O11 bond breaking. The Ca-O13
bond distance remains at 2.43 Å and the rest of the features in the chromophore are not
noticeably different from those in Figure 6b. A shorter C7-O11 bond distance of 1.50 Å in
5a-4a-Ca2+, compared with that in 5a-Ca2+, suggests an even lesser extent of bond breaking
in the former. It is plausible that Ca2+ first binds with 5a through the electron-rich O11,
instead of carbonyl O13 because the C7-O11 bond is partially broken by virtue of the anionic
character. Likewise, similar initial interaction could happen in dianion 1a, involving the
anionic chromophore, albeit having the ionized diglycolic arm in close proximity.

It is noteworthy that the Ca-O13 bond distance involving uncharged phenol core 5
and diglycolic acid receptor 4 in Figure 6d remains at 2.43 Å (as in Figure 6b,c). The rest
of the chromophore features in the 5-4-Ca2+ complexes are comparable to those in 5-Ca2+.
If it is viewed that the 5-Ca2+ complex forms first, receptor 4 approaches the complex,
perpendicular to the lactone ring, and as the larger complex forms the Ca-O13 bond shrinks
from 2.45 to 2.43 Å. The 5a-4a-K+ complex in Figure S4c could be viewed as having a
phenoxy core that does not exhibit any structural change due to complexation. The 4a-K+

complex could form first and interact with 5a, or vice versa, 5a-K+ could approach 4a,
giving rise to the Ca-O13 bond distance of 2.75 Å but leaves the entire structure of 5a
practically unchanged.

Full-structure computations of interacting complexes involving 1 and 1a suggest that
when the chromophore and the receptor components are bonded together via an extended
arm, the two parts could, in the presence of cation, approach each other in near perfect
perpendicular fashion. The results in Table 3 show that the breaking of the lactone C7-O11
bond in 5a-4a-Ca2+ is accompanied with a significant decrease in bond order and total
overlap population in this bond. The reduction in C4 chemical shift indicates shielding
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due to the accumulation of electron density surrounding this nucleus, or, alternatively,
because of the loss of the aromatic ring current. Likewise, the increase in C7 chemical
shift suggests the increased vinylic character of this carbon and participation in the newly
formed π-network. The C4 does not exhibit a noticeable difference in the p-character in the
bonding orbital. It remains at 70% or equivalent to the sp2.3 hybrid orbital since it involves
changing from aromatic carbon to a vinylic one. The dianion form reduces more positive
charge from Ca2+, but this is not accompanied by additional positive charge buildup at
the carbonyl C10. Fragmented models further support the influence of negative charge
on lactone motif and its contribution to cation recognition. However, a comparison of
complexes with dianions, 1a-Ca2+ and 5a-4a-Ca2+, raised an important question: why does
the lactone C-O bond break completely with full-structure 1a but only minimally with
fragments of 5a and 4a? We propose that this arises from the rigid structure of 1a, wherein
the diglycolate motif approaches the chromophore at a right angle to the lactone ring,
achieving five optimized Ca-O bond distances by first ripping the lactone C-O bond.

Table 3. Comparison of molecular properties in the complexes of phenol core 5 and its deprotonated
form (5a) with 4-Ca2+ and 4a-Ca2+.

Parameter a 5-4-Ca2+ b 5a-4a-Ca2+

Ca Valence 0.42 0.47
Ca Charge 1.88 1.86

C4 p-Character 69.5 69.1
C7-O11 TOP 0.412 0.028

C7-O11 Bond Order 1.34 1.25
C7 Valence 3.07 3.32
O11 Valence 1.85 1.81

C4 NMR 129.9 110.1
C7 NMR 96.5 100.8

a The geometry in Figure 6d. b The geometry in Figure 6c.

2.5. Optical Response Characterization

In optical characterization, we investigate the fluorescence response of 1 with three
cationic macronutrients: Ca2+, K+ and Mg2+. Selectivity of 1 with cations is compared
to those with other fluorophores: unsubstituted fluorescein, lipophilic derivative 7 and
rhodamine-B. Capability for simultaneous determination of cations and resolving signal
at sub mm levels are assessed from the quality of separation in the score plots. The
optical sensor utility of 1 was explored by dissolving the fluorophore in methanol to form
yellowish solutions that are stable at different concentrations (3.2, 1.0, 0.3 and 0.1 mM) for
over two weeks. As can be seen from Table 4, the maximum fluorescence intensity (Im/I0)
of 1 was observed when 1 mM solution of the fluorophore and 0.1 mM of metal cation
were employed. Maximum emission peaks at wavelength of 544 ± 3 nm for all tested
concentrations of 1 was observed due to high fluorescence quantum yields. Low peak
intensities were apparently observed at higher concentrations (3.2 mM) due to a quenching
effect, as has been reported by many studies previously. For example, the quenching effect
of chloride on quinine fluorescence activity has been well documented [41].

Table 4. Photophysical characteristics of Fl-DGA (1).

[Fl-DGA] (mM) 3.2 1.0 0.3 0.1
λmax(nm) 544 544 544 544

Im/I0 1.0 5.2 2.1 1.2
λmax: maximum emission wavelength. Im/Io: ratio of maximum fluorescence intensity without metal cation.

Fluorescence spectroscopic tests were also carried out by the addition of chloride salts
of three cations of interest in precision agriculture; Ca2+, Mg2+ and K+ (0.1 mM), into four 1
mM chromophores solution (fluorescein (Fl), lipophilic alcohol fluorescein derivative (Fl-



Molecules 2022, 27, 6248 12 of 21

OH), Fl-DGA and rhodamine-B (Rh-B)) and the effect of metal ions on fluorescence intensity
of each chromophore system was examined. Figure 7a shows that Mg2+ and K+ give rise
to quenching effect on the fluorescence intensity of 0.1 mM 1. On the contrary, significant
fluorescence enhancements were observed with Ca2+, yielding the highest enhancement at
1 mM concentration of 1. Due to high charge-to-radius ratio and strong solvation of the two
alkaline earth metals, comparable optical responses were expected with Mg2+ and Ca2+.
Quite the contrary, our results suggest that 1 exhibits the ability to be selective towards
Ca2+ and discriminate against Mg2+ and K+. Selectivity towards Ca2+ has been reported
previously with tetracarboxylate chelators [42].
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2.6. PCA of Optical Responses

Fluorescence emission intensities of 1 × 10−5, 1 × 10−4 and 1 × 10−3 M (subsequently
referred to as 0.01, 0.1 and 1 mM or alternatively referred to in the legend as the abbreviated
logarithmic form −5, −4 and −3 M, respectively) of Ca2+ and K+ with 1 × 10−3 M of
fluorophore in methanol were used in multivariate analyses. Unsubstituted fluorescein (Fl),
Fl-DGA, lipophilic alcohol fluorescein derivative (Fl-OH) and rhodamine-B (Rh-B) at 1 mM
concentration were evaluated for to determine calcium using the PCA method. Based on
its fluorescence emission characteristics, optical responses between 500 and 600 nm are
suitable for Fl, Fl-DGA and Fl-OH.

Between twenty to sixty responses were utilized as variables in the principal compo-
nent analysis. Successful extraction of principal components is characterized by a normal
scree plot (Figure 4e) that can be interpreted as having sufficient variance in the data
and the information reduced to a few dimensions having the highest eigenvalues. More
importantly, in Ca2+ determination, the first two principal components should produce
a score plot (PC2 vs. PC1) that exhibits distinct and well separated clusters. The results
in Figure 8 suggest that over twenty experimental variables (22 emission intensities are
used) afford decent principal components and an increase in the number of variables
does not necessarily improve cluster separation. Since the PCA procedure allows only a
comparison of common variables, rhodamine that exhibits a narrow emission window of
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550–600 nm could not be employed in subsequent measurements and multivariate analyses.
As in Section 2.2, the same naming convention is adopted: top-left (Q1), top-right (Q2),
bottom-right (Q3), and bottom-left (Q4).
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The first case of interest is the determination of 1 × 10−4 M (0.1 mM) of Ca2+ and its
separation from 0.1 mM potassium (Figure 8a). Moreover, it is important to compare the
score plot of Fl-DGA with that of the parent fluorescein compound (Fl). It is noteworthy
that the four possible clusters, from four sets of samples, afford distinct clusters in dedicated
quadrons. Fl-DGA separates 0.1 mM Ca2+ and 0.1 mM K+ into the Q2 and Q1 quadrons,
respectively. Both cations exhibit tight clustering near (3,1) and (−6,0.2) coordinates,
respectively. Fl separates the two cations at 0.1 mM, less effectively into the Q3 and Q4
quadrons. The 0.1 mM Ca2+ scores in Fl fluorophore are also poorly clustered, horizontally
spread from 4 to 6 along the PC1 axis. These results confirm the photophysical observations
that indicate improved responses with Fl-DGA and Ca2+.

The second scenario further examines the performance of Fl-DGA with different
concentrations of Ca2+ and K+ at millimolar range. Results in Figure 8b show that Fl-DGA
is capable of separating Ca2+ and K+ much more efficiently at 0.1 mM. The 0.1 mM Ca2+

and K+ are separated into tight clusters at the Q3 and Q4 quadrons, respectively. The 1 mM
cations are located at the top quadrons, albeit only minimally separated. Despite the lack of
separation, the scores of 1 mM cations appear to cluster more tightly. These results suggest
that Fl-DGA has superior performance at sub-millimolar ranges.

Trace-level detection is of interest in water quality [43] and environmental moni-
toring. The optical responses and cluster separation at 0.01 mM indicate capability at
sub-millimolar ranges. Figure 8c shows the good separation of 0.01, 0.1 and 1 mM Ca2+ by
Fl-DGA. The good separation between 0.1 and 1 mM Ca2+ is retained by having the scores
at the Q3 and Q1 quadrons, respectively. Moreover, similar to the observation in Figure 8b,
a higher concentration of Ca2+ affords superior clustering. More importantly, 0.01 mM
Ca2+, at the middle of Q4 quadron, is well separated from the rest of the scores, albeit less
tightly clustered. The above experimental evidence confirms that fluorescent receptor 1 is
selective towards Ca2+. The excellent separation of tightly populated clusters in the score
plots proves that the probe can be employed for the simultaneous measurement of cationic
macronutrients and detection at sub-millimolar levels.



Molecules 2022, 27, 6248 14 of 21

2.7. Mechanistic Insights and Rationale for Calcium Selectivity

Computational bond dissociation energies in Table 2 are consistent in predicting the
following preferential binding interactions between chromophore and receptor models
with three cations of interest: Mg2+ > Ca2+ > K+. With ene-lactone 2a, Mg2+ is twice as
strongly bound compared with Ca2+, and K+ is bound by only 4.3 kcal mol−1 and can be
discriminated against. Likewise, with diglycolate anion 4a, Mg2+ is more strongly bound
by two and a half times compared with Ca2+, while the interaction with K+ is only half
that of Ca2+. On the contrary, optical responses with Fl-DGA (1) exhibit quite the opposite
trend: Ca2+ >> K+~Mg2+. Furthermore, a decisive role of the charge-to-radius ratio of
cations on the nature of lactone carbon-oxygen bond and other physical and electronic
properties is consistent with all computational findings. Factors that contribute to the
observed selectivity and insights into the roles of anion, the lactone motif, solvation and
diglycolic receptor will be discussed further.

In the absence of solvation, cations bind with both oxygens in the lactone moiety.
Cation approaches 2a from the same plane of the molecule and in the middle between
ring oxygen (O5) and carbonyl oxygen (O6). The HOMO of 2a has a large in-plane lobe
for frontal attack that covers this area (Figure 9a). Alternatively, the chromophore could
approach a receptor-cation complex through the LUMO+1 which provides favorable frontal
interaction (Figure S3b). Calcium interacts with the carbonyl and ether oxygens in 4 through
the HOMO or HOMO-1 (Figure S4d,e). In 4a, the HOMO-1 provides favorable interaction
with both carboxylate oxygens (Figure 9b). Resonance contributor in the lactone ring
causes the carbonyl oxygen to be more negatively charged and is more strongly bound to
cation than the ring oxygen is. In the IEF-PCM model, solvent molecules hinder interaction
between cation and the ring oxygen, leaving carbonyl-cation interaction as the main factor
in cation recognition.
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in C-O bond breaking.

By virtue of the negative charge on C1, the C3-O7 bond in 3a lengthens to 1.53 Å
(compared with 1.47 Å in 3). While interaction with Ca2+ leaves the lactone ring in enol
3 intact, the cation catalyzes the ring opening of enolate 3a (Figure 3c). The C2-C3 bond
shrinks to 1.36Å, suggesting a double-bond character. Likewise, shortening of the C3-C4
bond to 1.45 Å indicates the formation of the π-network (Figure 9c). Calcium interacts
strongly with both carboxylate oxygens, affording a Ca-O bond distance of 2.47 Å and O7-
Ca-O9 bond angle of 53.7◦ (Figure 3c). The results imply that the presence of a negatively
charged substituent changes the chemistry of the lactone ring in fluorescein derivatives
and influences its role in cation recognition. Cation catalyzes the facile ring opening of
enolate 3a (Figure 10) with an early transition state and a low activation barrier of just
1.5 kcal mol−1. The transition structure exhibits new single and double C-C bonds, but
the carboxylate functionality has not fully formed, and the geometry has not flattened.
The transition structure is further characterized by having one imaginary frequency at
−304 cm−1, C3-O7 bond distance of 1.83 Å and IRC paths that connect to enolate 3a and the
ring-opened product [44]. In methanol, the lactone ring opening process is more exothermic
by 2 kcal mol−1 but has the same activation barrier (Figure S5).
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Computational binding energies from full structures and simple models consistently
predict greater binding strengths with Mg2+, whereas experimental optical responses
suggest selectivity towards Ca2+. Apparently, computational bond dissociation energies
alone cannot explain the experimental observation. The fluorescein core and diglycolic
receptor presumably contribute to selectivity towards Ca2+. Useful insights could be gained
from the well documented selectivity of ionomycin towards Ca2+ [45]. The nature of Ca2+

itself most probably is key to the observed selectivity with both 1 and ionomycin.
Although binding energies alone could not account for Ca2+ selectivity, computational

results are consistent in highlighting the importance of the charge-to-radius ratio of the
cations. Charge density per unit area on Ca2+ is much smaller than that on Mg2+. Therefore,
fluorophore, having flexible ionizable arms, can stabilize Ca2+ much more effectively
through ion-pair mechanism and discriminate against other cations. On the contrary, K+

and other monovalent cations favor neutral recognition molecules and can be effectively
determined through the size exclusion mechanism [46]. Magnesium recognition is more
elusive [47] but computational natural bonding orbitals, atomic valence and charge analysis
suggest that Mg2+ selectivity most probably arises from effective stabilization of the divalent
cation that exhibits high charge density and strong tendency towards covalent interaction.
At alkaline pH, the fluorescein core and diglycolate moieties in 1a function as two arms that
can freely reorganize to effectively stabilize Ca2+. Rather fortuitously, the entire fluorescein
structure acts in favor of Ca2+ recognition; it serves as the second arm that provides stability
to Ca2+ by virtue of its carboxylate motif.

Carbonyls, polyethers, peptides and heterocycles have successfully been employed
as motifs in cation recognition. The effective use of dicarbonyls as cation receptors is of
interest in this study. Diglycolic acid 4 can be viewed as a 1,5-dicarbonyl receptor, having
an ether linkage and ionizable carboxylic moiety. The long distance between the two
carbonyl groups apparently favors interaction with a large and polarizable divalent cation
such as Ca2+. Moreover, the ether linkage participates in cation binding, and the ionizable
carboxylic functionality plays a key role in Ca2+ recognition. While the carboxylic moiety is
also present in ionomycin, the dicarbonyl presents in the 1,3-position, making the distance
between the two carbonyls much shorter and the α-protons significantly acidic for facile
ionization. Instead of an ether linkage, ionomycin has two tetrahydrofuran rings that
interact with Ca2+.

What then is the origin of Ca2+ selectivity in ionomycin and 1? There are two main
reasons that determine the sensor signal: (i) the cation-receptor binding strength, and (ii) the
probability of the cation being in contact with the recognition molecule. While binding
energies predict stronger interaction with Mg2+, optical response confirms the selectivity
towards Ca2+. Logically, something must have prevented Mg2+ from coming into close
proximity with the receptor. The medium that surrounds Mg2+ is the most plausible agent
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that slows down its mobility due to its high charge density. Tight solvent cage encapsulates
Mg2+ and hinders its movement. The Hofmeister effect, which favors large monovalent
cation, invokes a similar argument [48]. Succinctly, 1 filters out Mg2+ due to the Hofmeister
effect and discriminates against K+ via the ion-pair mechanism.

3. Conclusions

The simulation of full-structure 1 and 1a in methanol provides insights into the ob-
served fluorescent enhancement with Ca2+. Selectivity towards Ca2+ and discrimination
against Mg2+ and K+ are attributed to diglycolic and lactone motifs. The extent of the lac-
tone C-O bond breaking is indicative of fluorescence activity. As the C-O bond breaks, the
xanthene ring loses aromaticity and exhibits dissimilar C-C bonds. The C-O bond breaking,
enhanced by the presence of anionic substituent, transforms the lactone motif to a car-
boxylate functionality that actively participates in Ca2+ recognition. Diene lactone models
elucidate the nature of chromophore-cation interaction and provides molecular properties
as variables in multivariate analysis. PCA score plots afford distinct and well-separated
clusters and prove that computational approaches can be used to evaluate potential chro-
mophores and receptors in the determination of cations for sensor array applications.
Fragment models support the full-structure findings that the anionic substituent causes
structural changes but does not reproduce the full extent of lactone C-O bond breaking ob-
served in full-structure 1a-Ca2+. Rigid structure in 1a is attributed to the complete breaking
of the C-O bond.

Fluorescein derivative 1 was prepared by functionalization of the parent molecule
with undecyl arm having a diglycolic moiety at the terminal. Binding energies suggest
similar energies for 1-Ca2+, regardless of additional interaction with the lactone motif. In a
pre-organized U-shaped 1, Ca2+ can simultaneously interact with the lactone and diglycolic
motifs. Emission intensities of 1 with mM and sub mm concentrations of Ca2+ and K+

yield score plots with distinct clusters and are thus suitable for simultaneous detection of
these macronutrients in precision agriculture application. The size and charge density of
Ca2+ are key factors in the rational design of its receptor. Insights from ionomycin suggest
the importance of ionizable motifs in Ca2+ recognition. At an alkaline pH, deprotonation
exposes anionic sites that stabilize the large and polarizable divalent cation via an ion-pair
mechanism. Despite stronger binding interaction with the diglycolic receptor, Mg2+ is
excluded due to its high charge density, poor mobility in polar medium and preference
towards covalent bonding.

We have adopted the following methodology in the rational design of a cation re-
ceptor that could be generalized for the design of other fluorescent probes: (i) compute
full-structure geometries of proposed molecule, (ii) identify key contributing components
to a desired recognition, (iii) examine the nature of simple models, (iv) compare geometries
of full and fragmented complexes, (v) determine optical responses and detection limits,
(vi) account for observed selectivity, (vii) assess multiple-ion capability using PCA, and
(viii) generalize the method, evaluate new motifs and target other applications. As evi-
denced by this report, the methodology involves the above activities, but not necessarily
in any particular order. Key activities are most likely performed in parallel, and it is not
uncommon that the end triggers the beginning of a new system.

Our findings show that conveniently prepared fluorescent molecules could be ex-
ploited in selective Ca2+ determination. In the sensor array and multivariate approach,
several cations at mM and sub mm levels can be simultaneously detected for a wide range
of applications, including precision agriculture and water quality. The combined compu-
tational and experimental approach has proven to be beneficial in the rational design of
cation receptors. The approach can be extended to other cations of interest in the follow-
ing areas: trace-level heavy metal detection, determination of ionic mixtures, precision
measurement of anionic macronutrients [49], and rational design of Mg2+ selective fluores-
cent probe. Fluorescent probes provide an advantageous chemical sensing platform that
does not depend on reference electrodes and thus is less prone to errors. It is anticipated
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that fluorescein, rhodamine and eosin derivatives will continue to play a dominant role
in optical sensors. The sensitivity of such an optical sensor could also be improved by
incorporating surface plasmon-coupled directional emission as the detector, which could
offer new physicochemical insights into the interaction mechanism for such chromophores
with its target [50,51]. We are motivated to explore the utility of other versatile motifs such
as peptides via facile functionalization of xanthene chromophores.

4. Experimental Section
4.1. Materials and Methods

The chemicals and metal ions used: fluorescein, 4-dimethylaminopyridine (DMAP),
11-bromo-1-undecanol and diglycolic anhydride, were purchased from Sigma-Aldrich
(Burlington, MA, USA) and Merck (Darmstadt, Germany) and used without further pu-
rification. Acetonitrile, ethanol, ethyl acetate, n-hexane, chloroform and anhydrous N,N’
dimethyl formamide (Sigma Aldrich) were all analytical grade and used without further
purification. Deionized distilled water and methanol with HPLC grade, available from
Merck (Darmstadt, Germany), were used as the solvent. Acetonitrile and triethylamine
(Sigma Aldrich) were freshly distilled over barium oxide before use.

The melting points of samples were measured using a U Met-temp II Laboratory
Devices USA. The FTIR spectra were recorded between 4000 and 400 cm−1 as attenuated
total reflectance (ATR) on a Perkin Elmer Spectrum 400 FTIR spectrometer. 1H and 13C NMR
were recorded on a Bruker Advance 400 spectrometer at 400 and 100 MHz, respectively,
using tetramethylsilane (TMS) as the internal standard. The CHN elemental analysis
of fluorescein derivatives were determined using a Perkin Elmer CHNS/O 2400 Series
II. Fluorescence spectra were obtained using a Spectrometer Avantes 2048-L (Avantes,
Netherlands) equipped with an AvaLight-XE LED light source. The spectrometer and the
light source were both kept at a constant temperature of 28 ◦C ± 0.8 ◦C.

4.2. Synthesis

We adopt a three-step approach in preparing fluorescent cation receptors, using unsub-
stituted fluorescein as a starting material: (i) attach extended arm, (ii) functionalize arm with
main motif, and (iii) convert ionizable terminals to esters or amides. Preparation of Fl-DGA,
via lipophilic alcohol 7 and without further derivation of the resulting acid, is provided
in the following. To a mixture of fluorescein 6 (1 g, 0.3 mmol) and potassium carbonate
(0.9 g, 0.6 mmol) in dry DMF, 11-bromo-1-undecanol (0.6 mmol) was added in a dropwise
manner and the mixture was refluxed overnight under an inert atmosphere (Scheme 2).
The progress of the reaction was monitored by TLC, which indicated formation on a new
product and completion of reaction after 18 h. The mixture was rotary evaporated and ex-
tracted with ethyl acetate, followed by 20 mL of distilled water (5 times) and the product (7)
was purified by column chromatography with 2:1 ratio of ethyl acetate/n-hexane eluent.

7 (3′-hydroxy-6′-((11-hydroxyundecyl)oxy)-3H spiro[isobenzofuran-1,9′-xanthen]-3-
one). Yield 58%. IR (ATR, cm−1): 3525 (OH). 3068 (C-H)Ar. 2850, 2919 (C-H)Aliph. 1712
(C=O)Ester. 1503 (C=C)Ar. 1253 (O-C-O)Ether. 1H-NMR (400, CDCl3-d, δ ppm): 8.184 (d,
J = 8 Hz, 1H, C-HAr), 7.627 (m, J = 8 Hz 2H, C-HAr), 7.215 (t, J = 8 Hz, 1H, C-HAr), 6.836
(m, 3H, C-HAr), 6.665 (d, J = 8 Hz, 1H, C-HAr), 6.484 (d, J = 8 Hz,0 1H, C-HAr), 6.403 (d,
J = 8 Hz, 1H, C-HAr), 3.995 (t, J = 8 Hz, 2H, C-HAliph), 3.567 (m, 2H, C-HAliph), 1.747 (m, 2H,
C-HAliph), 1.48 (m, 2H, C-HAliph), 1.38 (m, 2H, C-HAliph); 1.23 (m, 12 H, C-HAliph), 13C-NMR
(100 MHz, CDCl3-d, δ ppm): 184.93 (1C, C=O), 165.59 (1C, CAr), 164.16 (1C, C-HAr), 159.06
(1C, C-HAr), 154.63 (1C, C-HAr), 134.01 (1C, C-HAr), 132.54 (1C, C-HAr), 131.34 (1C, C-HAr),
130.79 (2C, C-HAr), 130.40 (2C, C-HAr), 129.75 (1C, C-HAr), 117.46 (1C, C-HAr), 114.85 (1C,
C-HAr), 114.33 (1C, C-HAr), 105.54 (2C, C-HAr), 100.62 (2C, C-HAr), 69.08 (1C, C-HAliph),
65.81 (1C, C-HAliph), 32.76 (1C, C-HAliph), 32.76 (1C, C-HAliph), 32.75 (1C, C-HAliph), 32.55
(1C, C-HAliph), 29.55 (1C, C-HAliph), 29.47 (1C, C-HAliph), 29.40 (1C, C-HAliph), 29.37 (1C,
C-HAliph), 25.76 (1C, C-HAliph). Elemental analysis; calculated: C, 74.08; H, 6.82; O, 19.10,
found: C, 73.40; H, 6.14.
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Scheme 2. Synthesis of Fl-DGA.

A solution of 0.01 mol of diglycolic anhydride in dry acetonitrile was added dropwise
into a gently stirred solution containing 0.01 mol of 4-dimethylaminopyridine (DMAP),
0.01 mol of triethylamine and 0.01 mol of compound 7 in 20 mL of freshly distilled ace-
tonitrile (Scheme 2). The mixture was stirred and refluxed under inert atmosphere for an
additional three hours. The mixture was then cooled to room temperature before extraction
with chloroform. The combined organic layer was washed with 15 mL of 5% of citric acid
solution followed by 15 mL of saturated brine solution. The washing step was repeated for
another two times and the organic layer dried with anhydrous magnesium sulfate. The
chloroform solvent was removed by a rotary evaporator to produce orange oil product.

1 2-(2-((11-((3′-hydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthen]-6′-yl)oxy)undecyl)
oxy)-2-oxoethoxy)acetic acid. Yield 87%. IR (ATR, cm−1): 3525 (OH). 3074 (C-H)Ar. 2926,
2854 (C-H)Aliph. 1634 (C=O)Acid, 1732 (C=O)ester. 1453, 1421 (C=C)Ar. 1264 (O-C-O)Ether.
1H-NMR (400 MHz, CDCl3-d, δ ppm): 8.186 (d, J = 8 Hz, 1H, C-HAr), 7.819 (m, 1H, C-HAr),
7.692 (t, J = 8 Hz, 1H, C-HAr), 6.882 (m, 3H, C-HAr), 6.686 (d, J = 8 Hz, 1H, C-HAr), 6.614
(d, J = 8 Hz1H, C-HAr), 6.399 (d, J = 8 Hz, 1H, J = 8 Hz, C-HAr), 6.23 (s, C-HAr), 4.20 (s, 2H,
C-HAliph), 4.17 (s, 2H, C-HAliph), 4.023 (t, J = 8 Hz, 2H, C-HAliph), 3.857 (m, 2H, C-HAliph),
1.725 (m, J = 8 Hz, 2H, C-HAliph), 1.319 (m, J = 8 Hz, 2H, C-HAliph), 1.339 (m, J = 8 Hz,
2H, C-HAliph); 1.14 (m, 12H, C-HAliph), 13C-NMR (100 MHz, CDCl3-d, δ ppm): 184.33 (1C,
C=O), 171.54 (1C, C=O), 170.20 (1C, C=O), 165.82 (1C, C-HAr), 163.90 (1C, C-HAr), 158.82
(1C, C-HAr), 154.13 (1C, C-HAr), 150.47 (1C, C-HAr), 136.12 (1C, C-HAr), 131.05 (1C, C-HAr),
130.57 (1C, C-HAr), 130.48 (1C, C-HAr), 129.82 (1C, C-HAr), 129.11 (1C, C-HAr), 117.14 (1C,
C-HAr), 114.69 (2C, C-HAr), 111.26 (2C, C-HAr), 105.01 (2C, C-HAr), 101.29 (1C, C-HAr),
83.23 (1C, C-HAcid), 79.59 (1C, C-HAcid), 68.43 (1C, C-HAliph), 64.62 (1C, C-HAliph), 29.54
(1C, C-HAliph), 29.44 (1C, C-HAliph), 29.40 (1C, C-HAliph), 29.14 (1C, C-HAliph), 28.91 (1C, C-
HAliph), 28.79 (1C, C-HAliph), 28.54 (1C, C-HAliph), 25.98 (1C, C-HAliph), 25.83 (1C, C-HAliph),
Elemental analysis; calculated: C, 67.95; H, 6.19; O, 25.86, found: C, 67.54; H, 6.30.

4.3. Computational Details

All computations were performed with the G09 [52] system of programs using the
B3LYP [53,54] hybrid functional and the split valence basis set with polarization and diffuse
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functions for heavy atoms. Vibrational frequency calculations were carried out to confirm
that the optimized structures produce only positive frequencies, and the transition struc-
tures give one and only one large negative frequency. The Becke three-parameter [55,56]
uses the nonlocal correlation provided by the LYP expression and the VWN [57] functional
III for local correlation. The hybrid functional utilizes Becke 88 exchange functional [58].
All geometry optimizations were initially performed at the B3LYP/6-31+G(d,p) level with
IEF-PCM [59] methanol continuum solvation model. Binding energies on small structures
and complexes (fewer than ten heavy atoms) were obtained at B3LYP/6-311+G(2df,2p) level
with the IEF-PCM methanol solvation model. The AOMix package [35] was used to ana-
lyze the nature of interaction between heteroatom and cation and in estimating the atomic
valence and bond order (Mayer) [60] of the lactone C-O bond. GIAO [36] nuclear magnetic
shielding calculations on carbon nuclei were performed with B3LYP/6-311G(2d,p) level to
investigate the changes in shielding characteristics as the chromophore interacts with cation,
lactone C-O bond breaks and conjugated π-network forms in the chromophore-cation com-
plex. Natural Bonding Orbital (NBO) [34] calculations were performed, utilizing the built-in
features in G09, to estimate orbital characteristics in chemical bonds of interest, i.e., the
lactone C-O bond and the neighboring C-C bonds. PCA of computational and experimental
data were performed using R programming language [61]. Score plots were obtained from
the highest three principal components using commercial spreadsheet software.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196248/s1, Figure S1: Optimized geometries of
diene-lactone 2 and its complexes; (a) diene-lactone 2, (b) complex of 2 and Ca2+, (c) complex of 2
and K+, and (d) complex of 2 and Mg2+.; Figure S2: Parameter plots for diene-lactone 2 with B3LYP
6-311+g (2df,2p) and in methanol; (a) cation binding energy vs. HOMO stabilization, (b) C3-O7 bond
distance vs. charge transfer, (c) C3-O7 bond distance vs. charge-to-radius ratio, and (d) C3 NMR vs.
C3 p-character; Figure S3: Frontier orbitals of models; (a) HOMO-1 of ene-lactone 2a, (b) LUMO+1 of
4a-Ca2+ complex, (c) LUMO of 4a-Ca2+ complex, (d) HOMO of diglycolic acid 4, (e) HOMO-1 of 4. (g)
HOMO of diglycolate 4a; Figure S4: Optimized geometries and parameter plots simple in methanol;
(a) complex of enol 3 and Ca2+, (b) complex of enol 3 and K+, (c) 5a-4a-K+ complex, (d) carbonyl
CO bond distance vs. carbonyl O charge, (e) HOMO energy vs. carbonyl CO bond distance, and
(f) C3-O7 bond distance vs. C3-O7 total overlap population; Figure S5: Structures of intermediates
during formation of the acyclic form of 3a-Ca2+.

Author Contributions: Conceptualization, P.M.W. and V.S.L.; methodology, L.N. and N.S.M.;
writing—original draft preparation, L.N. and Y.A.; writing—review and editing, P.M.W. and V.S.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Malaya (UM) International Collaboration Grant,
ST005-2022 and UM KW IPPP—Research Maintenance Fee (RMF) RMF1433-2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no competing financial interest.

References
1. Robertson, T.; Bunel, F.; Roberts, M.S. Fluorescein Derivatives in Intravital Fluorescence Imaging. Cells 2013, 2, 591–606. [CrossRef]

[PubMed]
2. Qiu, J.; Zhong, C.; Liu, M.; Yuan, Y.; Zhu, H.; Gao, Y. Rational design and bioimaging application of water-soluble Fe3+ fluorescent

probes. N. J. Chem. 2021, 45, 5184–5194. [CrossRef]
3. Zhong, C.; Qiu, J.; Liu, M.; Yuan, Y.; Zhu, H.; Gao, Y. Rational design and bioimaging application of cholesterol conjugated

fluorescence probe for Cu2+ detection. J. Photochem. Photobiol. A Chem. 2021, 414, 113267. [CrossRef]
4. Wu, X.; Gong, X.; Dong, W.; Ma, J.; Chao, J.; Li, C.; Wang, L.; Dong, C. A novel fluorescein-based colorimetric probe for Cu2+

detection. RSC Adv. 2016, 6, 59677–59683. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules27196248/s1
https://www.mdpi.com/article/10.3390/molecules27196248/s1
http://doi.org/10.3390/cells2030591
http://www.ncbi.nlm.nih.gov/pubmed/24709799
http://doi.org/10.1039/D0NJ06253G
http://doi.org/10.1016/j.jphotochem.2021.113267
http://doi.org/10.1039/C6RA07236D


Molecules 2022, 27, 6248 20 of 21

5. Wysocki, L.M.; Grimm, J.B.; Tkachuk, A.; Brown, T.; Betzig, E.; Lavis, L.D. Facile and General Synthesis of Photoactivatable
Xanthene Dyes. Angew. Chem. Int. Ed. 2011, 50, 11206–11209. [CrossRef]

6. Cook, M.P.; Ando, S.; Koide, K. One-step synthesis of a fluorescein derivative and mechanistic studies. Tetrahedron Lett. 2012, 53,
5284–5286. [CrossRef]

7. Batistela, V.R.; Cedran, J.D.C.; de Oliveira, H.P.M.; Scarminio, I.S.; Ueno, L.T.; Machado, A.E.D.H.; Hioka, N. Protolytic fluorescein
species evaluated using chemometry and DFT studies. Dye. Pigment. 2010, 86, 15–24. [CrossRef]

8. Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114,
4564–4601. [CrossRef]

9. Xu, W.; Park, J.Y.; Kattel, K.; Ahmad, W.; Alam Bony, B.; Heo, W.C.; Jin, S.; Park, J.W.; Chang, Y.; Kim, T.J.; et al. Fluorescein-
polyethyleneimine coated gadolinium oxide nanoparticles as T1 magnetic resonance imaging (MRI)–cell labeling (CL) dual
agents. RSC Adv. 2012, 2, 10907–10915. [CrossRef]

10. Peterlik, M.; Kállay, E.; Cross, H.S. Calcium Nutrition and Extracellular Calcium Sensing: Relevance for the Pathogenesis of
Osteoporosis, Cancer and Cardiovascular Diseases. Nutrients 2013, 5, 302–327. [CrossRef]

11. Tripathi, D.K.; Singh, V.P.; Chauhan, D.K.; Prasad, S.M.; Dubey, N.K. Role of macronutrients in plant growth and acclimation:
Recent advances and future prospective. In Improvement of Crops in the Era of Climatic Changes; Ahmad, P., Wani, M.R., Azooz, M.M.,
Phan Tran, L.S., Eds.; Springer: New York, NY, USA, 2014. [CrossRef]

12. Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [CrossRef]
13. de Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The molecular–physiological functions of mineral

macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2020, 229, 2446–2469. [CrossRef]
14. Osório, C.R.W.D.S.; Teixeira, G.C.M.; Barreto, R.F.; Campos, C.N.S.; Leal, A.J.F.; Teodoro, P.E.; Prado, R.D.M. Macronutrient

deficiency in snap bean considering physiological, nutritional, and growth aspects. PLoS ONE 2020, 15, e0234512. [CrossRef]
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