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Abstract: In recent years, Schiff base-related conjugated systems have received extensive atten-
tion, but little research has been done in the field of electromagnetic materials. In this work, an
organic conjugated system based on polypyrrole/hydrazone Schiff base (PPy/HSB) composites was
constructed via a Schiff base synthetic route and their electromagnetic behavior was investigated.
The electromagnetic response of PPy/HSB complexes demonstrates fine electromagnetic absorp-
tion performance. When the filler loading is 30 wt% in a paraffin matrix, an absorption peak of
−43.1 dB was achieved and its effective absorption bandwidth (EAB) was located in the range of
10.88−18.0 GHz. The electromagnetic response behavior of PPy/HSB complexes is explained by
models involving electronic structure, multi-polarization and conductive network. The mechanisms
of PPy/HSB complexes formation and HSB crystallization are also discussed through the compatibil-
ity of PPy/HSB and the structure of HSB. Moreover, the morphology transformation of HSB in the
PPy/HSB systems has been studied. This study opens the exploration of organic–dielectric conju-
gated systems in the field of electromagnetic materials, and significantly broadens the application
range of organic–dielectric–dielectric composites.

Keywords: polypyrrole; Schiff base; microwave absorption

1. Introduction

With the gradual maturity of 5G technology and the popularity of 6G and terahertz
(THz) technology in the future, the application of electromagnetic waves has covered all
aspects of human life. At the same time, electromagnetic pollution is becoming more
and more serious to human beings and nature. Microwave absorbing materials (MAMs)
have become a hot research topic in recent years as a barrier between electromagnetic
waves and the normal operation of electronic devices [1–3]. The electromagnetic wave
(EMW) absorption performance of MAMs depends mainly on impedance matching and
attenuation capability (magnetic loss and dielectric loss). Impedance matching determines
how much electromagnetic waves can enter the material, whereas attenuation capability
measures the degree to which electromagnetic waves are lost after entering the material.
The absorption capability of a MAM is generally examined by reflection loss (RL), named
from its measurement method. RL is always negative and a RL value superior to −10 dB
means an effective absorption. The frequency range in which RL < −10 dB is called the
effective absorption bandwidth (EAB). Recently, wide frequency bandwidth, thin thickness,
lightweight nature and strong absorption have been the pursuit direction of efficient
microwave absorbers [4–7].

Conductive polymers (CPs), as one of the typical MAMs, have high sensitivity to
modification, controllability of micromorphology and especially flexible modulation of

Molecules 2022, 27, 6160. https://doi.org/10.3390/molecules27196160 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27196160
https://doi.org/10.3390/molecules27196160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5038-5568
https://doi.org/10.3390/molecules27196160
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196160?type=check_update&version=2


Molecules 2022, 27, 6160 2 of 14

dielectric and conductivity, which gives them a great advantage over metals [8]. Polypyr-
role (PPy), one of the most commonly used conductive polymers, has attracted extensive
research in the field of electromagnetic absorption [9]. However, according to the free
electron theory, conductive PPy has high permittivity, leading to mismatching between the
dielectric constant and permeability, to be more precise, a mismatching in impedance, thus
affecting its microwave absorption performance [10]. Therefore, many composites com-
posed of PPy and magnetic metal compounds have been investigated, including Fe3O4 [11],
Co3O4 [12], MoS2 [13], ZnFe2O4 [14], Ni [15], and other designed PPy magnetic metal
composites. In these works, the inclusion of magnetic loss makes a significant improvement
in electromagnetic absorption performance. The increased magnetic loss mechanism can
somewhat broaden the absorption bandwidth. It should be noted that the metal-based
magnetic compound also has the disadvantages of high density, low corrosion resistance
and large threshold concentration. Compounding or partially compounding PPy with a
dielectric medium can compensate for the above disadvantages. Up to now, there have
been new advances in PPy composites compounded with other media and good absorption
performances have been achieved. For example, Liu et al. obtained graphene/PPy aerogel
(GPA) with microstructural changes by compounding PPy nanorods with graphene [16]. Its
RL can reach a peak value (RLmax) of −51.12 dB at 6.4 GHz, and the EAB reaches 5.88 GHz.
Wang et al. obtained rGO/PPy composites by in situ intercalation polymerization of PPy
into the interlayer of graphene oxide [17]. Due to the increased polarization ascribed from
its special structure, the rGO/PPy composite results in an enhanced response with a RLmax
of −59.2 dB at 3.8 mm and an EAB as wide as 2.3 GHz. Wu et al. [18] prepared three-
dimensional polypyrrole and poly(3,4-ethylene dioxythiophene) (PEDOT) composites by
a self-assembly method and achieved a wide bandwidth of 6.28 GHz at 2.5 mm with a
5 wt% filling in paraffin matrix. In addition, polyaniline [19], carbon nanotubes [20], SiC
nanowires [21] and other dielectric materials were reported to be introduced into PPy to
obtain lightweight and high-performance electromagnetic absorbers. Currently, the com-
posite based on organic dielectric materials with PPy provides another strategy to fabricate
high-performance EMW absorbing materials. The obtained organic dielectric–dielectric
composites possess a light weight and high stability due to their physical similarity [22].
More importantly, a strong microwave absorption capability can be achieved by adopting
effective CPs dielectric fillers.

Schiff base compounds are attractive dielectric materials with a wide range of applica-
tions in catalysis [23], medicine [24], sensors [25], photochromic [26] as well as corrosion
resistance [27]. The molecules of Schiff base compounds contain a −C=N− characteristic
group and π-π interactions. The addition of the carbon and nitrogen double bonds endows
these Schiff bases with increased polarization loss characteristics. By controlling dopant
species and doping conditions, distinctive dielectric loss can be obtained. These features
are conducive to optimizing electromagnetic characteristics and regulating impedance
matching [25]. Therefore, Schiff base compounds have exhibited promising applications in
electromagnetic absorption. Recently, Xu et al. [25] reported a dielectric–dielectric compos-
ite by mixing Ag Schiff base complex with three-dimensional reduced graphene aerogel
(3D-rGA), which achieved a RL of −63.82 dB at a thickness of 2 mm. In addition, Lin
et al. [28] prepared polypyrrole nanotube/ferrocene modified graphene oxide composites
using an in-situ chemical oxidation method and achieved a RLmax of −28.73 dB at a thick-
ness of 3 mm. From these works, it is demonstrated that Schiff base compounds could
exhibit good EMW absorption performance as dielectric loss materials. However, there are
few studies on this class of compounds, especially, the organic dielectric loss and electro-
magnetic response behavior of Schiff base compounds need to be further investigated. The
synergy between Schiff bases and matrixes still needs to be explored.

In this paper, we report a hydrazone Schiff base (HSB)/PPy composite for electromag-
netic absorption. Considering no more mutual repulsion between the pyrrole ring and the
N=C double bond, it may be compatible to combine PPy with HSB. Thus, based on the
principle of Schiff base reaction, series of PPy/HSB composites with different morpholog-



Molecules 2022, 27, 6160 3 of 14

ical structures are synthesized. Incorporation of HSB not only increases the contact area
with PPy, thereby increasing the interfacial polarization, but also provides a way to adjust
the impedance matching due to its lower dielectric constants. Compared with other similar
materials, the composite of HSB with PPy gives a good electromagnetic absorption perfor-
mance and a wider absorption bandwidth. The incorporation process is energy-saving and
environmentally friendly. Notably, the present work not only broadens the application of
Schiff base analogues, but also explores the electromagnetic response and development of
dielectric–dielectric materials.

2. Experiments
2.1. Chemicals and Materials

Pyrrole monomer (Py), ammonium persulfate (APS), sodium 4-vinylbenzenesulfonate,
glyoxal and hydrazine hydrate were purchased from Macklin Biochemical Co., Ltd. (Shang-
hai, China). All the raw materials were of analytical grade and used without further
purification.

2.2. Synthesis of PPy

Firstly, 8.82 g Sodium 4-vinylbenzenesulfonate was dissolved in 200 mL pure water
and then 2.0 mL pyrrole monomer was dropped in the solution. After the mixture was
under stirring in an ice bath for 30 min, 40 mL APS aqueous solution (containing APS
1.80 g) was slowly dropped into the mixture. After the polymerization process was kept
for 24 h, the products were centrifuged. Finally, PPy black powder was obtained after the
precipitates were dried at 60 ◦C for 12 h.

2.3. Synthesis of HSB

For the synthesis of HSB, 0.6 mL of hydrazine hydrate and 0.6 mL of glyoxal were
added dropwise to 60 mL of deionized water at the same time and stirred for 5 h to produce
a yellow precipitate. The precipitate was washed by centrifugation with ethanol and
deionized water, and dried at 60 ◦C for 6 h. The as-synthesized product was named as
HSB-0.6. In addition, series of HSB products were synthesized and labeled as HSB-0.3,
HSB-1.2 and HSB-1.8, respectively, corresponding to the different volumes of hydrazine
hydrate and glyoxal.

2.4. Preparation of PPy/HSB

Firstly, 60 mg PPy powder was mixed with 60 mL water. Then 0.6 mL hydrazine
hydrate and the same volume of glyoxal were added at the same time and stirred for 5 h.
The color of the solution changed from black to dark green during the stirring process.
After centrifugation and drying, the PPy/HSB composite was obtained and named as
PPy/HSB-0.6. To verify the effects of HSB contents on the electromagnetic properties of
PPy, PPy/HSB composites with different HSB were prepared by changing the volumes of
hydrazine hydrate and glyoxal (0.3 mL, 1.2 mL and 1.8 mL) while keeping their volume
ratios constant as 1:1. The samples were labeled as PPy/HSB-0.3, PPy/HSB-1.2 and
PPy/HSB-1.8, respectively. The synthesis route is shown in Figure 1.
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2.5. Characterization

The morphology and structures of the composites were determined using field
emission scanning electron microscopy (FESEM, Nova NanoSEM 450, Hillsboro, WC,
USA). The functional groups on the surface of the samples were studied using Fourier
transform infrared spectroscopy (FTIR, Thermofisher Bruck Nicolet iS 10, Waltham, MA,
USA) with a scanning range of 4000−400 cm−1 (pressed-disk technique). The molecular
weight and structure of the samples were determined through High Performance Liquid
Chromatography-Mass Spectrometry (HPLC-MS, Agilent 1100 HPLC/TOF, Santa Rosa,
CA, USA). The crystal structures of the products were characterized through X-ray
diffraction (XRD, Rigaku TTR-III diffractometer, Japan) from 5◦ to 90◦ with Cu Kα

radiation.
The electromagnetic parameters, including dielectric permittivity (ε) and magnetic

permeability (µ) of the composites, were tested through a vector network analyzer (VNA,
Keysight P5004A, Santa Rosa, CA, USA) in the frequency range of 2−18 GHz. The
composites were mixed with paraffin wax in the mass ratio of 30 wt% and pressed
into a cylindric sample to match the coaxial airline (outer diameter 7.00 mm and inner
diameter 3.04 mm). The thickness of the sample is about 2.00 mm. The electromagnetic
absorption properties were obtained through transmission line (TML) theory based on the
electromagnetic parameters.

3. Results and Discussions
3.1. Structure Characterization

The samples were first characterized by FT-IR and HPLC-MS. From the IR spectrum
in Figure 2a, the stretching vibration peak of the C=N bond for PPy/HSB-0.6 located
at 1548 cm−1 appears as a shoulder. From Figure 2b, the C=N stretching vibration of
pure phase HSB is located at 1610 cm−1 with a shoulder peak locating at 1548 cm−1. The
vibration peak and the shoulder correspond to PPy and HSB, respectively, which confirms
the complexation of PPy and HSB. The N−H stretching bond peak of PPy/HSB-0.6 at
3440 cm−1 appears to shift compared to that of pure PPy, which could be due to the
existence of the hydrogen bonding (N−H···N). The N−H bonding originally presents
only in the imine group on the pyrrole, but the PPy/HSB complex has hydrogen bonding
(N−H···N), leading to the relative change of this peak intensity. The two chain length
structures of HSB are dominant as seen in the mass spectra in Figure S1, confirming the
successful formation of the PPy/HSB complex.
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Figure 2. FT-IR spectra of pure PPy, HSB/PPy-0.6 (a) and HSB-0.6 (b).

Based on the characterization of FT-IR and HPLC-MS, the synthesis route of the
hydrazone Schiff bases is shown in Figure 3. Since the chain lengths of Schiff bases are
related to the reaction activity, there will be different chain length structures of product A
and product B. The mass spectra (Figure S1) show that the content of product A is dominant.
The content of longer chain lengths gradually decreases in a certain proportion, due to the
result of the competition reaction [29].
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3.2. Morphology Analysis

Figure 4 shows the typical morphological structures of pure PPy and PPy/HSB-0.6
composite. As is in Figure 4a, homogeneous PPy prepared by the redox method forms an
irregular cauliflower structure with cluster sizes of about 500 nm. The cluster has a smooth
surface, which provides conditions for uniform distribution of HSB. Pure HSB displays
a morphology of spheres with a size about 500 nm, as shown in Figure S2b. As to the
PPy/HSB composites, HSB reacts in situ in the PPy pores as a polar molecule, forming
Schiff base spheres by van der Waals forces (orientation, induction, and dispersion forces
together), as in Figure 4c–d. Finally, the HSB nanospheres are uniformly dispersed on the
PPy surface by hydrogen bonding (N−H···N) [30]. To examine the reactant concentration
of HSB on the morphological structures of the final HSB and PPy-HSB composites, both
HSB-0.3, HSB-1.2, HSB-1.8 and their PPy-based composites were characterized by SEM,
with results shown in Figures S2 and 5, respectively. With the increase of hydrazine hydrate
and glyoxal in the HSB synthesis process, the morphology of HSB gradually turns from
spheres to flakes.
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The growth mechanism of HSB, as well as PPy/HSB composites, can be proposed as
in Figure S3. The simple structure and good symmetry of HSB make it easy to arrange in a
regular manner, thus forming a dense, stacked structure. However, since its main chain
contains carbon and nitrogen double bonds that cannot be rotated, it does not resemble the
helical chain conformation of olefins. HSB crystallizes in a chain-axis parallel arrangement,
with chemical bonding along with the c-axis and van der Waals forces acting along with
the a and b-axis, which makes the structure anisotropic. HSB forms the basic structural unit
of spherical crystals by orderly arrangement of stacked folded chain wafers, and in order
to reduce the surface energy, they tend to grow in all directions with certain crystal nuclei
as the center, thus developing into spherical aggregates with diameters around 500 nm
(Figure S2a). The parallel arrangement causes the HSB polymer to crystallize without
cubic crystal system, as evidenced by Figure S4a, from which it is clear that both PPy and
PPy/HSB-0.6 show amorphous states.

According to experimental confirmation [31], polymer crystal growth occurs only on
the sides of the sheet crystals, i.e., in the two-dimensional direction, and the thickness
of the wafer remains constant. The concentration of HSB around the wafer increases as
the concentration of the reacting monomer increases or the molar ratio changes, but the
wafer growth rate varies due to the different HSB concentrations in the wafer, and the
wafer growth is more vigorous in some directions at the end of the reaction. Thus, the
morphological structure of HSB gradually changes from spheres to a folded structure, as
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shown in Figure S2c,d. The XRD result in Figure S4 also shows the increase in the number
of characteristic peaks. This is because as the HSB reaction concentration increases, it
allows the HSB to stretch in more places where it is easy to grow in an orientation. This
corresponds to the results observed in the SEM observation. Compared with spherical
structures, the folded flake structures could increase the specific surface area and improve
the multiple scattering of the incident electromagnetic waves, but it destroys the conjugate
structure of PPy and makes the conductive network ineffective, which would lead to poor
absorption performance.

3.3. Electromagnetic Properties

The electromagnetic absorption capacity of a MAM is generally evaluated by reflection
loss (RL), which can be achieved through the TML equation [3,8],

RL = 20 log
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (1)

Here, Zin is the input impedance of the MAM and Z0 is the characteristic impedance of
free space with a value of 120π Ω. Zin can be obtained from the electromagnetic parameters
as follows [3],

Zin = Z0

√
µr

εr
tanh

(
j
2π f

c
d
√

µrεr

)
(2)

where f is the frequency, c is the speed of electromagnetic wave in free space and d is the
thickness of the sample. µr and εr are the relative complex magnetic permeability and
dielectric permittivity. Generally, µr and εr can be written as µr = µ′ −jµ′′ and εr = ε′ −jε′′,
respectively.

Figure 6 shows the RL curves of PPy/HSB composites with different concentrations
of HSB. It is clear that the concentrations of HSB reactants have an important effect on
the EMW absorption properties. When the concentration of HSB is greater than 1.2, there
is no effective absorption in the whole frequency range. However, the EMW absorption
performance of PPy/HSB composites was significantly improved at lower HSB concen-
trations. In particular, the maximum RL value for PPy/HSB-0.6 can reach −43.1 dB at
2.8 mm, and its EAB is as high as 7.12 GHz (10.76−17.88 GHz). With the increase of sam-
ple thickness, the absorption peak gradually shifts to lower frequencies, and its effective
absorption bandwidth varies in the frequency region of 7.1−17.88 GHz, indicating that
the absorption capability of PPy/HSB-0.6 can be modulated by just tuning the matching
thickness. Comparatively, PPy and HSB-0.6 only exhibit RL values inferior to −10 dB, as
in Figure S5. This is due to an impedance mismatching caused by their dielectric being
too high or too low, as shown in Figure S5. The obtained PPy/HSB composites possess
more superior microwave absorption properties than most previously reported PPy-based
absorbers, even at a smaller thickness, as shown in Table 1.
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Table 1. Microwave absorption properties of some typical PPy-based materials reported in paraffin
matrix.

Sample Filling Ratio (wt%) Thickness (mm) RLmax (dB) EAB (GHz) Refs

PPy/Co 30 3 −20 7.2 [32]
PPy/graphite 30 2.7 −48 3.4 [33]

PPy-RGO 30 4.0 −49.11 4.88 [34]
PPy-PEDOT 30 2.5 −36 6.28 [35]
PPy@PANI 30 2 −34.8 4.7 [36]
PPy/SMPP 30 3.7 −56.3 6.48 [37]

PPy/SiC nanowires 30 2.5 −16.2 6.52 [38]
PPy/rGO aerogel 30 3 −54.4 6.76 [39]
C@PPy/Ni@Co 30 2 −48.76 5.54 [40]

PPy/HSB-0.6 30 2.8 −43.1 7.12 This work

In order to further reveal the absorption mechanism of the PPy/HSB composites,
their magnetic loss, dielectric loss and impedance matching are analyzed comprehensively.
In general, the dissipation of the incident microwave is composed of dielectric loss and
magnetic loss. PPy is a typical dielectric material with negligible magnetic loss. Therefore,
dielectric loss is considered as the main attenuation mechanism of PPy/HSB complexes.

Figure 7 shows the variation of electromagnetic parameters vs frequency for the
composites. The ε′, ε′′, as well as the dielectric loss tangents (tan δe = ε′′/ε′) of PPy/HSB
turn smaller with the increasing frequency throughout the frequency range. It is noteworthy
that PPy/HSB-0.6 exhibits the highest ε′ and ε′′ values, indicating its highest dielectric
loss properties. As the HSB content increases, the dielectric loss decreases because the
introduction of HSB destroys the conductive network of PPy. It thus indicates that the
dielectric properties of PPy can be tuned conveniently through changing the contents of
HSB components.
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Figure 7. Real permittivity (a), imaginary permittivity (b) and dielectric loss (c) of the PPy/HSB
composites.

As is known, dielectric loss mainly consists of two key factors, i.e., polarization loss and
conduction loss [11,37–39]. Since PPy is a typical dielectric medium, dielectric polarization
is a critical factor that affects the microwave absorption performance. In general, dielectric
polarization comes from molecular polarization, atomic polarization, ionic polarization,
space charge polarization (with carriers), electron polarization (inner and valence electrons)
and dipole polarization (isoelectric positive and negative charge pairs with non-coincident
centers) [1,40]. The main polarization modes in GHz frequency are induced polarization
and orientation polarization, with orientation polarization playing a dominant role in the
attenuation of electromagnetic waves.
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To further explain the dielectric polarization of the PPy/HSB composites, a Cole-Cole
semicircle based on the Debye relaxation is introduced, as shown in Equation (3).(

ε′ − εs + ε∞

2

)2
+ (ε′′ )2 =

(
εs − ε∞

2

)2
(3)

where εs and ε∞ are the static dielectric constant and dielectric constant in ultimate fre-
quency, respectively [3]. These semicircles represent the dielectric relaxation processes
corresponding to Debye relaxation [41–43] and each semicircle represents a polarization
behavior [44]. Both PPy/HSB-0.6 and PPy/HSB-1.2 show several Cole-Cole semicircles, as
exhibited in Figure 8, indicating there exist complicated polarization mechanisms. The semi-
circle for PPy/HSB-1.8 and PPy/HSB-2.4 are found to be distorted in Figure 8c,d, indicating
that there may be some other processes such as dipole polarization and Maxwell-Wagner
relaxation existing in the systems [45].
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Doped PPy has carriers, polaritons and bipolaritons [46,47]. When the incident wave
comes in contact with PPy, the positive and negative charges of polaritons and dipoles
of PPy are separated [48]. The carriers of PPy are excited to generate holes and electrons,
leading to dipole polarization and the consumption of electromagnetic waves. For a
dielectric material, the different polarity or conductivity of the components on both sides
of the interface would cause the charge accumulation at the interface of the two phases
under the action of electric field, thus resulting in interfacial polarization. PPy exhibits a
cauliflower-like structure, which gives it a high specific surface area and provides conditions
for the uniform dispersion of HSB. Therefore, sufficient interfaces can bring about abundant
interfacial polarization and thus dissipate more electromagnetic waves.

In addition to dipole polarization and interfacial polarization, conduction loss is also
an important factor affecting the absorption characteristics of PPy/HSB composites. The
relationship between electrical conductivity (σ) and ε′′ is given as follows [49],

σ = ε0ε′′ 2π f (4)
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Here, ε0 (= 8.8542 × 10−12 F/m) is the dielectric constant in vacuum and f is the
frequency. As can be seen in Figure 9a, the conductivity gradually decreases as the HSB
concentration increases. Generally, EMW absorbing material with high performance needs
to meet two fundamental requirements. The first one is that the electromagnetic waves
should enter the interior of the material and not be reflected directly by the surface. In
other words, a good impedance matching condition is needed to obtain a good microwave
absorption performance. The second requirement is that the MAM must have appropriate
attenuation property, i.e., higher conductivity or dielectric loss to transfer the incident
microwave energy to other sorts, such as heat energy. Generally, a higher conductivity
makes the material more capable of losing electromagnetic waves [50]. However, a much
higher conductivity would lead to a strong reflection at the surface of the MAM and thus
deteriorate its impedance matching. In this sense, the conductivity must be considered
comprehensively with the impedance matching of the MAM.
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Figure 9b plots the impedance matching ratios (z = |Zin/Z0|) of the PPy/HSB compos-
ites. It is clear that z increases with the HSB concentrations, which is in inverse trend with
electrical conductivity. As is illustrated in Equations (1) and (2), the balance of permeability
and conductivity (increasing the permeability or decreasing the conductivity) can achieve
good matching. As the concentration of HSB increases, the permittivity decreases but
the permeability keeps constant (Figure S6) without obvious changes, which makes the
impedance matching unbalanced.

From Figure 9a, the electrical conductivity of PPy/HSB-0.6 and PPy/HSB-1.2 are
nearly the same, but their RL values are very different. From Figure 9b, the value of
|Zin/Z0| for PPy/HSB-0.6 is close to 1, whereas the |Zin/Z0| for PPy/HSB-1.2 is much
worse, which explains the phenomenon that PPy/HSB-1.2 has dielectric properties as
high as tan δe = 0.2, but still exhibits poor EMW absorption performance. The impedance
matching conditions of PPy/HSB-0.3 and PPy/HSB-1.8 are even worse, due to the low or
high concentration of HSB, which makes the conductive network of PPy broken. The above
analysis shows that the excellent microwave absorption performance of PPy/HSB-0.6
comes not only from a good loss mechanism but also from a good impedance matching
condition, both of which can be adjusted by introducing HSB into PPy powder.

The EMW absorption mechanism of the PPy/HSB-based composites can be interpreted
schematically in Figure 10. Firstly, the composite of conductive PPy and spherical HSB can
expand the interface and increase the interfacial polarization. The polarization and related
relaxation contribute greatly to the attenuation of the incident wave energy. Secondly, the
conjugated structure of PPy makes it easy for electrons to flow and form a conductive
network. The resulting induced current can convert the incident electromagnetic wave into
other forms of energy for consumption. Finally, the introduction of HSB not only improves
the impedance matching of PPy, but also makes it generate multiple dielectric polarization
under electric field excitation due to the C=N polar structure therein. The carbon and
nitrogen double bond structure in HSB makes itself a permanent dipole moment and
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results in electromagnetic energy loss when the EMW inters the material [39]. Moreover,
the addition of HSB increases the multi-reflection and scattering of electromagnetic waves
in the material, which increases the energy consumption and thus leads to the enhancement
of absorption. Therefore, the electromagnetic absorption performance of PPy/HSB-0.6
can be improved and the PPy/HSB based composites can be considered as a potential
candidate for electromagnetic absorption materials.
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4. Conclusions

In summary, an organic conjugated system was prepared via a Schiff base synthetic
route. Due to the good compatibility of PPy and HSB, PPy/HSB composites were combined
successfully through an in-situ polymerization process and characterized for potential
application as a dielectric–dielectric electromagnetic wave absorber. With the increase of
HSB concentration, the HSB particles transfer gradually from nanospheres to micro-sized
flakes with increased crystallinity. The electromagnetic characterization results reveal that
the PPy/HSB-0.6 composite exhibits an absorption peak of −43.1 dB with a matching
thickness of 2.8 mm. The effective absorption bandwidth reaches as wide as 7.2 GHz. The
fine electromagnetic absorption performance can be attributed to the improved impedance
matching and increased C=N oriented polarization. The PPy/HSB composite organic
conjugated system not only increases the transmission path and enhances the dielectric
polarization, but also generates more interfaces to promote the interfacial polarization. This
study provides a new idea for the exploration of organic Schiff base systems in the field of
electromagnetic functional materials.
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