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Abstract: The standardization of near-infrared (NIR) spectra is essential in practical applications,
because various instruments are generally employed. However, standardization is challenging due to
numerous perturbations, such as the instruments, testing environments, and sample compositions. In
order to explain the spectral changes caused by the various perturbations, a two-step standardization
technique was presented in this work called mutual–individual factor analysis (MIFA). Taking advan-
tage of the sensitivity of a water probe to perturbations, the spectral information from a water spectral
region was gradually divided into mutual and individual parts. With aquaphotomics expertise, it can
be found that the mutual part described the overall spectral features among instruments, whereas
the individual part depicted the difference of component structural changes in the sample caused
by operation and the measurement conditions. Furthermore, the spectral difference was adjusted
by the coefficients in both parts. The effectiveness of the method was assessed by using two NIR
datasets of corn and wheat, respectively. The results showed that the standardized spectra can be
successfully predicted by using the partial least squares (PLS) models developed with the spectra
from the reference instrument. Consequently, the MIFA offers a viable solution to standardize the
spectra obtained from several instruments when measurements are affected by multiple factors.

Keywords: water probe; mutual–individual factor analysis; calibration transfer; aquaphotomics; near
infrared spectroscopy

1. Introduction

Water, as one of the most common substances on earth, has numerous functions,
including dissolution, stabilization, catalyzation, transportation, etc. [1–3]. However, water
is an enduring mystery, due to the intricate and dynamic structures of its intermolecular
hydrogen bond network [4]. The molecular interaction is generally affected by perturba-
tions in water’s surroundings, such as temperature and additives, resulting in hydrogen
bond rearrangement and the alteration of chemical as well as physical performance in the
system [5]. Thus, water structure has remained a significant research subject for decades.

Aquaphotomics has been proposed as a new scientific discipline based on innovative
knowledge of the water molecular network, which describes the features of water structure
from the water spectrum, indirectly reflecting all perturbations, including experimental
conditions and sample compositions [6]. The water spectral pattern hence becomes a
revelator of the system condition. Several attempts have been made to analyze the ex-
perimental conditions by using water spectra. Shao et al. reported that a quantitative
spectra–temperature relationship (QSTR) model can be established, and the temperature of
a solution can be predicted from the near-infrared (NIR) spectrum with the water region
using the model [7,8]. Romanenko et al. developed a new approach, which used three fitted
Gaussian features from the water Raman spectra to investigate pressure and solution den-
sity [9]. Subsequently, aquaphotomics has gradually broadened as water was applied to be
a sensor and an amplifier in the structural and quantitative analysis of aqueous systems [10].
A number of researchers have reported that water was a sensitive probe for analyzing the
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structural changes and the interactions in aqueous solutions of alcohols [11,12], as well
as proteins [13–15], and practical samples [16–18]. On the other hand, the water probe
possesses its own advantages when carrying out the component detection [19–21].

Currently, aquaphotomics for experimental conditions and sample compositions in
aqueous systems have been investigated simultaneously with chemometric methods [22–24].
The NIR spectra of water in terms of hydrogen bonding were extracted to characterize the
perturbations created by the change of temperature and concentration in solutions with
the application of multivariate curve resolution–alternating least squares (MCR–ALS) [25],
alternating trilinear decomposition (ATLD) [26], and multilevel simultaneous component
analysis (MSCA) [27], etc. Furthermore, practical samples were studied [28,29]. The
common spectral features that contained the water spectra influenced by temperature
were extracted from the spectra of serum samples, and both the temperature and glucose
can be successfully measured by using mutual factor analysis (MFA) [29]. Therefore,
aquaphotomics provides a common platform for practical applications.

In industrial applications with NIR spectroscopy, standardization or calibration trans-
fer is usually required to correct the spectral variations both caused by the measurement
and sample conditions [30]. There are three major pathways for standardizing the NIR spec-
tra measured on different instruments, including the correction of the prediction values [31],
alteration of the model coefficients [32,33], and modification of the spectra [34–37]. The last
strategy is the most commonly applied. Piecewise direct standardization (PDS) is a very ef-
ficient method by which to establish a linear relationship between the spectra measured on
different instruments in several small window regions [34]. By using techniques like spec-
tral space transformation (SST) [35], alternating trilinear decomposition (ATLD) [36], and
multilevel simultaneous component analysis (MSCA) [37], research was also conducted by
determining the relationship between the principal components retrieved from the spectra
as an alternative to correcting spectra. However, the majority of standardization methods
concentrate on resolving the discrepancy resulting from a straightforward link between the
spectra obtained on various instruments and describing the calibration transfer through
a mathematical formula. Aquaphotomics may provide a different approach by which to
examine spectral differences that are influenced by a variety of circumstances, enhancing
interpretability and lowering bias, especially for the spectra of samples containing water,
such as agricultural products.

In this work, particular attention is paid to the application of aquaphotomics for
calibration transfer to discover more information with physical and chemical meanings. A
new algorithm, called mutual–individual factor analysis (MIFA), using water as a probe,
was proposed to analyze the water spectra both influenced by different instruments and
substances, and the standardization performance of the water probe was validated by two
NIR spectral datasets.

2. Theory and Algorithm
2.1. Continuous Wavelet Transform

As an efficient tool for data processing, continuous wavelet transform (CWT) has been
generally applied to improve the spectral quality, i.e., resolution enhancement, baseline
correction, and smoothing [29,38,39]. In this work, CWT with a Symmlet filter with a
vanishing moment 6 (Sym6 filter)) was employed, which is approximately equal to the
sixth derivative. With CWT, the resolution improvement and spectrum smoothing can
be achieved simultaneously [39]. Due to the property of the sixth derivative, the positive
absorption in the raw spectra becomes a negative one. In this study, for the convenience of
description, the value of the derivative is reversed.

2.2. Mutual–Individual Factor Analysis

In order to develop the transfer model, the spectra of standard samples collected
on different instruments are generally employed for standardization. Following CWT
processing, the spectra from three instruments, denoted as X1, X2, and X3 were employed
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in this investigation. In accordance with MFA [29], the combined spectral matrix, Xcomb,
was first processed to separate the standardized signal (SS), which represents the spectral
information of samples measured on a reference instrument. The relationship can be
presented as

Xcomb = [X1, X2, X3] = T
[
PT

1 , PT
2 , PT

3

]
+ E (1)

SS = TPT
re f = Xre f

(
PT

re f

)+
PT

re f , (2)

where superscripts T and + denote the mathematical operation of transposition and pseu-
doinverse of the matrix, respectively, and E contains the residuals between the actual
spectra and the fitted model. The scores and loadings in a principal component analysis
(PCA) model are symbolized as T and Pi

T (i = 1, 2, and 3), respectively. As a result of using
the same T, Pi

T represents the variations in the measured conditions or instruments. Then,
it is possible to determine how much of the spectral pattern of Xi is present in Xj (i 6= j) by
using the relationship. The relative quantity (zi) of SS contained in each Xi can be obtained,
and score, ti, in each group of spectra collected on different instruments can be calculated
by using the reference loading, Pref. The relationship can be presented as

zi = trace
(
XiSS+

)
(3)

ti = Xi

(
PT

re f

)+
. (4)

It should be noted that, theoretically, any group of spectra measured on an instru-
ment can be used as the reference; however, generally the spectra collected on the master
instrument is applied.

The mutual part between the spectra measured on various instruments can be dis-
covered after MFA processing. However, apart from the spectral alterations driven by
the instruments, there are also spectral variations caused by the altered sample structural
features as a result of changing measurement conditions. Despite being minor, the spectral
variations affect the standardization, especially for the samples containing water, due to
the sensitive response of OH in NIR spectra [6]. As a result, the individual factor was
introduced to evaluate the variance using PCA model as the following equation,

Xle f =

X1 − z1SS+

X2 − z2SS+

X3 − z3SS+

 =

Tle f ,1
Tle f ,2
Tle f ,3

PT
le f + Ele f , (5)

where Elef denotes the remaining data that did not fit into the model, and Tlef,i and Plef
T

reflect the scores and loadings in the PCA model, respectively, after the mutual parts have
been removed. As a result, the score of the model merely accounts for the variance affected
by the measurement of the sample. Because the essence of the algorithm is to extract the
factor mutually and individually contained in the spectral data of different samples, the
algorithm is named as mutual–individual factor analysis and abbreviated as MIFA.

By adjusting the coefficients, i.e., zi and Tlef,i, the spectra measured on one instrument
can be transferred to another. The details of the standardization can be summarized in two
steps, as follows.

(1) Establish MIFA models: The MIFA approach is applied to establish the two models,
containing ti, Pi

T, Tlef,i, and Plef
T, from the standard spectra measured on three instruments,

X1, X2, and X3. This stage involves determining how many principal components each of
the two models has.

(2) Transfer the spectrum: As an illustration, the following computations can be used
to transfer the spectrum of instrument 2 (X2s) to instrument 1,

ts = X2s

(
PT

1

)+
(6)
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Tle f ,s = (X2s − tsPT
1 )
(

PT
le f

)+
(7)

tTs = ts(t2)
+t1 (8)

Tle f ,Ts = Tle f ,s

(
Tle f ,1

)+
Tle f ,2 (9)

XT2s = tTsPT
1 + Tle f ,TsP

T
le f . (10)

The scores of X2s can be calculated by using Equations (6) and (7) through MIFA mod-
els, and then transferred from instrument 2 to instrument 1 by using Equations (8) and (9).
Finally, Equation (10) can be applied to obtain the transferred spectra by using the load-
ings (P1

T and Plef
T) and the transferred scores. The spectra from the instrument 3 can be

transferred in the same way.

3. Data Description

Two NIR spectral datasets were employed in this investigation. Dataset 1 was down-
loaded from http://software.eigenvector.com/Data/Corn/index.html (accessed on 25
June 2019), and contains the moisture, oil, protein, and starch contents of 80 corn samples
along with the NIR spectra obtained by using three NIR spectrometers (m5, mp5, and mp6).
Each spectrum was acquired with 700 data points throughout the wavelength range of
1100–2498 nm with a digitization interval of 2 nm.

Dataset 2 was downloaded from https://www.cnirs.org/content.aspx?page_id=22&
club_id=409746&module_id=239453 (accessed on 17 July 2022), and includes 744 NIR
spectra analyzed on three instruments (A1, A2, and A3), as well as the protein content
of the 248 wheat samples. Each spectrum comprised 741 data points with a digitization
interval of 0.5 nm, and was recorded in the wavelength range of 730–1100 nm.

Prior to the calculation, each dataset was divided into a calibration set, a transfer set,
and a prediction set using the Kennard-Stone (KS) technique [40]. The calibration set (the
spectra of the master) is employed to develop the multivariate calibration model of the
master, the transfer set (containing the spectra of all the instruments) is applied to building
the transfer model, and the prediction set (the spectra of the salve) is used for validating the
effect of the transfer model. For dataset 1, the calibration, transfer, and prediction sets were
composed of 30, 30, and 20. For dataset 2, the possible outlier (ID 20140190) was removed,
and the remaining 247 samples were divided into a calibration set of 117 samples, a transfer
set of 30 samples, and a prediction set of 100 samples.

4. Results and Discussion
4.1. Spectral Analysis and Resolution Enhancement

The spectra of corn samples using three instruments are displayed in Figure 1.
Figure 1(a1) shows that there are several broad bands with a ranked background, and
the average spectrum intensity from m5 is higher than those from mp5 and mp6. The
outcome demonstrates that the background shift appears to be the major source of the
overall spectral variance induced by different instruments. To remove the background,
CWT with Sym6 was used, which is approximately equal to the sixth derivative [39]. The
CWT-processed spectra are shown in Figure 1(b1), illustrating an almost zero baseline.
Furthermore, compared with the spectra from the three instruments, the similarity proves
that the background shifting among the instruments is the primary cause of the difference.
In addition, taking advantage of the high-order derivative, narrower peaks were obtained
than the corresponding spectra in Figure 1(a1). It has been reported that compared with
the results by the first or second derivatives used in our previous works [11,17,26,28], the
CWT-processed spectra from higher-order derivatives illustrate higher resolution, and
reveal more information to understand the interactions in aqueous samples [29,41].

http://software.eigenvector.com/Data/Corn/index.html
https://www.cnirs.org/content.aspx?page_id=22
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Additionally, the background shift may be the reason of the high intensity around 1142 
and 2434 nm in Figure 1a2, as there are no strong values in these spectral regions of Figure 
1b2. These findings suggest that as detecting conditions change, different instruments al-
ter not just the background but also the spectral intensity of various species in samples, 
which is consistent with the results of MSCA [37]. Thus, it is necessary to adjust the spectra 
at both the instrument and sample levels. 
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Figure 1. Average NIR spectra of corn samples from instrument m5, mp5, and mp6, respectively (a1),
standard deviation of the averaged spectra (a2), average spectra from each instrument after CWT
transformation (b1), and standard deviation of the CWT processed spectra (b2). The selected ranges
were indicated with shadows.

For a further comparison, Figure 1(a2,b2) provides the standard deviation of the sam-
ple spectra and the CWT-processed spectra, respectively, where the higher the intensity, the
larger the difference. The relatively higher intensity in both subfigures can be seen around
1410 and 1904 nm, which are primarily composed of the overtone and a combination of
stretching and bending vibrational modes of OH in water, as well as features of OH, NH,
and CH in biological components [6,18]. The others around 1682 and 2200–2300 nm are re-
lated to the CH groups in biomolecules and α-helix in protein, respectively, consistent with
the assignments of NIR bands from quantum chemical simulations [42,43]. Additionally,
the background shift may be the reason of the high intensity around 1142 and 2434 nm in
Figure 1(a2), as there are no strong values in these spectral regions of Figure 1(b2). These
findings suggest that as detecting conditions change, different instruments alter not just
the background but also the spectral intensity of various species in samples, which is
consistent with the results of MSCA [37]. Thus, it is necessary to adjust the spectra at both
the instrument and sample levels.

Furthermore, the major differences in the shadow reveal that NIR spectra are sensitive
to OH, which can easily undergo structural changes due to hydrogen bonding when
environmental changes are detected [6,24]. Compared with biomacromolecules, such as
oil, protein, and starch in seeds, OH groups in water are relatively more active due to the
smaller size and stronger polarity of water, and may cause more spectral changes from
different instruments [6,44]. For this reason, by using water as the probe, the spectral ranges
(1294–1556 and 1788–2078 nm) associated with water in the shadow in Figure 1(b1) were
chosen to build the MIFA model.

4.2. Mutual–Individual Factor Analysis

To investigate the instrument and sample effects on the NIR spectra, MIFA was em-
ployed on dataset 1 using water as a probe. First, the numbers of principal components (PC)
were required to construct the mutual and individual factor analysis models, respectively.
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The commonly used criteria of “explained variance” was utilized in this study to determine
the numbers [37]. The number of the PCs that explain 99.9% of the variance was applied.
For dataset 1, the parameters for the mutual and individual factor analysis models were 1
and 6, respectively.

Equations (1)–(3) were then applied to calculate the standardized signal (SS) and
the relative quantity (zi) using the spectra from m5 as the reference. The SS is shown in
Figure 2a to estimate instrument-induced variance. As a result, it should be unaffected
by instrument changes. The intensity of the signal should be only related to the concen-
tration of the samples. Figure 2b shows the intensity variations at 1882 nm with the mass
percentage of moisture to validate the assumption. A linear function can be generated from
quantitative analysis of complicated biological samples with a recovery of less than 20%,
which is considered a good result when using single-point spectral values for regression.
The results suggest that SS is related to water in corn, indicating the effectiveness of mutual
parts, which are consistent with the MFA conclusion [29].

Molecules 2022, 26, x FOR PEER REVIEW 6 of 14 
 

 

Equations (1)–(3) were then applied to calculate the standardized signal (SS) and the 
relative quantity (zi) using the spectra from m5 as the reference. The SS is shown in Figure 
2a to estimate instrument-induced variance. As a result, it should be unaffected by instru-
ment changes. The intensity of the signal should be only related to the concentration of 
the samples. Figure 2b shows the intensity variations at 1882 nm with the mass percentage 
of moisture to validate the assumption. A linear function can be generated from quantita-
tive analysis of complicated biological samples with a recovery of less than 20%, which is 
considered a good result when using single-point spectral values for regression. The re-
sults suggest that SS is related to water in corn, indicating the effectiveness of mutual 
parts, which are consistent with the MFA conclusion [29]. 

 
Figure 2. Standardized signal (SS) (a), the relationship between the intensity at 1882 nm and the 
mass percentage of moisture (b), and the relationship between the relative quantity (zi) and instru-
ments (c). The linear regression appears as the red dash. 

Figure 2c depicts zi in relation to the three instruments. The very small difference in 
values reflects the minor overall variations between the spectra of three instruments, even 
if the background was reduced by the CWT. This demonstrates that apart from the back-
ground variation, the mutual part contains the sample change with different instruments, 
indicating the sensitivity of water probe. zi is a mirror of the spectral variation caused by 
instruments; hence the relationship between zi can be utilized to regulate the overall spec-
tral difference caused by the measurement circumstances. 

After removing the mutual part from the spectra, PCA was used to evaluate the in-
dividual spectral features from the remaining spectra. Figure 3 shows the loadings for 
each PC, and the spectrum characteristics are related to the hydrated CH, NH, and OH in 
biomolecules as well as the hydrated OH in water [6,15,16,18,42,43]. The disparities be-
tween the PCs may be due to differences in the samples and the measurement of the spec-
tra. In comparison to the other five PCs, the first PC provides additional details concerning 
the characteristics of the hydrogen-bonded OH at 1444 and 1934 nm, according to aqua-
photomics [10]. When samples of corn are measured by using different instruments, the 
outcomes show that the hydrogen-bonding variance of the chemicals in the corn is what 
causes the majority of individual differences. 

Figure 2. Standardized signal (SS) (a), the relationship between the intensity at 1882 nm and the mass
percentage of moisture (b), and the relationship between the relative quantity (zi) and instruments (c).
The linear regression appears as the red dash.

Figure 2c depicts zi in relation to the three instruments. The very small difference
in values reflects the minor overall variations between the spectra of three instruments,
even if the background was reduced by the CWT. This demonstrates that apart from
the background variation, the mutual part contains the sample change with different
instruments, indicating the sensitivity of water probe. zi is a mirror of the spectral variation
caused by instruments; hence the relationship between zi can be utilized to regulate the
overall spectral difference caused by the measurement circumstances.

After removing the mutual part from the spectra, PCA was used to evaluate the
individual spectral features from the remaining spectra. Figure 3 shows the loadings for
each PC, and the spectrum characteristics are related to the hydrated CH, NH, and OH
in biomolecules as well as the hydrated OH in water [6,15,16,18,42,43]. The disparities
between the PCs may be due to differences in the samples and the measurement of the
spectra. In comparison to the other five PCs, the first PC provides additional details
concerning the characteristics of the hydrogen-bonded OH at 1444 and 1934 nm, according
to aquaphotomics [10]. When samples of corn are measured by using different instruments,
the outcomes show that the hydrogen-bonding variance of the chemicals in the corn is
what causes the majority of individual differences.

In order to further explore the feasibility of the model transfer, Figure 4 displays the
scores of the individual part for the first six PCs. The scores in the models are more essential
in this study because the transfer is accomplished by modifying the scores. This implies
that measurement-related changes in molecule structures may impact the measured spectra,
as not all of the discrepancy can be accounted for by the mutual part or only one model [37].
For adjusting the complicated effects, a multi-step strategy can be a wise solution.
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Figure 4. Comparison of the scores in the first through the sixth (a–f) PCs in the individual part for
the spectra from the instruments m5, mp5, and mp6. The blue square, red circle, and green triangle
represent the score for instrument m5, mp5, and mp6, respectively.

In contrast to the scores in PC2–PC6, it is obvious that PC1 shows the largest disparity.
In PC1, the scores from mp5 and mp6 show similar changes when compared with that
from m5, indicating that structural alterations of hydrogen-bonded water in corn have a
regular pattern under different measurement conditions. The findings prove that water
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probe may be utilized for model transfer and that water spectral features can be used as a
comprehensive descriptor to portray the system.

4.3. Standardization of the Spectra

By adjusting the coefficient values in the scores, it is possible to achieve spectral
standardization, or the transfer of the spectra from mp5 and mp6 to m5 (mp5–m5 and
mp6–m5). Because there is just one value for the mutual part in dataset 1, it is obvious that
the transfer may be finished by simply changing the zi of mp5 and mp6 to m5, respectively.
In general, the transfer for the mutual part can be accomplished by Equation (8). Similarly,
Equation (9) can be used to determine the transfer of individual part.

Figure 5 displays the spectra measured from m5, mp5, and mp6 for a sample randomly
chosen from the prediction set of dataset 1. The transferred spectra by the mutual and
mutual–individual parts are also shown in the figure to demonstrate the effects of the
standardization by the proposed strategy. Clearly, the spectra from the three instruments
differ among one another in the embedded graphs. The spectra of mp5 and mp6 approach
closer to the spectrum of m5 once the mutual part has been corrected, although there is
still a little divergence. The spectra from m5, mp5–m5, and mp6–m5 are virtually identical
after the individual parts have been corrected. The findings unequivocally demonstrate
that both mutual and individual parts have an impact on the transfer of the spectra.
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To further assess the transfer effect of the proposed approach, PCA was carried out on
the spectra both before and after spectral standardization. Figure 6 displays the transfer
outcomes of the spectra from various equipment in the first three PC spaces. The scores
from m5 and the other two instruments differ substantially, demonstrating the variation
in spectra between them. The disparity between the mp5 and mp6 is not as significant,
consistent with the findings in Figure 1. The results show that the score can properly
represent the spectral features.

When the scores of the reference and the transferred spectra are compared, it is clear
that the ellipsoids with a confidence value of 95% are overlapped, demonstrating that
the disparity has been corrected by MIFA. The outcomes unequivocally illustrate that the
proposed method is capable of transferring the measured spectra from other instruments
to the reference.
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4.4. Validation of the Standardized Spectra

For the final evaluation of the proposed method, a partial least squares (PLS) model
was built with the calibration spectra measured on the reference instrument, and then
applied to the prediction set from other instruments. Cross-validation is used to establish
the optimal number of latent variables (nLV) in the PLS model. For the calibration set of
dataset 1, four LVs were employed. Figure 7 depicts the relationship between predicted
and original moisture, oil, protein, and starch values based on the spectra from m5 in blue
points. The results of the spectra from mp5 and mp6 are displayed in red and green points,
and the predicted values of the transferred spectra from mp5 and mp6 are also plotted in
orange and yellow for comparison. It is obvious that similar results can be found between
the blue and orange or blue and yellow points in the subfigures, respectively. Moreover,
the blue and red or blue and green points clearly differ from each other. The results
demonstrate that the PLS model from the reference instrument can accurately predict the
transferred spectra.

When comparing the correlation coefficient (R2) of the calibration models, it should
be noted that the relationships between the original and predicted values for moisture,
protein, and starch are slightly better than that for oil. The moisture quantification result
is the best because the water spectral range was chosen. In addition, protein and starch,
which interact more strongly with water [2,10], have superior quantification models than
oil. Despite the fact that R2 is slightly lower than others for oil, the quantitative model can
be applied for practical samples with the recovery less than 20%.

To further investigate the effectiveness of the proposed approach, Tables 1 and 2
exhibit the predictions made by MIFA for datasets 1 and 2, respectively, compared with the
results from PDS and SST. By using one of the instruments as a reference, the values of root
mean squared error of prediction (RMSEP) for the oil and protein contents in the validation
set are shown in the tables, respectively. Clearly, the direct prediction of spectra from other
instruments through the reference model is substantially worse than that of the reference
spectra. The RMSEP can be minimized if the transferred spectra are predicted. The results
provide a strong validation for the efficiency of the calibration transfer, even though the
values are still slightly larger than those of the reference instrument. Additionally, although
there is a minor variance, similar results are also obtained for the PDS, SST, and MIFA.



Molecules 2022, 27, 6069 10 of 14

Consequently, the MIFA can be used to successfully transfer the spectra measured by
different instruments with the water spectral region. Furthermore, the MIFA approach
(using water as a probe) narrows the wavelength range needed by concentrating on the
water spectral region, which reflects the major structural changes in the system, providing
the opportunity of standardization between miniature instruments.
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Table 1. Comparison of the results obtained by PDS, SST and MIFA for dataset 1.

Calibration Spectra Validation Spectra RMSEP

m5

m5 0.1419
mp5 0.1667
mp6 0.2608

mp5–m5 (MIFA) 0.1435
mp5–m5 (PDS) 0.1592
mp5–m5 (SST) 0.1573

mp6–m5 (MIFA) 0.1424
mp6–m5 (PDS) 0.1519
mp6–m5 (SST) 0.1493

mp5

mp5 0.1527
m5 0.1786

mp6 0.1669
m5–mp5 (MIFA) 0.1601
m5–mp5 (PDS) 0.1642
m5–mp5 (SST) 0.1639

mp6–mp5 (MIFA) 0.1546
mp6–mp5 (PDS) 0.1593
mp6–mp5 (SST) 0.1572

mp6

mp6 0.1523
m5 0.1981

mp5 0.1909
m5–mp6 (MIFA) 0.1609
m5–mp6 (PDS) 0.1564
m5–mp6 (SST) 0.1551

mp5–mp6 (MIFA) 0.1546
mp5–mp6 (PDS) 0.1634
mp5–mp6 (SST) 0.1586

Table 2. Comparison of the results obtained by PDS, SST and MIFA for dataset 2.

Calibration Spectra 1,2 Validation Spectra RMSEP

A1

A1 0.6091
A2 0.8028
A3 0.9866

A2–A1 (MIFA) 0.6824
A2–A1 (PDS) 0.6987
A2–A1 (SST) 0.6752

A3–A1 (MIFA) 0.7154
A3–A1 (PDS) 0.7089
A3–A1 (SST) 0.7066

A2

A2 0.7475
A1 0.8538
A3 0.9274

A1–A2 (MIFA) 0.8049
A1–A2 (PDS) 0.8122
A1–A2 (SST) 0.799

A3–A2 (MIFA) 0.8106
A3–A2 (PDS) 0.8324
A3–A2 (SST) 0.8075
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Table 2. Cont.

Calibration Spectra 1,2 Validation Spectra RMSEP

A3

A3 0.7044
A1 0.8316
A2 1.1068

A1–A3 (MIFA) 0.7993
A1–A3 (PDS) 0.8237
A1–A3 (SST) 0.8033

A2–A3 (MIFA) 0.8196
A2–A3 (PDS) 0.8169
A2–A3 (SST) 0.8127

1 The number of PC for the mutual and individual factor analysis models were 1 and 6 in MIFA, respectively.
2 PLS model was built with 3 LVs, according to cross-validation.

5. Conclusions

For the purpose of standardizing NIR spectra, a new chemometric technique called
mutual–individual factor analysis (MIFA) was developed based on the water spectral
region, which used water as a probe. In order to describe the overall differences between
the various instruments, the method extracted the spectral feature of the mutual part
present in the spectra from different instruments. The difference between the molecular
interactions in the samples caused by various measurement conditions was then depicted
in each individual part. Furthermore, the spectra measured on one instrument can be
effectively transferred to that of another by modifying the coefficients of the mutual and
individual parts, respectively. When compared with PDS and SST, MIFA produced a similar
result, but provided additional information with physical and chemical meanings by using
aquaphotomics. Therefore, in practical applications of NIR spectroscopic analysis, the
water probe may offer an effective solution when the spectra are impacted by several
complex perturbations, and promote the development of small instruments with limited
wavelength ranges.
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