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Abstract: The lungs and large intestine can co-regulate inflammation and immunity through the
lung–gut axis, in which the transportation of the gut microbiota and metabolites is the most important
communication channel. In our previous study, not only did the composition of the gut microbiota
and metabolites related to inflammation change significantly during the transition from ulcerative
colitis (UC) to colorectal cancer (CRC), but the lung tissues also showed corresponding inflammatory
changes, which indicated that gastrointestinal diseases can lead to pulmonary diseases. In order to
elucidate the mechanisms of this lung–gut axis, metabolites in bronchoalveolar lavage fluid (BALF)
and lung tissues were detected using UHPLC–Q-TOF-MS/MS technology, while microbiome charac-
terization was performed in BALF using 16S rDNA sequencing. The levels of pulmonary metabolites
changed greatly during the development of UC to CRC. Among these changes, the concentrations of
linoleic acid and 7-hydroxy-3-oxocholic acid gradually increased during the development of UC to
CRC. In addition, the composition of the pulmonary microbiota also changed significantly, with an
increase in the Proteobacteria and an obvious decrease in the Firmicutes. These changes were consistent
with our previous studies of the gut. Collectively, the microbiota and metabolites identified above
might be the key markers related to lung and gut diseases, which can be used as an indication of the
transition of diseases from the gut to the lung and provide a scientific basis for clinical treatment.

Keywords: ulcerative colitis; colorectal cancer; lung–gut axis; microbiota; metabolites

1. Introduction

Ulcerative colitis (UC) is a common non-specific inflammatory bowel disease (IBD).
Long-standing extensive UC represents the main risk factor for colorectal cancer (CRC)
related to IBD [1,2]. CRC is the third most commonly diagnosed cancer worldwide and
the second leading cause of carcinogenic death, which threatens the health of an increas-
ing number of individuals [3]. According to the theory of traditional Chinese medicine
(TCM), the lung and gut have similar physiological functions and pathological phenomena
due to their shared structural origin and connection to one another through meridians
and collaterals [4,5]. As mentioned in Huangdi’s Canon of Internal Medicine, the lung
and gut complement each other, forming an inseparable dependence [6,7]. Modern re-
search has shown that patients with chronic obstructive pulmonary disease (COPD) are
three times more likely to develop Crohn’s disease than healthy people, which results
in gastrointestinal and respiratory tract diseases often occurring together [8]. To date,
many scholars have recognized the complex interaction between the lungs and gut. A
growing number of extensive studies have been conducted on the common inflammatory
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pathway and common immune mechanism between the respiratory system and digestive
system along the lung–gut axis [9,10]. Hence, it is of paramount importance to under-
stand the mechanism of the lung–gut axis for exploring the relationship between the
lung and gut in order to gain insights into the prevention and treatment of intestinal and
pulmonary diseases.

The research thus far suggests that the important communication channels of the lung–
gut axis may be mediated by the circulation and transportation of the gut microbiota and
metabolites, the direct migration of immune cells, the spillover of inflammatory mediators,
and so on [11,12]. Among these factors, the pathways of the gut microbiota and metabolites
have been confirmed to play particularly important roles in intestinal and pulmonary dis-
eases [13]. On one hand, microbial disorder within the gut can significantly alter the levels
of small molecule metabolites with immunomodulatory properties, leading to improper
inflammatory responses and a series of bowel diseases [14]. Moreover, the disordered gut
microbiota and metabolites can further affect the immune response in the lungs through
the lung–gut axis in order to regulate the inflammation in the lungs [15,16]. Murine studies
have suggested that products derived from gut microbiota, such as short-chain fatty acids
(SCFAs), can modulate systemic immunity and local lung inflammation by priming the
immune effector cells [17]. On the other hand, microbial communities of the respiratory
and gastrointestinal tracts may also be exchanged with one another through the liquid in
the lymphangion, thus directly affecting the health of the lungs [18]. Studies have found
divergent compositions of gut microbiota between patients with pulmonary tuberculosis
and healthy volunteers. Moreover, microbial homeostasis can be maintained through fecal
transplantation, thus improving pulmonary diseases [19,20]. This phenomenon indicates
that there is a complex interaction between the gut microbiota and lungs, which can affect
their balance. Consequently, exploring the changing patterns in the microbiota profiles and
metabolites during the development of intestinal and pulmonary diseases is of great impor-
tance for research on the interaction mechanism of the lungs and gut and the prevention
and treatment of diseases. However, there are few studies on the pulmonary microbiota
and their metabolites in the development of enteropathy. In addition, there are no scientific
or detailed explanations determining whether intestinal diseases can cause changes in the
pulmonary microbiota and their metabolites, or whether there are synchronously changed
substances in the gut and lungs.

In our previous study [21], using plasma and fecal samples as a model, the changes
in the small molecule metabolites from UC to CRC were measured through ultra-high-
performance liquid chromatography–quadrupole time-of-flight mass spectrometry
(UHPLC–Q-TOF-MS/MS). Moreover, the gut microbial communities of fecal samples
were analyzed by 16S rDNA sequencing technology, which revealed different compositions
and diversity in the control, UC, and CRC groups. It is noteworthy that the lung tissues
also showed corresponding inflammatory changes, which provided an insight into the
possibility that disturbances of the gut microbiota and metabolites caused by intestinal
diseases might be transmitted to the lungs along the lung–gut axis, leading to pulmonary
diseases. However, the synchronous and dynamic change patterns in the intestinal and
pulmonary microbiota and metabolites during the development of diseases are still unclear.
Therefore, in this study, lung tissues and BALF continued to be analyzed using UHPLC–Q-
TOF-MS/MS and 16S rDNA sequencing technology, aiming to evaluate the alterations in
the pulmonary metabolites and pulmonary microbiota during the development of UC into
CRC. Combined with the previous experimental results, the excavated microflora and their
metabolites, with the same change trend in the intestinal and pulmonary tracts, were taken
as the key biomarkers related to the lungs and gut, which could be used to indicate the
occurrence and development of diseases so as to provide a basis for the clinical application
of TCM theory.
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2. Materials and Methods
2.1. Chemicals and Reagents

2,4,6-trinitrobenzenesulfonic acid (5% w/v) and 1,2-dimethylhydrazine hydrochloride
(98% purity) of chemical grade were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Chloral hydrate of chemical grade was purchased from Yuwang Co. Ltd. (Yucheng, China).
Physiological saline was provided by Ruijinte Chemical Co. Ltd. (Tianjin, China). Ethanol
of analytical grade was obtained from Hualu Pharmaceutical Co. Ltd. ((Yucheng, China).
Gentiopicroside (98% purity) and dehydrocholic acid (98% purity) were purchased from
Priifa Technology Development Co. Ltd. (Chengdu, China) and Yuanye Biotechnology
Co. Ltd. (Shanghai, China), respectively. Methanol, acetonitrile, and formic acid of HPLC
grade were provided by Fisher Scientific (Fair Lawn, New Jersey, USA). Distilled water
was purchased from Wahaha Group Co. Ltd. (Hangzhou, China).

2.2. Animal and Modeling Process

A total of 24 Sprague-Dawley rats (aged 6 weeks, male, weighing 180–220 g) were
provided by the Shenyang Pharmaceutical University (SYPU) Experimental Animal Center
(Shenyang, China). All animals were raised in a specialized pathogen-free (SPF) standard
chamber under a regular temperature of 22 ± 2 ◦C and 12 h light–dark cycle (lights on
from 7 a.m. to 7 p.m.), with access to food and water ad libitum for 7 days. Protocols were
verified by the SYPU Ethics Committee and carried out in line with the SYPU Guidelines
for Animal Experimentation (SYPU-IACUC-2019-0509-202).

Consistent with our previous study, all rats were randomly divided into 2 groups: the
control group (n = 8) and model group (n = 16, enema with 2,4,6-trinitrobenzenesulfonic
acid (100 mg/kg)-50% ethanol). For the purpose of assessing the modeling success, the
general conditions of the rats were observed daily, including body weight, diet and water
consumption, hair color, and fecal characteristics. Moreover, several pathological param-
eters were observed, including the disease activity index (DAI), colonic mucosal injury
index (CMDI), and hematoxylin and eosin (H&E) staining (see Table S1 and Figure S1). The
successful modeling rats were stochastically classified into 2 groups: the UC group (n = 8)
and CRC group (n = 8, intraperitoneal injection with 30 mg/kg 1,2-dimethylhydrazine
hydrochloride once a week for 15 weeks). The CMDI, H&E staining, and tumor formation
were observed to assess the success of the CRC modeling (see Supplementary Materials).
All rats were sacrificed after anesthesia to harvest bio-samples of the lungs and BALF.

2.3. Sample Collection and Preparation

The rats were sacrificed by cervical dislocation. After the tracheas were stripped out,
the lungs were slowly flushed with 5 mL PBS buffer three times to collect the BALF. A total
of 400 µL of each BALF solution was extracted using 1.2 mL methanol spiked with 10 µL
internal standard solution (IS, a mixture of gentiopicroside and dehydrocholic at a final
concentration of 5 µg/mL in internal standard solution). The mixture was vortexed for
3 min and centrifuged for 10 min (12000 rpm at 4 ◦C). The supernatant was transferred
into new EP tubes and evaporated to dryness under nitrogen at 37◦C. Subsequently, the
extraction was reconstituted in 100 µL methanol, vortexed for 3 min, sonicated for 3 min,
and then centrifuged for 5 min (12,000 rpm at 4 ◦C). Finally, the supernatant was obtained
for subsequent analysis using the UHPLC–QTOF-MS/MS system (an Agilent 1260 HPLC
system coupled with an AB SCIEX TripleTOF™ 5600 quadrupole-time-of-flight hybrid
mass spectrometer system).

After the BALF samples were collected, the lung tissues were immediately harvested,
followed by their washing with physiological saline and drying with filter paper. A total of
100 mg of each lung tissue was weighed and homogenized with tenfold physiological saline
for 1 min. After being centrifuged (4000 rpm at 4 ◦C) for 10 min, the supernatant was obtained
as the lung tissue homogenate. A total of 500 µL of each lung tissue homogenate was spiked
with 10 µL IS and 1.5 mL methanol, vortexed for 3 min, and centrifuged (12,000 rpm, 4 ◦C)
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for 10 min to obtain the supernatant, and then dried at 37 ◦C in N2. The follow-up operation
for the residue was the same as above.

The quality control (QC) samples were prepared by mixing equal aliquots of each
sample. One blank sample and one QC sample were inserted for every 8 samples during
the UHPLC–Q-TOF-MS/MS analysis.

2.4. Nontargeted Metabolomics by UHPLC–Q-TOF-MS/MS

Nontargeted metabolomics of the BALF and lungs were carried out using the Agilent
1260 Infinity HPLC system (Agilent, Santa Clara, CA, USA), coupled with a hybrid triple
TripleTOF® 5600+ mass spectrometer equipped with a DuoSpray™ ion source (Sciex,
Foster City, CA, USA). A mobile phase consisting of 0.1% formic acid water (a) and 0.1%
formic acid acetonitrile (b) at a flow rate of 0.3 mL/min was carried out on a ZORBAX
SB-Aq column (100 × 2.1 mm, 1.8 µm). The gradient elution program was as follows:
2% B→ 45%, 0.00 to 1.00 min; 45% B→ 95% B, 1.00 to 14.00 min; 95%B, 14.00 to 20.00 min;
2% B, 20.00 to 20.01 min; and 2% B, 20.01 to 26.00 min. An m/z 50-1500 mass scope was
employed as the scanning range and the detailed parameters were optimized as follows:
ion spray voltage, 5500 V/−4500 V; source temperature, 550 ◦C; gas 1, 50 psi; gas 2, 50 psi;
curtain gas, 30 psi; declustering potential, 100 V/−100 V; and collision energy, 10 V/−10 V.
PeakView software (version 1.2.1, SCIEX), MarkerView software (version 1.2.1, SCIEX),
and the SIMCA-P program (version14.0, Umetrics) were applied for the multivariate
data analysis and processing. Metabolites identified were confirmed by comparing their
information (accurate mass, MS/MS fragments) with the Human Metabolome Database
(HMDB; http://www.hmdb.ca/, accessed on 2 December 2020). Pathway, enrichment, and
correlation analyses were performed on MetaboAnalyst (http://www.metabo-analyst.ca/,
accessed on 20 February 2021).

2.5. Microbial DNA Extraction and Sequencing

The genomic DNA of the samples was extracted by the CTAB method and diluted to
1ng/µL with sterile water. Then, using the diluted genomic DNA as a template, the
V4 region of the bacterial 16S ribosomal gene was amplified by PCR using the 515F
(GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAA) universal
primer sequence, Phusion® High-Fidelity PCR Master Mix with GC Buffer from New Eng-
land Biolabs, and a high-fidelity enzyme. The TruSeq® DNA PCR-Free Sample Preparation
Kit library construction kit was used to construct the library. Finally, the constructed library
was quantitated by Qubit and Q-PCR, and the Illumina NovaseQ6000 sequencing platform
was used for the double-end sequencing.

2.6. Statistical Analysis of Data

QIIMETM software (http://qiime.org, version 1.9.1, accessed on 3 August 2020) and
R software (version 2.15.3) were used to reduce and cluster the original data in order to
construct the PCA diagram, and then the Unifrac distance was calculated to construct
the UPGMA sample cluster tree. In order to identify different microflora at the phylum,
class, order, family and genus levels, Metastats software (http://metastats.cbcb.umd.edu/,
accessed on 11 August 2020) was used for the ANOVA of the microflora in different groups.
In addition, the correlation between the biomarkers of the UC and CRC groups identified in
this study and those previously found in the plasma and feces was analyzed. Ultimately, a
Pearson correlation analysis of the pulmonary microbiome and metabolites was performed
using SPSS software, and the correlation matrix was drawn.

3. Results
3.1. Metabolomics Data Analysis

Before the analysis of the formal samples, the precision, reproducibility, and stability of
the established method were evaluated. Six ions with a superior peak type and higher peak
intensity were selected from the QC samples. Moreover, the relative standard deviation
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(RSD) of the peak intensity and retention time were used as the methodology validation
indexes. The results showed that the RSD of the retention time ranged from 0.1% to 4.0%,
and the RSD of the peak strength ranged from 4.2% to 14.9%, indicating that the established
method of analysis was suitable for our analysis (see Table S2).

The original data were processed using MarkerViewTM software (version 1.3.1, SCIEX)
to obtain the peak identification, peak alignment, and normalization, and the missing
values were filtered in accordance with the 80% principle using Excel software. Then,
the pretreated data were imported to SIMCA-P software (version14.1, Umetrics, Umea,
Sweden), and the principal components analysis (PCA) of the lung tissue and BALF samples
was conducted. Samples from the control, UC, and CRC groups were highly differentiated,
as represented by green, blue, and red dots, respectively. Then, orthogonal least squares
discriminant analysis (OPLS-DA) models were established to further reflect the differences
between the groups and identify differential metabolites. As shown in Figure 1, both
the UC and CRC groups were highly different from control. The values of the R2 and
Q2 were greater than 0.99 and 0.5, respectively, indicating the good fitting degree and
prediction ability of the OPLS-DA models. In addition, no over-fitting phenomena were
found in the permutation tests, proving that the OPLS-DA models were reliable. The results
above indicated that the pulmonary metabolic activities were significantly affected in the
development of UC into CRC.
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Figure 1. The PCA score plots of the control, UC, and CRC groups for the BALF in ESI (+), R2 = 0.562;
BALF in ESI (−), R2 = 0.572; for the lung tissue in ESI (+), R2 = 0.577; lung tissue in ESI (−), R2 = 0.732.
Green, blue, and red dots are used to label the control, UC, and CRC groups, respectively. OPLS-DA
score plots of the control, UC, and CRC groups for the BALF in ESI (+), R2 = 0.995, Q2 = 0.879; BALF
in ESI (−), R2 = 0.982, Q2 = 0.909; lung tissue in ESI (+), R2 = 0.987, Q2 = 0.915; lung tissue in ESI (−),
R2 = 0.993, Q2 = 0.965. Green, blue, and red dots are used to label the control, UC, and CRC groups,
respectively. Validation plots of the OPLS-DA models obtained using the 200 permutation tests for
the BALF in ESI (+), R2 = 0.922, Q2 = −0.457; BALF in ESI (−), R2 = 0.715, Q2 = −0.504; lung tissue in
ESI (+), R2 = 0.761, Q2 = −0.480; lung tissue in ESI (−), R2 = 0.574, Q2 = −0.405. Green and blue dots
stand for the R2 and Q2, respectively.
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After the analysis of the PCA and OPLS-DA, the affected metabolites were screened
according to the following criteria: VIP values greater than 1 in the OPLS-DA, p values
less than 0.05 in the t-test, and fold change values greater than 2 or less than 0.5. The
metabolite identities were confirmed by comparing the information of MS and MS2 with
the HMDB database (http://www.hmdb.ca/, accessed on 2 December 2020). Ultimately,
19 differential metabolites were found in both the BALF and lung tissues of the UC group.
A total of 12 differential metabolites were found in the BALF and 21 biomarkers were found
from the lung tissue of the CRC group. Among these, 15 differential metabolites were de-
tected in both the UC and CRC groups, including 3-methylxanthine, tetrahydrocortisone,
N-acetylaminooctanoic acid, (9E,11E)-octadecadienoic acid, 12b-hydroxy-5b-cholanoic acid, S-
lactoylglutathione, 7-hydroxy-3-oxocholanoic acid, deoxyinosine, oleamide, phytosphingosine,
LysoPE(18:3(6Z,9Z,12Z)/0:0), LysoPE(20:4(5Z,8Z,11Z,14Z)/0:0), LysoPC(18:2(9Z,12Z)/0:0),
L-arginine, and linoleic acid. In particular, 7-hydroxy-3-oxocholanoic acid and linoleic
acid were also found in the plasma and fecal samples. Their changing trends were con-
sistent with our previous results, which indicated that these two metabolites can be
used as key biomarkers related to the lungs and large intestine. The molecular formula,
molecular weight, change trend, and other information about the biomarkers are shown
in Table 1.

Table 1. The detailed information about the potential biomarkers detected in the ulcerative colitis
(UC) group and colorectal cancer (CRC) group.

No. t(R) ESI
Mode m/z Identification Fomular VIP1 VIP2 Fold1 Fold2 Source

Change Trend

UC/
Con.

CRC/
Con.

CRC/
UC

1 3.1 + 153.1354 3-Hydroxyanthranilic acid C7H7NO3 1.29 3.55 BALF UC ↓
2 3.3 + 166.1374 3-Methylxanthine C6H6N4O2 1.69 1.74 7.02 12.95 BALF

UC&CRC ↓ ↓ ↓
3 9.5 + 197.1879 L-Dopa C8H15N5O 1.49 0.43 BALF UC ↑
4 6.3 + 282.4614 Oleic acid C18H34O2 1.25 0.16 BALF UC ↑
5 9.1 + 364.4758 Tetrahydrocortisone C21H32O5 1.30 1.71 3.66 6.35 BALF

UC&CRC ↓ ↓ ↓

6 3.1 + 365.3900 Isopentenyladenine-9-N-
glucoside C16H23N5O5 1.84 68.03 BALF CRC ↓

7 6.3 + 387.5140 4-Hydroxytamoxifen C26H29NO2 1.25 0.08 BALF UC ↑
8 6.4 + 432.2784 N-Stearoyl phenylalanine C27H45NO3 1.22 0.06 BALF UC ↑
9 11.5 + 495.6301 LysoPC(16:0/0:0) C24H50NO7P 1.02 0.45 BALF UC ↑
10 6.4 + 515.7030 Taurocholic acid C26H45NO7S 1.60 3.85 BALF UC ↓
11 12.1 − 201.2628 N-Acetylaminooctanoic

acid C10H19NO3 1.13 1.69 8.30 5.09 BALF
UC&CRC ↓ ↓ ↓

12 3.0 − 218.2518 N-Acetylserotonin C12H14N2O2 1.55 8.30 BALF CRC ↑
13 11.3 − 258.3538 Tetradecanedioic acid C14H26O4 1.37 0.19 BALF CRC ↑
14 10.8 − 278.4296 alpha-Linolenic acid C18H30O2 1.04 0.31 BALF CRC ↑
15 14.6 − 280.4455 (9E,11E)-Octadecadienoic

acid C18H32O2 1.80 3.23 4.30 13428.75 BALF
UC&CRC ↓ ↓ ↓

16 6.6 − 283.2407 Guanosine C10H13N5O5 1.16 0.23 BALF CRC ↑
17 15.4 − 282.4614 Oleic acid C18H34O2 2.39 0.01 BALF UC ↑
18 16.5 − 284.4772 Stearic acid C18H36O2 2.67 0.01 BALF UC ↑
19 16.5 − 286.4070 Hexadecanedioic acid C16H30O4 1.86 10.59 BALF UC ↓
20 16.0 − 308.4986 Eicosadienoic acid C20H36O2 1.76 0.01 BALF UC ↑
21 19.1 − 354.6101 Tricosanoic acid C23H46O2 1.34 5.07 BALF UC ↓
22 19.6 − 368.6367 Tetracosanoic acid C24H48O2 2.10 0.17 BALF CRC ↑
23 14.3 − 376.5726 12b-Hydroxy-5b-cholanoic

acid C24H40O3 2.24 2.31 0.01 0.01 BALF
UC&CRC ↑ ↑ ↑

24 3.1 − 379.3860 S-Lactoylglutathione C13H21N3O8S 1.33 2.36 6.47 192.22 BALF
UC&CRC ↓ ↓ ↓

25 9.2 − 390.5561 7-Hydroxy-3-oxocholanoic
acid C24H38O4 1.65 0.01 BALF UC ↑

26 2.3 + 158.1519 Succinylacetone C7H10O4 1.63 101.76 Lung CRC ↓
27 2.1 + 174.2010 L-Arginine C6H14N4O2 1.18 1.19 10.08 15.72 Lung

UC&CRC ↓ ↓ ↓
28 4.8 + 224.2133 Hydroxykynurenine C10H12N2O4 1.07 0.23 Lung CRC ↑
29 2.3 + 252.2300 Deoxyinosine C10H12N4O4 1.07 1.33 0.04 0.04 Lung

UC&CRC ↑ ↑ ↑

30 8.0 + 281.2719 Oleamide C18H35NO 1.38 2.14 0.01 0.01 Lung
UC&CRC ↑ ↑ ↑

31 12.6 + 301.5078 Sphinganine C18H39NO2 1.93 0.01 Lung UC ↑
32 11.8 + 317.5072 Phytosphingosine C18H39NO3 2.04 2.34 0.01 0.01 Lung

UC&CRC ↑ ↑ ↑
33 7.8 + 364.4758 Tetrahydrocortisone C21H32O5 1.25 0.03 Lung UC ↑
34 10.9 + 366.3700 Tryptophan 2-C-mannoside C17H22N2O7 1.21 0.02 Lung CRC ↑
35 5.3 + 475.5558 LysoPE

(18:3(6Z,9Z,12Z)/0:0) C23H42NO7P 1.35 1.44 0.03 0.14 Lung
UC&CRC ↑ ↑ ↑

36 9.6 + 501.2855 LysoPE
(20:4(5Z,8Z,11Z,14Z)/0:0) C25H44NO7P 1.52 1.93 0.01 0.01 Lung

UC&CRC ↑ ↑ ↑

http://www.hmdb.ca/
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Table 1. Cont.

No. t(R) ESI
Mode m/z Identification Fomular VIP1 VIP2 Fold1 Fold2 Source

Change Trend

UC/
Con.

CRC/
Con.

CRC/
UC

37 5.2 + 519.3325 LysoPC (18:2(9Z,12Z)/0:0) C26H50NO7P 1.39 1.74 0.05 0.04 Lung
UC&CRC ↑ ↑ ↑

38 5.3 + 607.4577 LysoPC(24:0/0:0) C32H66NO7P 1.57 0.01 Lung UC ↑
39 2.4 − 152.1109 Xanthine C5H4N4O2 1.91 456.69 Lung CRC ↓
40 2.4 − 153.1784 Dopamine C8H11NO2 1.33 17.24 Lung CRC ↓
41 9.6 − 173.2096 N-Acetylleucine C8H15NO3 1.27 4.90 Lung CRC ↓
42 4.8 − 205.2099 Xanthurenic acid C10H7NO4 1.55 1376.79 Lung UC ↓
43 7.8 − 258.3538 Tetradecanedioic acid C14H26O4 1.40 0.01 Lung UC ↑
44 7.0 − 267.2413 Adenosine C10H13N5O4 1.42 452.62 Lung UC ↓
45 12.0 − 270.4507 Heptadecanoic acid C17H34O2 1.28 0.15 Lung CRC ↑
46 11.6 − 272.4290 3-Hydroxyhexadecanoic

acid C16H32O3 1.93 0.01 Lung CRC ↑
47 10.3 − 278.4296 alpha-Linolenic acid C18H30O2 1.57 1722.66 Lung UC ↓
48 13.4 − 280.4455 Linoleic acid C18H32O2 1.33 1.76 0.05 0.04 Lung

UC&CRC ↑ ↑
49 5.0 − 282.4614 Oleic acid C18H34O2 1.52 1017.46 Lung UC ↓
50 3.7 − 284.2255 Xanthosine C10H12N4O6 1.03 6.26 Lung CRC ↓
51 9.7 − 286.4070 Hexadecanedioic acid C16H30O4 1.10 0.28 Lung CRC ↑
52 8.1 − 390.2770 7-Hydroxy-3-oxocholanoic

acid C24H38O4 1.43 1.61 0.01 0.12 Lung
UC&CRC ↑ ↑ ↑

53 9.7 − 392.5720 Deoxycholic acid C24H40O4 1.47 773.12 Lung UC ↓

54 7.5 − 408.5714
3a,4b,12a-Trihydroxy-5b-

cholanoic
acid

C24H40O5 1.68 1.70 0.01 0.01 Lung
UC&CRC ↑ ↑ ↑

55 20.2 − 691.9720 PE (16:0/16:0) C37H74NO8P 1.07 0.01 Lung CRC ↑

UC: ulcerative colitis group, CRC: colorectal cancer group, Con.: control group. VIP1: control group/UC group,
VIP2: control group/CRC group. Fold1: control group/UC group, Fold 2: control group/CRC group, ↑: increased,
↓: decreased.

MetaboAnalyst 4.0 (http://www.metaboanalyst.ca/, accessed on 20 February 2021)
was used to conduct a hierarchical cluster analysis of the three groups (Figure 2A). The
concentrations in the different groups varied significantly. The metabolic pathway analysis
(Figure 2B) using MetaboAnalyst 4.0 revealed 15 metabolic pathways which may play
important roles in UC, and 13 metabolic pathways in the occurrence of CRC. According
to the comprehensive analysis, nine pathways may be closely related to the development
of UC into CRC, including linoleic acid metabolism, arginine biosynthesis, sphingolipid
metabolism, pyruvate metabolism, the biosynthesis of unsaturated fatty acids, glycerophos-
pholipid metabolism, arginine and proline metabolism, and aminoacyl-tRNA biosynthe-
sis, as well as purine metabolism. Compared with our previous findings, linoleic acid
metabolism, sphingolipid metabolism, and the biosynthesis of unsaturated fatty acids
were also identified in the results of the plasma and fecal samples. Therefore, these three
pathways showed potential as key metabolic pathways related to the lungs and gut.

3.2. Intestinal Microflora Analysis

The original data obtained using the Illumina Novaseq platform were filtered through
Reads Mosaic to obtain the effective data. An OTU (operational taxonomic unit) cluster
analysis was also performed. Then, an alpha diversity calculation was carried out to
obtain information on the species richness and evenness across samples. As shown in
Table S3, the coverage represented the probability that the bacterial community in the
sample was detected, and these values were all greater than 0.997, thus proving that our
sequencing results were reliable. Based on this finding, the rarefaction curve and the rank
abundance curve (Figure S2) were generated to obtain the information about the species
diversity, richness, and evenness. Compared with the control group, the species diversity,
richness, and evenness of the CRC group decreased markedly, while, on the contrary, these
parameters in the UC group were slightly increased.

http://www.metaboanalyst.ca/
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Figure 2. (A) The hierarchical clustering heatmap. (B) Pathway analysis overview showing
altered metabolic pathways in the UC group: (1) linoleic acid metabolism, (2) sphingolipid
metabolism, (3) purine metabolism, (4) biosynthesis of unsaturated fatty acids, (5) taurine and
hypotaurine metabolism, (6) alpha-linolenic acid metabolism, (7) arginine biosynthesis, (8) pyru-
vate metabolism, (9) glycerophospholipid metabolism, (10) arginine and proline metabolism,
(11) tryptophan metabolism, (12) tyrosine metabolism, (13) primary bile acid biosynthesis,
(14) aminoacv-tRNA biosvnthesis, (15) drug metabolism—cytochrome P450. In the CRC group:
(1) linoleic acid metabolism, (2) purine metabolism, (3) biosynthesis of unsaturated fatty acids,
(4) glycerophospholipid metabolism, (5) alpha-linolenic acid metabolism, (6) glycosylphosphatidyli-
nositol (GPI)-anchor biosynthesis, (7) arginine biosynthesis, (8) sphingolipid metabolism, (9) pyru-
vate metabolism, (10) arginine and proline metabolism, (11) tryptophan metabolism, (12) tyro-
sine metabolism, (13) aminoacyl-tRNA biosynthesis. In the UC and CRC groups: (1) linoleic
acid metabolism, (2) arginine biosynthesis, (3) sphingolipid metabolism, (4) pyruvate metabolism,
(5) biosynthesis of unsaturated fatty acids, (6) glycerophospholipid metabolism, (7) arginine and
proline metabolism, (8) aminoacyl-tRNA biosynthesis, (9) purine metabolism.

Subsequently, QIIMETM software was used to quantitatively analyze the microbiota in
the BALF at the levels of the phylum, class, order, family, and genus. The histograms of the
species distribution were drawn with the R language tool, and the top 10 abundant species
at different levels are shown in Figure 3A. The altered compositions of the pulmonary
microbiota in the three groups revealed the disorder of the microbial community during
the intestinal disease. Interestingly, at the phylum level, Firmicutes and Actinobacteria were
enriched in the three groups, whereas at the class level, Bacilli was enriched in the control,
while Gammaproteobacteria was enriched in both the UC and CRC groups. These results were
consistent with our previous study of gut microbiota, which indicated that the microbiota
in the intestinal and pulmonary tracts are similar to some extent.
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Moreover, QIIMETM software was used to calculate the Unifrac distance and construct
the UPGMA sample cluster tree. A PCA diagram (Figure 3B,C) was drawn using R software.
From the PCA results, we can see that the control group was not significantly in contrast
with the UC group but was clearly distinguished from the CRC group. The UPGMA
results also showed a significantly greater distance between the control and CRC groups,
while the distance between the control and UC groups was not especially noteworthy. It
is suggested that the risk of pulmonary disease in CRC group was higher than that in
UC group. Finally, the ANOVA analysis was used with Metastats software to select the
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differential flora (P values of less than 0.05) in a more accurate manner (Table 2). The
results showed that, compared with the control group, the differential microflora of the
UC group were Firmicutes, Proteobacteria (at the phylum level) and Bacilli (at the class
level), and the differential microflora of the CRC group were Firmicutes and Proteobacteria
(at the phylum level); Bacilli, Clostridia, Alphaproteobacteria, and Gammaproteobacteria (at
the class level); Corynebacteriales, Clostridiales, Rhizobiales, and Pasteurellales (at the order
level); Corynebacteriaceae, Lachnospiraceae, Ruminococcaceae, Rhizobiaceae, Burkholderiaceae,
Xanthobacteraceae, and Pasteurellaceae (at the family level); and Staphylococcus, Shinella,
Bradyrhizobium, and Rodentibacter (at the genus level). Among these microbial communities,
compared to the control group, the abundance of Firmicutes was decreased in the UC group
and even lower in the CRC group. On the contrary, the abundance of Proteobacteria was
increased in the UC group and even higher in the CRC group. These alterations were
consistent with the results of our previous gut microbial community study, which further
verified the scientific basis of the “lung–gut correlation” theories.

Table 2. Different pulmonary microorganisms between the ulcerative colitis (UC) group and the
colorectal cancer (CRC) group at the levels of the phylum, class, order, family, and genus.

Ulcerative Colitis Colorectal Cancer

Phylum Firmicutes, Proteobacteria Firmicutes, Proteobacteria
Class Bacilli Bacilli, Clostridia, Alphaproteobacteria

Gammaproteobacteria
Order / Corynebacteriales, Clostridiales, Rhizobiales,

Pasteurellales

Family / Corynebacteriaceae, Lachnospiraceae,
Ruminococcaceae, Rhizobiaceae

Xanthobacteraceae, Pasteurellaceae,

Genus / Staphylococcus, Shinella, Bradyrhizobium,
Rodentibacter

3.3. Correlation between the Metabolite and Pulmonary–Intestinal Microecology

In order to verify the interaction between the differential metabolites in the gut and
lungs, the correlation between the differential metabolites found in this study and the
differential metabolites found in the plasma and feces was analyzed (Figure 4A). The
results showed that most of the correlation coefficients of the differential metabolites in the
plasma, feces, BALF, and lung tissue were greater than 0.8, indicating that the intestinal
metabolism and pulmonary metabolism can interact with each other.

Furthermore, explicit correlation coefficients were calculated in SPSS (version 20.0,
IBM Corp., Armonk, NY, USA), using the Pearson method to investigate the correlation of
the metabolite pulmonary–intestinal microecology (Figure 4B). The correlation coefficient
of 15 differential metabolites that showed effects on both the UC and CRC and differential
microflora were visualized by a matrix graph. About 3.2% of the correlation coefficient
values were between 0.5 and 0.6, 7.0% were between 0.6 and 0.7, 28.7% were between
0.7 and 0.8, and 57.7% were in excess of 0.8. Moreover, 7-hydroxy-3-oxocholanoic acid and
linoleic acid showed significant positive correlations with Proteobacteria (the correlation
coefficients were 0.896 and 0.986, respectively) and significant negative correlations with
Firmicutes (the correlation coefficients were −0.79 and −0.876, respectively), which were
consistent with the results of the intestinal microflora and their metabolites. In conclusion,
the gut and lungs can affect each other’s balance, and gut dysbiosis can alter the level
of metabolites and influence lung homeostasis via the lung–gut axis, thus promoting the
occurrence and development of diseases.
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4. Discussion

In present study, high-throughput 16S rDNA gene sequencing and metabolomic anal-
ysis were used to investigate the effects of the progression of UC to CRC on the pulmonary
microbiota and their metabolic profiles. The data clearly showed that the intestinal disease
altered the composition of the pulmonary microbiota and their metabolites. In addition,
the pulmonary microbiome was associated with a large number of pulmonary metabolites,
suggesting that the progression of UC to CRC not only disturbed the balance of the pul-
monary microflora, but also substantially altered their metabolomic profiles. Moreover,
the correlation analysis of the differential metabolites in the plasma, feces, BALF, and lung
tissue showed that most of the correlation coefficients were greater than 0.8, indicating that
the intestinal metabolism and pulmonary metabolism can affect each other. These findings
provide mechanistic insights into the “lung–gut correlation” theory.

From the results of metabolomic analyses, 15 metabolites with great variations in both
the UC and CRC groups were identified. Among them, linoleic acid and 7-hydroxy-3-
oxocholanoic acid were also found in our previous research and showed the same change
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trend. Additionally, metabolic pathways of the 15 differential metabolites were analyzed,
and 9 metabolic pathways were eventually identified. Linoleic acid metabolism, sphin-
golipid metabolism, and the biosynthesis of unsaturated fatty acids were also identified in
our previous study. In both studies, linoleic acid metabolism was the most influential. As
a member of theω-6 polyunsaturated fatty acid group, linoleic acid is known to increase
the levels of cytokines, which leads to neutrophilia [22]. Individuals with more linoleic
acid in their diet have an increased risk of UC [23]. Moreover, human diets with veg-
etable oil rich in linoleic acid can increase the proliferation of cancer cells in the colon [24].
Several scholars have noted that linoleic acid also plays an important role in pulmonary
diseases. For example, linoleic acid can enhance severe asthma by causing airway epithelial
damage. In addition, non-small-cell lung cancer is usually characterized by the mutation
of the epidermal growth factor receptor (EGFR), and the level of linoleic acid tends to
increase significantly in cancer patients with more EGFR [25,26]. Therefore, linoleic acid is
highly correlated with intestinal and pulmonary diseases and could be a key biomarker for
monitoring the occurrence of pulmonary and intestinal diseases.

L-arginine was involved in three pathways, including aminoacyl-tRNA biosynthesis,
arginine biosynthesis, and arginine and proline metabolism. Arginine is reported to
have a significant effect on immune regulation, promoting intestinal development and
anti-tumor and anti-obesity effects [27,28]. As a precursor of NO synthesis, arginine
inhibits the expression of matrix metalloproteinases and cell adhesion molecules, thereby
preventing cell adhesion and inhibiting tumor cell proliferation [29,30]. In the results of the
metabolomics, compared with the control group, the content of L-arginine was decreased
in the UC group and was even lower in the CRC group, which suggests that the decreasing
trend of L-arginine may be influenced by the intestinal tumor cells.

Arginine can be synthesized into purine in vivo by means of arginase. Purine plays a
pivotal role in energy supply, metabolism regulation, coenzyme composition, and the in-
flammatory immune response, and it is also closely related to the occurrence of pain [31,32].
In purine metabolism, we detected a decreased content of 3-methylxanthine in the UC
group and an even lower content in the CRC group. Methylxanthine was involved in nu-
merous regulatory roles, such as increasing the blood circulation, dilating the blood vessels,
improving the airflow, reducing inflammation, and preventing chronic obstructive pul-
monary disease, which is highly applicable to the treatment of respiratory diseases [33,34].
Thus, the reduced concentration of 3-methylxanthine could be associated with pulmonary
disease caused by intestinal diseases.

In addition, in pyruvate metabolism, the concentration of S-lactoylglutathione in the
control, UC and CRC groups showed a gradual downward trend. Excessive free radicals
produced by organism metabolism damage the biofilm and induce the generation of tumors.
The main physiological functions of glutathione include anti-free radical, anti-aging, and
anti-oxidation functions [35,36]. Thus, glutathione can eliminate free radicals and show a
powerful protective effect in enhancing human immunity [37,38]. Therefore, the reduced
concentration of S-lactoylglutathione also reflected the inflammatory response in the lungs
caused by intestinal diseases.

The 16S rDNA sequencing results showed that the compositions of the lung microflora
of the three groups varied greatly. The imbalance of the pulmonary microbiota caused
by gut dysbiosis demonstrated the correlation between the lungs and gut. By means of
the t-test, a number of differential microflora were screened (p < 0.05), including Firmi-
cutes, Proteobacteria, and Bacilli (between the control and the UC groups), and Firmicutes,
Proteobacteria, Clostridia, Alphaproteobacteria, Bacilli, Gammaproteobacteria, Corynebacteriales,
Clostridiales, Rhizobiales, Pasteurellales, Corynebacteriaceae, Lachnospiraceae, Ruminococcaceae,
Rhizobiaceae, Xanthobacteraceae, Pasteurellaceae, Staphylococcus, Shinella, Bradyrhizobium, and
Rodentibacter (between the control and CRC groups). These microbial communities can
be classified into three groups: Actinobacteria, Firmicutes, and Proteobacteria. Among them,
the abundant of Firmicutes and Proteobacteria gradually decreased and gradually increased
during the development of UC to CRC, respectively, findings which were consistent with
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what we observed in the gut microbiota. Furthermore, there are many studies that have
found results similar to ours. Charlson et al. observed a significant increase in Proteobacteria
in COPD rats compared with the control group. Moreover, exposure to cigarette smoke
can dysregulate the gut microbiota and further aggravate inflammation in the lungs. In
an even more novel finding, it was observed that the intestines of rats from the COPD
group exhibited mucosa of a darkened gray color and significant swelling [39]. Another
study also found that TH2-low asthma was associated with the increase in Proteobacteria
and the decrease in Firmicutes by comparing the compositions of the pulmonary microbiota
among different asthma endotypes [17]. These results fully proved that the lung and
gut are interrelated in the development of diseases, and the increase in the abundance of
Proteobacteria may lead to intestinal and pulmonary diseases.

Furthermore, the results of the gut microbiota study showed that the abundance
of Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, and Escherichia-Shigella also
gradually increased during the development of the disease. However, in the results of the
pulmonary microbiota study, the same trend was only found in the Gammaproteobacteria,
while Enterobacteriales, Enterobacteriaceae, or Escherichia-Shigella were not detected. The
reason for this might be that Enterobacteriales, Enterobacteriaceae, and Escherichia-Shigella
were mostly present in the gut. Moreover, compared with the control group, the Bacilli in
the intestinal tract were in lower abundance in the UC group and even lower abundance in
the CRC group. In the pulmonary flora study, although Bacilli was a differential flora in
the both UC and CRC groups, the abundance of Bacilli did not show a gradual decreasing
trend during the disease; thus, Bacilli was not regarded as the key microflora related to the
lungs and gut.

Apart from these results, no changes in the Rhizobiales, Rhizobiaceae, Shinella, Xanthobac-
teraceae, Bradyrhizobium, and other microflora were detected in the gut microbiota. However,
the significant changes in the structural composition of the pulmonary microflora and the
correlation results indicated that the gut microbiota can affect the pulmonary microbiota
and their metabolic activities. In recent years, a great number of studies have demonstrated
the bidirectional nature of the lung–gut axis and that the intestinal and pulmonary micro-
biota can influence each other. The overall influence of the healthy airway microbiota on
host immunity reflects the cumulative effects of microbes and their metabolites on local and
systemic innate and adaptive immune processes in the host [40]. If the process of healthy
and timely colonization is disrupted, early-life dysbiosis of the intestinal and pulmonary
microbiota becomes an important risk factor for the development of many respiratory
diseases [41]. All these studies demonstrated the scientific basis of our conclusions and
confirm the interaction between the lungs and gut.

5. Conclusions

Based on the “lung–gut correlation” theory, the structure of the intestinal microbiota
and untargeted metabolomics were analyzed, and the results were combined with our
previous research data to evaluate the microbiota and metabolites in the gut and lungs
during the development of UC into CRC. From the metabolomic results, linoleic acid and
7-hydroxy-3-oxocholanoic acid were discovered to be the key metabolites related to lung
and gut diseases. The pulmonary microbiota study results showed that Firmicutes and
Proteobacteria may be the key microflora associated with the lung and gut diseases, and the
decrease in Firmicutes or the increase in Proteobacteria may cause intestinal and pulmonary
diseases. Finally, the correlation of the metabolite pulmonary–intestinal microecology was
proved using a Pearson correlation analysis. Our findings support the notion that intestinal
diseases can lead to pulmonary diseases by affecting the changes in the microbiota and
metabolites. In conclusion, our study identified the key biomarkers related to lung and
intestine, which are critical for signaling the transition from gastrointestinal diseases to
pulmonary diseases. This finding is an important contribution to the development and
innovation of the TCM theory.
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