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Abstract: Rare-earth zirconate pyrochlores (RE2Zr2O7) are of much fundamental and technological
interest as optoelectronic, scintillator and thermal barrier coating materials. For the first time,
we report the detailed optoelectronic properties of rare-earth zirconates Nd2Zr2O7 in both, i.e.,
for spin up and spin down states, via the use of first-principles density functional theory (DFT)
procedure. To obtain the desired optoelectronic properties, we used a highly accurate method
called full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient
approximation (GGA), parametrized with Hubbard potential U as an exchange-correlation function.
The band gaps predicted for Nd2Zr2O7 were of the order 2.4 eV and 2.5 eV in Fd-3m and Pmma
symmetrical phases, respectively. For both the phases, our research involved a complete examination
of the optical properties of Nd2Zr2O7, including extinction coefficient, absorption coefficient, energy
loss, function, reflectivity, refractive index, and real optical conductivity, analyzed in the spectral
range from 0.0 eV to 14 eV. The calculated optical properties in both phases showed a considerable
spin-dependent effect. The electronic bonding characteristics of different species in Nd2Zr2O7 within
the two crystal symmetries were explored via the density distribution mapping of charge.

Keywords: zirconates pyrochlores; density functional theory; GGAU approximation; electronic band
structure; optical properties

1. Introduction

Due to their unique physical and chemical properties, such as storage of nuclear waste,
electrolytes in solid oxide fuel cells, oxygen sensors, etc., pyrochlore oxides (A2B2O7) have
risen to the forefront of intense research [1–3]. The disordering of the anions and cations
in the pyrochlore lattice determines the structure and characteristics of pyrochlores. The
Fd-3m space group is where the ordered pyrochlore resides. The simple fluorite structure
is modified in an orderly manner to form the pyrochlore structure [1,4]. Pyrochlores
have been known to undergo a number of phase transitions, including the crystalline
to amorphous transition, phase separation, and an order–disorder structural alteration
when exposed to high temperatures or pressure [1,5–10]. In particular the phenomenon
of order–disorder phase transition from pyrochlore to defect-fluorite structure is caused
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by the existence of oxygen vacancies. Due of the significant changes in characteristics as
a result of the disordering of the A and B site cations and oxygen vacancies, the phase
transition investigations of pyrochlores under extreme circumstances are of particular
interest. It is understood that altering the composition, raising the temperature, or exposing
the pyrochlores to high-energy irradiations can induce the order–disorder transition in
them [4]. Another intriguing but underdeveloped research field is the examination of
structural modifications in the pyrochlore lattice at high pressure. High pressure causes
phase changes by strengthening intermolecular interactions between molecules, changing
intermolecular bonding, and enhancing the disordering of oxygen vacancies.

The Nd2Zr2O7 (NZO) has been extensively considered for nuclear waste host material
also [5–7]. It gives the benefits of chemical stability, thermodynamic stability, excellent
resistance to the radiations, and much more capablity to contain a higher quantity of
actinides in the lattices [8–10]. By considering the valence, ionic radius, and additional
number of electronic orbits, Nd3+ ion (1.1 Å) can be considered as an option for actinides
Pu3+ (1.0 Å), U3+ (1.06 Å), Am3+ (1.01 Å), and Th3+ (0.9 Å). By completely changing the
Gd3+ ion in Gd2Zr2O7, the replicated NZO solidifies to form a highly radioactive waste,
making it a very interesting field of research [11–13], and in particular the effects under the
influence of heavy ion irradiation has been widely investigated. Sickafus predicted that the
radiation acceptance of NZO is dependent upon the cation radius based on examinations
of similar complex oxides under the irradiations of heavy ions (350 KeV X e++) [14]. After
that, the radiation acceptance response of NZO has been significantly improved through
the continual efforts of scientists around the world.

Patel et al. found that NZO may be amorphous under the irradiations of high-energy
heavy ions (i.e., Au at 120 MeV, I at 90 MeV, Ni at 70 MeV, and U at 119 MeV) [15–18].

Recently, pyrochlore materials have garnered significant research interest due to their
peculiar properties, such as structural flexibility [19,20], high dielectric constant [21], high
radiation stability [22], order–disorder phase transition [23], etc. A number of these proper-
ties make the material a promising candidate for self-activated phosphors, luminescence
hosts, scintillators, nuclear waste hosts, fuel cells for solid oxide, catalysis, actinide specia-
tion, and magnetism, etc. [19,24–35]. Amongst various pyrochlores, the compound NZO
has been the subject of much consideration due to its promise for diverse applications,
including in solid-state lasers [16], photocatalysis [36], for small actinide transmutation as
a host [37], coatings [38], magnets [39], etc. The theoretical calculation was carried out for
the first time on an NZO compound by Xiao et al. [40] and he predicted the transition of
phase at high pressure. To prepare the NZO powder, numerous techniques/methods have
been applied, for example the solid-state technique [41], the co-precipitation method [39],
sol-gel method [42], aqueous chemical synthesis technique [43], etc. The details of prepara-
tion methods for A2B2O7 compounds can be found in [44]. The stabilization of the NZO
compound in the fluorite phase was observed at 900 ◦C but the phase transition to ideal
pyrochlore occurred at 1000–1400 ◦C [43]. There is controversy regarding the structure of
NZO [42,45–47]. Lee et al. [34], and Bhattacharya et al. [35] synthesized NZO at 750 and
700 ◦C, respectively, and reported that it is stable in the fluorite phase. However, on the
other hand, Zhang and his collaborators [46] reported that at 600 ◦C, the NZO compound
weakly crystallized in the pyrochlore phase. However, according to Rao et al. [47], the
structure of NZO is not certain at 500 ◦C. This structural uncertainty is ascribed to the fact
that the crystallinity of the samples was very small in terms of the size of the nanoparticles,
which required a wide XRD pattern.

As is obvious from the literature presented above, most of the previous studies on
NZO have been done experimentally. Only a few works on NZO have been published using
first-principles methods, mainly reporting on structural and energy band properties [48–50].
In particular, as per our knowledge, any systematic study has rarely been done on the
optical properties of the compound. This state of affairs motivated us to investigate the
detailed optoelectronic properties of the NZO compound using the first-principles density
functional theory (DFT) procedure outlined below.
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2. Materials and Methods
Computational Methodology

In this study, our DFT calculations have been derived from full-potential linearized
augmented plane wave (FPLAPW) methodology, within the generalized gradient ap-
proximation (GGA), parametrized with Hubbard potential U as an exchange-correlation
functional while implemented in WIEN-2k code [51]. The adopted GGA+U approach with
Hubbard’s potential U valued at 7.0 eV demonstrates accurate results for the band-gap
energy calculation as compared to the conventional DFT approach. The muffin-tin radii
RMT for Nd2Zr2O7 compound was put as 2.0 Bohr for the neodymium, zirconium, and
oxygen atoms.

Moreover, we have taken the Gaussian factor and angular momentum (Gmax = 12,
ι = 10). The convergence of energy/charge has been done up to the 10−5 Ry by the iteration
process. The default value of kinetic energy cut off (−6.0 Ry) was taken during all the
calculations. We adopted the Kramers–Kronig formalism to compute optical properties.

The plane wave cutoff was set so that RMT × KMAX = 7, where forces converge on the
atoms, was validated. For the structural, electronic, and optical properties of compound
Nd2Zr2O7, a 16 × 16 × 15 k-point mesh and GGA+U functional was used to relax the
compound structure.

The linear optical properties of Nd2Zr2O7 were studied by the program “OPTIC” [52],
integrated in WIEN-2k code. The complex dielectric function ε(ω) is derived from the
Kramers–Kronig relation [53]. The optical conductivity and the energy loss function can
be directly calculated from ε1(ω) and ε2(ω) [54]. The electron energy loss spectra of
compound Nd2Zr2O7 at different edges were estimated with the X-ray absorption module
of the WIEN-2k code.

To describe the linear optical susceptibility of the crystal, we needed dielectric compo-
nents and following expression was used:

ε2
ij(ω) =

4π2e2

Vm2ω2 × ∑
knn′σ
〈 knσ|pi

∣∣kn′σ 〉〈 kn′σ
∣∣pj|knσ 〉 × fkn(1− fkn′)σ(Ekn′ − Ekn − }ω) (1)

where e stands for the charge of the electron and m is its mass, the angular frequency
is (ω), the unit cell volume is represented by V, momentum operator is represented by
p, and the crystals wave function is noted as knσ. The transitions from occupied VB
states to unoccupied states are denoted by f kn. From the total density of states, the term
δ (Ekn′ − Ekn− h̄ω) gives optimizing parameters to evaluate total energy. In order to un-
derstand more about the corresponding transitions and to compare the optical transition
dipole matrix, we extracted the real part of dielectric function from its imaginary part by
using the Kramers–Kronig relation:

ε1(ω) = 1 +
2
π

P
∫ ∞

0

ω′ε2(ω
′)

ω
′2 −ω2 dω′ (2)

where P stands for the principal value of the integral.
We have also investigated the other optical properties from ε1(ω) and ε2(ω), including

absorption coefficient Iave(ω), optical reflectivity coefficient Rave(ω), and electron energy
loss Lave(ω).

αij(ω) =
2ωkij(ω)

c
(3)
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(
nij − 1

)2
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)2

+ kij
=

∣∣∣∣∣∣
√

ε
ij
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ε

ij
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(4)

Lij(ω) = −Im
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ij
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ε
ij
1 (ω)2 + ε

ij
2 (ω)2
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3. Results and Discussion
3.1. Crystallographic Structure

The two different space group crystal structures of the Nd2Zr2O7 compound are shown
in Figure 1. The calculated (optimized) lattice parameters and fractional coordinates for
Nd2Zr2O7 compound in Fd-3m and Pmma are given in Tables 1 and 2 [53,55]. Hence, the
calculated structural parameters were almost equal to the experimental values. Previously,
calculated lattice constant for compound Nd2Zr2O7 in crystal symmetry was found to be
10.68 [50] based on the LDA+U method, and 10.74 Å [53] using the GGA+U method. The
stability of the materials has been found by calculating the compound binding energy using
the following equation:

EBE = ETOT(Nd2Zr2O7)− E1(2(Nd))− E2(2(Zr))− E3(7(O)) (6)

where is ETOT, E1, E2, and E3 are the total energy of the Nd2Zr2O7 system, for the Nd
atom, for the Zr atom, and for the O atom. The binding energy formation values for Fd-3m
and Pmma were −3.860 and −3.074. If a compound has negative binding energy, it is
considered as thermodynamically stable. It is evident that our investigated materials were
thermodynamically stable as they had negative values of formation energy. Fd-3m had the
lowest value, indicating a more thermodynamically stable material.
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Figure 1. Crystal structures for (a) Fd-3m and (b) Pmma phases of Nd2Zr2O7 compound. 

Table 1. Space group Fd-3m (227), lattice parameters, and fractional coordinates. 

Atoms X Y Z 

Nd 0.12500000 0.12500000 0.12500000 

Figure 1. Crystal structures for (a) Fd-3m and (b) Pmma phases of Nd2Zr2O7 compound.

Table 1. Space group Fd-3m (227), lattice parameters, and fractional coordinates.

Atoms X Y Z

Nd 0.12500000 0.12500000 0.12500000

Nd 0.62500000 0.12500000 0.12500000

Nd 0.12500000 0.12500000 0.62500000

Nd 0.12500000 0.62500000 0.12500000

Zr 0.62500000 0.62500000 0.62500000

Zr 0.12500000 0.62500000 0.62500000

Zr 0.62500000 0.62500000 0.12500000

Zr 0.62500000 0.12500000 0.62500000

O 0.00000000 0.00000000 0.00000000

O 0.25000000 0.25000000 0.25000000

O 0.28956700 0.28956700 0.71043300

O 0.53956700 0.53956700 0.96043300

O 0.71043300 0.28956700 0.71043300
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Table 1. Cont.

Atoms X Y Z

O 0.71043300 0.28956700 0.28956700

O 0.28956700 0.71043300 0.71043300

O 0.28956700 0.71043300 0.28956700

O 0.71043300 0.71043300 0.28956700

O 0.96043300 0.53956700 0.53956700

O 0.53956700 0.96043300 0.96043300

O 0.96043300 0.96043300 0.53956700

O 0.96043300 0.53956700 0.96043300

O 0.53956700 0.96043300 0.53956700
data_Nd2Zr2O7; space group Fd-3m (227); a: 7.63484829; b: 7.63484829; c: 7.63484829; α = 60.00; β = 60.00;
γ = 60.00.

Table 2. Space group Pmma, lattice parameters, and fractional coordinates.

Atoms X Y Z

Nd 0.50000000 0.50000000 0.50000000

Nd 0.00000000 0.75000000 0.22231000

Nd 0.50000000 0.00000000 0.50000000

Nd 0.00000000 0.25000000 0.77769000

Zr 0.00000000 0.25000000 0.23880500

Zr 0.00000000 0.75000000 0.76119500

Zr 0.50000000 0.00000000 0.00000000

Zr 0.50000000 0.50000000 0.00000000

O 0.00000000 0.46145300 0.63341100

O 0.50000000 0.75000000 0.86688600

O 0.00000000 0.52504300 0.88566600

O 0.00000000 0.47495700 0.11433400

O 0.00000000 0.02504300 0.11433400

O 0.50000000 0.75000000 0.10071700

O 0.50000000 0.25000000 0.36987600

O 0.00000000 0.53854700 0.36658900

O 0.00000000 0.96145300 0.36658900

O 0.00000000 0.03854700 0.63341100

O 0.50000000 0.75000000 0.63012400

O 0.50000000 0.25000000 0.89928300

O 0.00000000 0.97495700 0.88566600

O 0.50000000 0.25000000 0.13311400
data_Nd2Zr2O; space_group Pmma; a: 3.67429700; b: 7.67588500; c: 10.99859600; α = 90.00000000; β = 90.00000000;
γ = 90.00000000.

3.2. Electronic Band Structure

Most of the physical properties of solids are associated with the electronic band
structure, so the study of the electronic band structure is most important. The electronic
energy band-gap properties and their values mainly decide the charge transport and
optical features of semiconductors. The electronic band structure is calculated in a highly
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symmetrical direction along the first Brillion zone (BZ) of the lattice. The highly symmetrical
points are of great importance, correlated to the Brillion Zone (BZ) of the primitive reciprocal
lattice unit cell. The coordinates depend upon the symmetrical groups to which the crystal
structure belongs. The unit-primitiv cells and their coefficients are related to the unit
vectors defined by the lattice parameters, for both real and reciprocal lattices. The main
investigated features, energy band structure and electronic density of the states (partial and
total) of the compound Nd2Zr2O7 for both the phases and for both the spins (up and down),
are shown in Figures 2 and 3, respectively. The main difference was the band-gap energy.
The minima of the conduction band (CBM) and the maxima of valance band (VBM) were
located at the single point
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of the Brillion zone (BZ) for the spin up and spin down in both
the space groups, ensuring direct band-gap materials. The materials with direct band gaps
are called active semiconductors. The response of the indirect band-gap materials to the
optical excitation was very weak, particularly at the absorption threshold. The reason is that
the CBM and the VBM take different locations of the BZ for indirect band-gap materials.
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Figure 3. Energy band structure of the Nd2Zr2O7 compound in the Pmma phase for the (a) the
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The investigated band gaps of the NZO compound for both the space group Fd-3m
and Pmma were 2.09 eV and 2.39 eV, respectively, for spin up and were equal to 3.90 eV
and 2.40 eV, respectively, for spin down. The band gap for spin down was very broad as
compared to that of spin up. On the other hand, the band gap for Pmma spin up and down
were almost equal. In the case of the spin up state with symmetry, a small intermediate
band lay around the Fermi level. Such materials with intermediate bands find applications
in the intermediate band solar cells [53]. For comparison, previously reported band gaps for
Nd2Zr2O7 have been of order 3.72 (form first-principles molecular dynamic calculations) [48],
2.67 (from first-principles DFT procedure) [49], and 4.0 (using LDA+U method) [50].

3.3. Electronic Density of States

The electronic density of state is used to find the basics of compound Nd2Zr2O7 band
structure in both the space groups for the spin up and spin down, for which we had to
focus on the contributions of orbitals of all the atoms to the electronic density of states.

Calculated values for total DOS show a number of noticeable features (peaks and
valleys). In reality, we can detect the flawless fit and correlation between these peaks and
the band structure. The calculated electronic band structure at the equilibrium lattice was
constant for different high-symmetry points in the Brillouin zone and the total density of
states DOS of Nd2Zr2O7 in GGA+U, respectively, where the line at zero eV indicates the
Fermi energy.

The TDOS (Figure 4) for both symmetries of the compound exhibited well-known
energy regions in the valence band (VB) from −5.0 eV to −2.0 eV for the Fd-3m phase,
while for Pmma it extended from−6.0 eV to−1.0 eV for both the spins, with a well-defined
peak observed at 0.0 eV for Fd-3m phase. The VB was formed by the hybridization of the
three atoms in the compounds, whose contributions can be found from the plots of PDOS
in Figures 5 and 6. The conduction bands (CB) extending from 2.0 eV to 6.0 eV for both the
phases and both the spins were formed due to the hybridization of the three species.
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From the plot of PDOS in Figure 5, we can see that, for the Fd-3m phase, the two
peaks at −4.0 to −3.0 eV and at Fermi level originated from the Nd-f electronic states for
the spin-up case. A large part of VB from −5.0 eV to −2.0 eV appeared due to O-p states.
Meanwhile in CB, a prominent peak appeared at 2.5 eV from Nd-f states in the spin-up case
too. From energy region 3.0 eV to 6.0 eV, the main contributions in the conduction band
also arose from Nd-f states in the spin-down case with some considerable contribution
from Zr-d states for both up and down spin cases. However, for the Pmma phase, the main
contribution in VB was due to O-p states extending from −5.0 eV to −0.5 eV, as shown in
Figure 6. The CB was mainly formed from Nd-(d + f) and Zr-d states extending from 4.0 eV
to 6.0 eV with equal weightage from both spin states. The hybridization showed the strong
covalent bonding between the species. This aspect suggests that there was a very strong
electronic interaction between Nd-f, Nd-d, and Zr-d atomic orbitals. The considerable role
of Nd-f and Zr-d beneath the Fermi level showed that it can donate the electrons. The
contribution of the lower group of the conduction band was mostly due to Nd-f, Zr-d,
and Zr-p orbitals, while in the Pmma phase, the peaks were generally due to Nd-d, Zr-d,
and Zr-p electronic orbitals. The most important thing is that we have investigated the
arrangement of the orbitals for all the nonequivalent locations for each element in the
Fd-3m and Pmma phases of the Nd2Zr2O7 compound and important differences between
the two phases have been noted. From this investigation, it has been ascertained that the
peaks in the Fd-3m phase were higher than the Pmma phase and the structure moved to
higher energies as we shifted from the Fd-3m phase to the Pmma phase. For Fd-3m phase,
the valance band was mostly due to Nd-f states, while on the other hand, for Pmma, phase,
it was due to Nd-d and Zr-d electronic orbitals.

3.4. Optical Properties

The optical behaviors of materials are generally derived from the band of structure
electrons. The investigated optical dispersion properties provide important complementary
information about the light-matter interaction behavior of the materials. These properties
give us information about the filled and unfilled electronic states within the band [20]. The
optical behavior plays a significant role in the potential opto-electronic appliances. From
the real, ε1(ω), and the imaginary, ε2(ω), parts of complex dielectric function, we derive
the essential optical properties, such as the extinction coefficient K(ω), refractive index
n(ω), reflectivity (ω), absorption coefficient I(ω), energy-loss function L(ω), and real optical
conductivity σ(ω) for both the phases. Here, we investigated the optical properties of the
Nd2Zr2O7 compound for both the phases (Fd-3m and Pmma) at both the spins.

Figure 7a is a plot of the investigated imaginary ε2(ω) part of the complex dielectric
functions for both the phases at spin up and spin down, respectively. For both phases and
both the spins, the real part of the dielectric function, ε1(ω), is shown in Figure 7b. The
imaginary part, ε2(ω), of the complex dielectric function (DF) is related directly with the
energy band structure. For the electron–phonon interaction, the broadening was considered
to be 0.1 eV (used commonly). The peaks points for the spin up were approximately located
at 7.9 eV for both the phases (Fd-3m and Pmma), while on the other hand, for spin-
down, these points were positioned at 6.0 and 7.2 eV for Fd-3m and Pmma symmetries,
respectively. The imaginary part of the complex dielectric function ε2(ω) also correlated
with the transition of electrons between the bands of the similar momenta and its intensity
was related with the overlapping between initial and final states. As permitted by the
selection rules, the optical transition of electrons was allowed only between s to p, p to d,
and d to p orbitals. A band between the energy values 5.0 to 9.0 eV corresponded to the
electronic transitions near the highly symmetric point (
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c) in between the maximum
of valence and the minimum of conduction bands, i.e., from the Op orbital in the valence
band to the Zrd orbital in the conduction band for both the Fd-3m and Pmma phases.
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Figure 7. (a,b) The imaginary part, ε2(ω), of the complex dielectric function for Nd2Zr2O7 and
(c,d) the real part, ε1(ω), of the complex dielectric functions for Nd2Zr2O7 ((black color for Fd-3m)
and (red color for Pmma)) using GGA+U (a,c) for the spin-up direction (↑) and (b,d) spin-down
(↓) direction.

It can be seen that the spectra of the dielectric function of all materials studied were
practically similar with a few simple differences. The reason for these differences was the
discrepancies in the dispersion of the energy bands of these compounds. There was a sharp
increase in the imaginary part, ε2(ω), of the dielectric function in between 5.0 eV and 9.0 eV
for both the phases at spin down. Our observations showed that, as a whole, spectral shapes
of the imaginary part for both phases were almost the same but the peaks for spin down
were narrow as compared to spin up. The main reason behind this was the difference of
hybridization of angular momenta of the two different phases, which changed the electronic
transition and gave the spectral shape. The real part of the dielectric constant was related
with the crystal polarization and gave a linear response of the substance to electro-magnetic
radiation. It was also directly related with inter-band electronic dipole transition probability.
Under the limitation of existence selection, rules of electronic transitions, the DF was related
to the joint DOS near the Fermi level and the related part of the electronic band structure.

The peaks value of ε1(ω) for spin-up were 4.9 and 6.0 eV, and for spin down were
5.0 and 6.0 eV, respectively, for the Fd-3m and Pmma phases. Our investigations showed
that the values for real part of complex dielectric function ε1(ω) showed an increasing
tendency, up to 5.0 eV for both phases, and a further increase in energy sets and a decrease
in ε1(ω) for spin down. On the other hand, for spin up, the ε1(ω) value remained constant
up to 6.0 eV and showed a slight decrease after 6.0 eV. The zero-crossing of the spectrum of
the dielectric function’s dispersive part, ε1(ω), signified the non-existence of light scattering.
Note that the function ε1(ω) vanished at a very small energy value for spin up and at 8.5 eV
for spin down. For these energy values, the dispersion of light was zero and the value
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of the electronic part equal to ε1(ω) was obtained by using the dielectric constant ε1(ω)
(ω→0), which is a critical parameter in many aspects of the characteristic material.

From ε1(ω) and ε2(ω) dispersions, the other optical properties, like extinction coeffi-
cient K(ω), absorption coefficient I(ω), refractive index n(ω), optical reflectivity R(u), and
the energy-loss spectra L(u), can be calculated.

The extinction coefficient K(ω) determines how easily an electromagnetic radiation
of a particular frequency (energy) can enter a material. The extinction coefficient K(ω) is
related to the absorption of radiations, i.e., absorption coefficient I(ω). Figure 8 shows
the extinction coefficient of (Fd-3m and Pmma) Nd2Zr2O7 for spin up and spin down,
respectively. It is noted that the peak values of the extinction coefficient were obtained
almost at 8.0 eV for both the phases and both the spins—for the spin up the band was broad
but for a spin down the band was narrow. This is the indication that at this specific energy,
the light was mostly absorbed by both the phases for spin up and spin down. After 11.0 eV,
the value of extinction went on to decrease, which means that Nd2Zr2O7 was transparent
for energy values greater than 11.0 eV.
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for Pmma)) using GGA+U. (a) The spin-up direction (↑) and (b) spin-down (↓) direction.

The absorption spectra are related to the absorption of electromagnetic radiations
of definite wave lengths or frequencies by the compounds. Figure 9 illustrates the ab-
sorption spectra of NZO compound for both phases (Fd-3m and Pmma) at spin up and
spin down. For both the Fd-3m and Pmma symmetries, no photons were absorbed for
spin up (
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The absorption spectra are related to the absorption of electromagnetic radiations of 
definite wave lengths or frequencies by the compounds. Figure 9 illustrates the absorp-
tion spectra of NZO compound for both phases (Fd-3m and Pmma) at spin up and spin 
down. For both the Fd-3m and Pmma symmetries, no photons were absorbed for spin 
up (   ћ   ω   < 2.0 eV in Fd-3m and ћω < 2.5 eV in Pmma) or for spin down (ћω < 
2.5eV, ћω < 4.5eV) (see Figure 9), respectively. From the investigation, it was concluded 
that the 
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The absorption spectra are related to the absorption of electromagnetic radiations of 
definite wave lengths or frequencies by the compounds. Figure 9 illustrates the absorp-
tion spectra of NZO compound for both phases (Fd-3m and Pmma) at spin up and spin 
down. For both the Fd-3m and Pmma symmetries, no photons were absorbed for spin 
up (   ћ   ω   < 2.0 eV in Fd-3m and ћω < 2.5 eV in Pmma) or for spin down (ћω < 
2.5eV, ћω < 4.5eV) (see Figure 9), respectively. From the investigation, it was concluded 
that the 
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The absorption spectra are related to the absorption of electromagnetic radiations of 
definite wave lengths or frequencies by the compounds. Figure 9 illustrates the absorp-
tion spectra of NZO compound for both phases (Fd-3m and Pmma) at spin up and spin 
down. For both the Fd-3m and Pmma symmetries, no photons were absorbed for spin 
up (   ћ   ω   < 2.0 eV in Fd-3m and ћω < 2.5 eV in Pmma) or for spin down (ћω < 
2.5eV, ћω < 4.5eV) (see Figure 9), respectively. From the investigation, it was concluded 
that the 
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The absorption spectra are related to the absorption of electromagnetic radiations of 
definite wave lengths or frequencies by the compounds. Figure 9 illustrates the absorp-
tion spectra of NZO compound for both phases (Fd-3m and Pmma) at spin up and spin 
down. For both the Fd-3m and Pmma symmetries, no photons were absorbed for spin 
up (   ћ   ω   < 2.0 eV in Fd-3m and ћω < 2.5 eV in Pmma) or for spin down (ћω < 
2.5eV, ћω < 4.5eV) (see Figure 9), respectively. From the investigation, it was concluded 
that the 

ω < 4.5 eV) (see Figure 9), respectively. From the investigation, it was concluded that the
highest absorption peaks and the broad absorption spectrum were observed above 9.0 eV
for both spin up and down of Fd-3m and Pmma phases, which represents the formation
of the electronic transition from the valence to the conduction band of the material. The
absorption spectra started decreasing from 11.0 eV, which means that the material is not
suitable for the ultraviolet region. From the investigation, it was also observed that the
absorption spectra increased directly with small fluctuating peaks against energy from
2.9 to 10.8 eV for both the phases at spin up and for spin down (3.0 to 10.9 eV for Fd-3m
and 4.5 to 11.0 eV for Pmma).

Figure 10 represents the energy-loss function L(ω) of NZO compound for both the
phases and both the spins. It is considered to be an imperative optical parameter and is used
to measure the energy loss of very highly energetic electrons passing through the material.
The peaks values of the energy loss function L(ω) signify the features associated with the
plasmonic vibrational frequencies and are also said to be plasma oscillations/ frequencies.

From the investigation, it was observed that the peak values of L(ω) were in between
13.0 and 13.3 eV for the Fd-3m and Pmma phases at both spin up and down. The peaks that
were dominant for the L(ω) spectra occurred due to the excitations of plasmon. The reason
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beyond is the combined longitudinal oscillatory response of the electrons in the valence
band against the atomic cores with plasma frequency.
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The reflectivity dispersion of the NZO compound for both the phases and both the
spins is shown in Figure 11. For spin up, the value of reflectivity was 0.65 at energy
0.0 eV, while a rapid decrease up to 0.03 was shown in reflectivity for the energy values
from 0.0 eV to 1.0 eV. The further increase in energy corresponded to a gradual increase
in reflectivity with small fluctuating peaks up to 12 eV for the Pmma phase, with the
reflectivity varying between 0.06 to 0.35 for the energy 0.0 eV to 12 eV. Similarly, for the
spin down, the reflectivity for both the phases varied between 0.05 to 3.5 for the energy
from 0.0 eV to 12.4 eV. Above this energy, the reflectivity for both the phases and both the
spins showed a rapid increase. From the investigation, it was observed that for higher
energies, the reflectivity was also high for both the phases of the compound. Thus, we
can say that the results are coincident with energy loss spectrum, falling in the range of
4.0 eV to 12.0 eV.
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Figure 11. Calculated reflectivity R(ω) for Nd2Zr2O7 ((black color for Fd-3m) and (red color for
Pmma)) using GGA+U. (a) The spin-up direction (↑) and (b) spin-down (↓) direction.

The refractive index by the definition is “actually the ratio between the speed of light
in free space and the speed of light in that material”. Figure 12 shows the refractive index
variation of both the phases and both the spins. For both the phases, in both spin up
and spin down, it was observed that below 10.0 eV and 6.0 eV, the index of refraction lay
between 1 and 2. This indicates that the material is transparent to the visible spectrum of
light. The maximum refractive indexes for both the spins and for both (Fd-3m and Pmma)
phases were found at around 6.0 eV.
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Nd-d, Nd-f, and Zr-d, which is the confirmation of covalency of a certain level between 

Nd-f and Zr-d chemical bonding. This aspect suggests a very strong electronic interaction 
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Figure 12. Calculated refractive index n(ω) for Nd2Zr2O7 ((black color for Fd-3m) and (red color for
Pmma)) using GGA+U. (a) The spin-up direction (↑) and (b) spin-down (↓) direction.

The term real optical conductivity σ(ω) means the ability of a material to conduct
electric charge under the influence of electro-magnetic (EM) radiations. The term “optical”,
here, means the whole spectrum of the electromagnetic radiation, not constrained only
to the visible region of EM radiations. The real optical conductivity σ(ω) values for both
the phases, Fd-3m and Pmma, for spin up and spin down, are shown in Figure 13. It was
observed that, for spin up, the real optical conductivity was zero for the energy less than
2.5 eV for both the phases, and started increasing by increasing the energy up to 7.0 eV.
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Figure 13. Calculated real optical conductivity σ(ω) for Nd2Zr2O7 ((black color for Fd-3m) and (red
color for Pmma)) using GGA+U. (a) The spin-up direction (↑) and (b) spin-down (↓) direction.

With further increases in energy, the conductivity started decreasing, meaning that
the material behaved like a conductor for the energy range between 2.5 to 11eV. On the
other hand, for spin down, the optical conductivity was zero for less than 2.5 and 4.3 eV
for the phases Fd-3m and Pmma, respectively. For the energy increasing up to 8.0 eV, the
conductivity increased gradually, and started to decrease with further increase in energy.

4. Conclusions

We have investigated the structural, electronic, and optical properties of Nd2Zr2O7 for
both (spin up and spin down) Fd-3m and Pmma phases via DFT-based WIEN2k calculations.
The compound Nd2Zr2O7 exhibits a direct band gap. The calculated band gaps for spin
up were 2.09 eV and 2.39 eV, and for spin down were 3.90 eV and 2.40 eV, respectively,
for Fd-3m and Pmma. From the electronic band structure, it is clear that the electronic
density of states (DS) near to the Fermi level is mainly caused by the Nd-f and Zr-d states
for the Fd-3m phase, while for Pmma phases the contribution is mainly due to Nd-d, Nd-f,
and Zr-d, which is the confirmation of covalency of a certain level between Nd-f and Zr-d
chemical bonding. This aspect suggests a very strong electronic interaction between Nd-f,
Nd-d, and Zr-d atoms. The extinction coefficient reached its peak at almost 8.0 eV for spin
up and spin down of both the phases; for the spin up, the band was broad, but for spin
down, the band was narrow. The dominant peaks observed for the energy-loss function
spectra were due to plasma excitation of electrons. For both the phases and both the
spins, the compound Nd2Zr2O7 possessed a comparatively high value of reflectivity and
absorption in the spectrum of the UV region. The refractive index has been studied within
the energy range 0.0 eV to 14.0 eV. In real optical conductivity for both the phases, Fd-3m
and Pmma (spin up and spin down), it was observed that for the spin up the real optical
conductivity was zero for energy levels less than 2.5 eV for both the phases and started
increasing by increasing the energy up to 7.0 eV, after which, further increases in energy
led the conductivity to start decreasing. On the other hand, for spin down, the optical
conductivity was zero for less than 2.5 and 4. Fd-3m and Pmma, respectively, and as the
energy increased up to 8.0 eV, the conductivity increased gradually, after which it started
to decrease with further increases in energy. This means that the material behaves like a
conductor for the energy range between 2.5 eV to 11.0 eV. In conclusion, we are expecting
that this theoretical study will motivate experts to explore the attractive properties of this
oxide material in more detail in future, theoretically as well as experimentally.
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